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Abstract: The construction of spherical grids is, to a large extent, a question of organized program-
ming. Such grids come in the form of rhomboidal/triangular grids and hexagonal grids. We are here
mainly interested in Local-Galerkin high-order schemes and consider the classical fourth-order o4
method for comparison. High-order Local-Galerkin schemes imply sparse grids in a natural way, with
an expected saving of computer runtime. Sparse grids on the sphere are described for rhomboidal
and hexagonal cells. They are obtained by not using some of the full grid points. Technical problems
and grid organization will be discussed with the purpose of reaching fully realistic applications. We
present the description of a programming concept allowing people, using different programming
styles at different locations, to work together. The concept of geometric files is introduced. Such
geometric files can be offered for downloading and are supposed to allow Local-Galerkin methods
to be introduced into an existing model with little effort. When the geometric files are known, the
solution on a spherical grid is equivalent to the limited-area Galerkin solutions on the (irregular)
plane grids on the patches. The proposed grids can be used with spectral elements (SE) and the
Local-Galerkin methods o2o3 and o3o3. The latter offer an increased numerical efficiency which, in a
toy model test, resulted in a ten-times-reduced computer run time.

Keywords: spherical grids; Galerkin; software engineering

1. Introduction

Spherical grids are based on Platonic or semi-Platonic solids, and are generated by
dividing the patches on the surface of the solid into cells. In a second step, these grids are
projected onto the sphere (see [1] hereafter referred to as St-Li) for a review of spherical
grids). Early attempts to use grids based on the icosahedron ([2–4], failed due to two reasons
which are described in St-Li. [5,6]) argued that such grids could be used when coordinate
systems are not the same for all patches of the solid. The scheme [5] was introduced into
the DWD (Deutscher Wetterdienst) global model during several visits around 2000. A
recent description of this model is given by [5,7] used the cloud-grid method. This method
constructs a finite difference stencil using the nearest neighbors of the target point. The
method is described in St-Li and, under efficiency considerations, is limited to second
order approximations. It had homogeneous approximation order 2 and did not need grid
smoothing. Later versions of the ICON model were not of homogeneous approximation
order 2 and needed grid smoothing. Grid smoothing is a procedure which makes the grid
cells as homogeneous as possible. A homogeneous third-order version of the icosahedral
rhomboidal grid was given by [8–14]. Let us call a realistic model, into which a spherical
grid discretization is introduced, the target model. The grid construction and programming
suggestions made in this paper have the purpose of easily allowing the transfer of a grid
system tested in a toy model to different realistic modeling systems.

Spherical grids come in a number of variations which are different in efficiency. All
spherical grids divide the sphere into patches (St-Li). For example, the cubed sphere has
6 patches, the icosahedron has 10 and the T36 solid has 18. T36 is a semi-Platonic solid
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having 12 equal rhomboids around the poles and a further 6 rhomboids at the equator (see
St-Li). It is a triangulated form of the hexagonal prism. Each patch is subdivided into grid
cells. In this paper, we consider conforming grids which, in two dimensions, are indexed
by ii,jj. When the patches contain more than one grid cell, the grid is necessarily irregular,
meaning that the grid lengths are not equal. A larger number of patches leads to smaller
patches which will result in more uniform grids.

The different grids based on the cubed sphere, icosahedron etc. were evaluated by
their developers based on the optical impression of the plots of the grids. Unfortunately,
no systematic evaluation of grid properties, beyond the optical evaluation, exist in the
literature. The grid statistics of interest would be maximum/minimum grid lengths, angle
of coordinate lines and grid isotropy. The latter is the change in effective grid-length seen
in different directions, which for a quadratic plane grid has the relation of 1 :

√
2. Using the

optical impression of the cubed sphere, icosahedron and T36, from plots given in St-Li, it
appears that the patches become smaller and the grids more homogeneous. For the angle
of co-ordinate lines, most grids have a range of 60 to 120 degrees. For grid isotropy, it
seems that hexagonal grids have an advantage over rhomboidal grids. A paper making this
conclusion more quantitative would certainly be of great value. Using the plotted grids for
cubed sphere, icosahedron and the T36 solid, as given in St-Li, it can be seen that the grid
for T36 is the most homogeneous, which provides a justification for the use of semi-Platonic
compared to Platonic solids.

This means that the difference of the smallest and the largest cell dimensions is small
compared to the grid length. When hanging nodes are avoided, all grids based on solids
mentioned above have angles between grid lines ranging from 60 to 120 degrees. When
discussing grids, another efficiency consideration depends on the lines of grid points being
on great circles. When this property is obtained, some of the numerical methods described
in St-Li are more efficient than with grid points not lining up on a great circle.

Finite differences and Local-Galerkin (L-Galerkin) on hexagonal cells have a potential
to be more efficient than with rhomboidal cells. For an example of a model based on
hexagons see 59. Hexagonal grids may also be sparse (see [12] for a simple test with a
sparse hexagonal grid on a plane grid). The potential for computer time saving due to
sparseness is larger with hexagons than with rhomboids. In this paper, the sparse hexagonal
grid is extended to the sphere and an efficient compact storage is defined which, in [8]
was requested. Spherical grids have been used based on finite volume/finite difference
schemes. In this paper, we are interested in Galerkin and L-Galerkin schemes. The existing
fully realistic models use the spectral element (SE) method. SE schemes are an exception,
as they do not support the sparse grids which are used by the classical Galerkin and the
high-order L-Galerkin methods described by St-Li. This paper changes the plane grids
for L-Galerkin methods to spherical grids and introduces the other concepts necessary
for realistic atmospheric models, such as the definition of compact storage of fields for
sparse grids. Simple toy models were given by St-Li for the plane. They transfer to the
spherical case when replacing linear distances by great circle distances. This change reflects
the change in weights which can be accounted for by geometric files. This concept will be
introduced in the next section.

For spherical geometry, we refer to [13] which mainly treats the triangulations needed
for navigation on the sphere. For the Galerkin compiler, vector algebra was mainly used,
which is discussed in the same reference. The basic mathematical tools and definitions
for spherical grids are described in Section 7 of St-Li. The existing models use just a small
fraction of the possibilities described there. With the exception of the SE method, most
L-Galerkin schemes, in practical use, employ low-order basis functions. This sometimes,
but not always, leads to low-order methods. Grid point methods can often be derived as
L-Galerkin methods with low-order basis functions. An example of a third-order grid point
scheme is MPAS (Model for Prediction Across Scales) [9].

This paper aims for the use of schemes of uniform second- to fourth-order. High-order
basis functions are proposed with the L-Galerkin versions. Achieving a high approximation
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order with a high-order basis function representation can lead to sparse grids with a
potential for saving computer runtime. The high-order basis function method, SEs, cannot
use sparse grids, as the use of collocation points to compute Galerkin integrals prevents
the use of this source of increased computer efficiency. Both the classical Galerkin, and
some of the L-Galerkin methods investigated here, use sparse grids. The collocation grid
for SE is shown in Figure 1, which is the same as that used with the classical fourth-order
finite difference o4 method. SE, however requires an irregular grid. Such results transfer
immediately to the spherical grids, with the only difference being that, for spherical grids,
the regular grid case does not exist.
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Figure 1. Top left: the patches of the semi-Platonic solid T36 with indices i,j of the patch corners:
i = 1,2,3,4,5,6 and j = 1,2,3,4,5 and patch indices: i = 1,2,3,4,5,6, j = 1,2,3. Top left is the view from the
x-direction. Top right is the seme with the north pole visible. Bottom left shows the indices ii,jj for
the cell corner points within the patches for the resolution of 5 * 5 (ie = 5). If classical o4 methods are
to be used, the cell indices can also be seen as grid point indices. Bottom right shows the indices for
just one patch. With this diagram it can be seen why this definition of cell-corner amplitudes results
in compact storage. When amplitudes are defined just for the cell corners, as illustrated in this figure,
the grid is suitable for most classical schemes, including the classical o4 scheme. For this case, the
total number of amplitudes for ie points on a great circle is ie * ie dynamic amplitudes for each of the
6 * 3 = 18 patches. In addition, two amplitudes must be assumed at the two poles. The number of
grid points is therefore 3 * 6 * ie * ie + 2. The coarsest grid possible in this frame is obtained with ie = 1.
For this case we have 18 + 2 = 20 grid points, which is the number of patch corner points.

St-Li gives simple tests for the L-Galerkin methods on the plane for regular and
irregular grids. For toy model demonstrations of L-Galerkin methods, we refer to this, and
this paper is concerned with optimizing grid creation methods, transferring such methods
to spherical grids and introducing such schemes to real-life models. To create realistic
models on such grids, complex software is necessary. In particular, going from a plane to a
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spherical grid requires an advanced software construction. The need for good geometrical
and software organization was highlighted by the sparse hexagonal grid construction given
by [10] For simplicity, these hexagonal cells were considered for the plane. Nonetheless,
the program for the simple tests became so complex that, after obtaining some results, the
authors were not able to develop the program further and suggested that a new approach
for programming and data representation is necessary. This paper defines such a method.
In order that a program system can be used, a minimum amount of software engineering is
necessary, but this is not sufficient to create a model on spherical grids.

While the grids described here can be used with most methods mentioned in St-Li,
we aim for the application of the L-Galerkin methods o2o3 and o3o3 described in St-Li.
Together with SE, these methods are further developments of the classic Galerkin methods.
While the classic Galerkin method was successfully used on older computers, its use on
multiprocessor computers is difficult as they require the global communication of data at
each time-step. SE and o2o3 need only local data exchange and this property makes these
methods useful with modern multi-processor computers. Furthermore, finite volumes use
only local data exchange; finite volumes are, however, mostly used in a version which is
second-order on regular grids only. An exception is the MPAS numerical method, which
uses finite volumes and is fourth-order accurate because of the use of the Voronoi grid.
Other finite volume methods need grid smoothing to have an approximately regular grid
to have a reasonable level of accuracy. SE and o2o3 have in common that they use a
polynomial basis function representation and, for a third-order polynomial basis, reach
fourth-order accuracy on irregular grids. Due to this, they can handle, for example, a 1:2
grid refinement without problems. This property is very useful as regular grids on the
sphere do not exist. The main difference between o2o3, SE3 and the SE method with third-
order basis functions is that SE3 uses the full grid. o2o3, similarly to the classic Galerkin
finite elements, allows the use of sparse grids which, for the classic Galerkin method, are
called serendipity grids. For a toy model in 3D, the saving of CPU time due to sparseness
was found to be factor 10 (St-Li). A systematic description of the methods mentioned is
given by St-Li.

A good geometrical organization of the amplitudes and grid points is necessary, and
this, in addition to the software considerations, is the subject of this paper. Here, the IGEL
system of grid representation (see St-Li) is used. For grid points i on the sphere, the IGEL
grid point ri consists of three-dimensional (3D) unit vectors where ri ∈ R3 has its origin
in the earth center (0, 0, 0) ∈ R3. These IGEL points can be plotted by projecting each of
the vectors ri to the visualization plane. However, such plots are often confusing if not
considering extremely few points. If, for example, the rhomboidal cell corner grid points
are plotted in the IGEL system, the surface looks black and like a hedgehog (‘Igel’ is the
German word for Hedgehog). To plot grid points on the surface, it is better to represent
each vector by its end point on the sphere. However, the IGEL vectors ri are very useful
to compute quantities such as the great circle distances of two points, the intersection
point of two great circles, the spherical angle of two great circle lines etc. Often, the fields
necessary to import are given in geographic coordinates. Auxiliary fields to plot such fields,
or to perform great circle differentiation, are easily obtained from the IGEL representation.
Such auxiliary fields are called geometric fields, as opposed to dynamic fields, such as
density or velocities. Using the IGEL representation, extending a grid to neighboring cells
to create a halo can easily be carried out. Spherical grids are mainly considered for the
icosahedron and the cubed sphere. Here, we take the T36 solid (St-Li) as an example.
Geometric considerations can also be used to construct a compact data storage (St-Li) for
the sphere. This will be described in Section 2.

The mentioned operations are mostly trivial to program using the IGEL grid, but a
large number of such operations is necessary. This set of routines is called the Galerkin
Compiler GC_sphere. GC_sphere allows the creation of software for operations on the
sphere. The theory is based on St-Li. It allows the construction of grids on all semi-Platonic
solids such as the T64 solid (St-Li) and even higher semi-Platonic solids. GC_sphere has
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different layers of complexity. The deep layer contains all the simple routines and nearly
all the complex operations can be programmed. The higher surface assumes that the IGEL
file of the target grid is already created and, then, all relevant geometric fields can be
constructed, allowing one to compute all the geometric fields necessary for discretization.
Therefore, the deep layer is necessary when new solids, with their grids, are to be con-
structed. The higher level is sufficient if grids for a particular solid are used and some IGEL
files are already pre-computed.

A Galerkin compiler is under construction, named GC_sphere, and is intended to
grow until realistic models on different solids and for different grid systems are possible.
The purpose is to enable every owner of a model to transfer it to spherical grids. For such
intentions, even the higher GC_sphere level may be unnecessarily complicated. To easily
allow the creation of a spherical grid version of a given realistic model, the file method
is intended for immediate success. The file method consists of creating pre-computed
versions of geometric files for a given resolution. The grid for a field consists of four indices
for each dynamic or geometric field: for the field h(r) this is hi,j,ii,jj. ii and jj are the grid
indices and i,j is the index of a patch. Following St-Li, for the T36 solid, the index is written
as a double index i,j with i = 1,2,3,4,5,6 and j = 1,2,3.

With this notation, the field index for h is hi,j,ii,jj for the T36 solid discretization, i = 1,2,3,
j= 1,2,3,4,5,6, ii,jj = 0, . . . ,ie − 1 where ie is the number of points in a row of grid points.
For the full grid, as indicated in Figure 1, this will result in compact storage for the field.
Some other grid systems will be discussed in Section 4. The storage of fields by indices can,
for sparse grids, lead to non-compact storage and a system of pointers will be suggested
instead. The file method for programming a realistic model will be described in Section 3.
This will only be described for a one-layer model. In addition, 3D models can also be treated.
For the vertical existing procedures, such as centered difference, vertical schemes, as used
in the target model, can be used. When the geometric files are obtained as pre-computed,
only the procedure to form the divergence and to create a halo must be programmed,
according to St-Li, in order to have a full working model.

St-Li describe the principle of patch generation and give a computational example of
the o4 scheme. Simple tests of L-Galerkin schemes were limited to the plane. When the
spherical grid patches are given, the results of St-Li can immediately be applied, as the
spherical grid case appears as a set of 2D plane grid discretizations with irregular meshes,
the irregularity being defined by the spherical geometry. This paper wants provide a step
towards the realistic use of the L-Galerkin methods. The software considerations presented
aim at achieving this with smaller teams than, for example, those creating the SE models.

The maintenance of complex programs is a point of concern for all meteorological
model developments. For example, the model described in [14] had a few hundred contrib-
utors and users and the same is true for the MPAS projec1 [9] Rules for the form of software
contributions were used and the effect was that most users found it easy to understand
the detail of the code and the model code could be used and modified by a large number
of people.

For the development of GC_sphere, a different concept is envisaged. Contributors
and users are considered to be only occasional workers on this problem. Most of the
developers are creating application programs. The GC_sphere lives on the server ECS
(Edgar’s Communication Server, see huckert.com and search for “meteorology project”).
ECS was designed at the time of the COVID pandemic and allows users to cooperate
remotely. In particular, all subroutines can be easily shared with other users as all are
using the same computer. The software shared by different users is contributed under the
assumption of scientific cooperation. Nobody is guaranteed a specific result. Everybody
may use his/her own programming style; just the interfaces must be well defined by any
contributor. It is intended that research versions of geometric files will be put on ECS.
Therefore, everybody is invited to participate in this research. The simplest geometric files
are those to be used for data import and plotting. They are already available on ECS and
an example will be given in Section 4.
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The mentioned theoretical work is at a point where, now, the usefulness of such meth-
ods for realistic modelling can be investigated. Realistic models are models using realistic
initial data and that include all physical processes, such as radiation etc. Such models are
indispensable tools for weather forecasting and climate modeling (for a list of such models,
see St-Li). While older models use the spectral methods and latitude–longitude grids, all
developments from the last 10 years use spherical grids using the methods mentioned
above and described in detail by St-Li. While a few theoretical questions concerning spheri-
cal grids and L-Galerkin methods remain open, the new methods need to be tested with
realistic modeling. If the development of the global spectral method and spectral elements
is an indication, this step into the real meteorological world is a huge project (for a detailed
account of the literature, see St-Li). The present suggestion has the purpose of making
this step possible by using as much of the existing modeling infrastructure as possible, for
example, of the MPAS model. Methods such as the MPAS dynamics, SE or o2o3 increase
the order of approximation of model dynamics. It is a remarkable fact that, such increase
in numerical accuracy so far has not lead to an increase in forecast scores, which all other
research areas, such as the improvement in radiation, have provided. This could point
to another serious error, such as an error of the lower boundary condition. The latter is
potentially improved by cut cells, the development of which is connected to basis function
methods (for an extensive discussion of the related literature, see St-Li).

2. Grids on the Sphere

A description of grid cells based on Platonic and semi-Platonic grids, including graph-
ical illustrations, is given in St-Li. Here, we give additional constructions to be used in
working towards L-Galerkin sparse grids and practical modeling. For sparse grids, each
cell contains more than one grid point. Methods known for the plane can be transferred to
the sphere. It was argued in St-Li that, the grids based on Platonic solids, such as the cubed
sphere or the icosahedron, are only approximately regular and, therefore, it makes sense to
start with a semi-Platonic solid, rather than a Platonic solid. For sparse grids, the pointer
technique, to be explained later, will be used. We follow the results of [15] who, from
considerations of practical modeling, concluded that going beyond order 3 for the basis
functions does not appear reasonable. This result for SE applies, also, to the L-Galerkin
methods, for which the spherical grids are discussed here. Since, so far, sparse grids were
constructed only for field representations of order smaller or equal to 3, this makes all
L-Galerkin methods under consideration rather similar. We have chosen the T36 solid with
18 basic rhomboids as, optically, it appears to have a more homogeneous cell structure
than T20 (icosahedron) or T12 (cubed sphere). Quantitative information on spherical grid
homogeneity is not yet available in the literature. The choice between different grids was,
so far, mostly established from a visual impression of the plotted grids and no systematic
evaluation of grid properties is available.

The grid is defined by the condition that all edges of its 18 patches (see Figure 1) are
of equal great circle length. The great circle angle distance of these edges is computed

numerically and, for T36, it is angle angT36 = 0.8571 = arccos
√

3
7 (radian).

The simplest high-order numerical scheme is classical o4, which was used by [9]
for a spherical grid based on the icosahedron. SE uses the same grid, but needs to use
irregular grid intervals. The o4 scheme is non-conserving and, together with the SE
schemes (St-Li), this is the only uniform order 4 L-Galerkin scheme that has been tested on
the sphere until now. The grid employed can be used for most classical finite difference
schemes and also for the SEs. For the latter, an irregular grid must be chosen. Further
developments were proposed by St-Li which require different grids. Such generalizations
are the sparse conserving and non-conserving grids, and hexagonal conserving fourth-
order sparse grids. With the exception of the classical fourth-order scheme, so far, these
schemes have been tested on the plane only. In this paper, the grids will be constructed
on the sphere. The file method will be illustrated by the simple example of the geometric
files used for plotting fields. The use of geometric files allows a modeling specialist to
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implement such methods without becoming a specialist on spherical grids. At least, the
programs for differentiation on the sphere using geometric files can be carried out by
implementing small and simple routines on the target computer. The simplicity is achieved
by using pre-computed geometric files. The simple program for differentiation on spherical
grids will be given as an example later. This differentiation routine is universal and can be
used with different models. The Arakawa A-grid, shown in Figure 1, is not only the grid
for classical o4 and SE. For the sparse grids to be shown in Section 4, the grid of Figure 1 is
called the full grid and the sparse grids are obtained by using only some of the points of
the full grid.

It is intended that, from the example of the o4 grid, this paper will move towards
more advanced schemes involving grid sparseness. The software and grid aspects will be
treated in Section 3. In this section, we consider questions of grid organization and halo
construction. The patches and their indices are shown in Figure 1. The patches have equal
sides and consist of great circle lines as edges. The numbering of the patch corner points is
defined in St-Li and is indicated in Figure 1. The corners have double indices I = 1,2,3,4,5,6
and j = 1,2,3,4,5. For j = 1 and j = 5, we have the north and south poles. For the poles, the
different i indicate the same point. This means that the number of different patch corners is
3 * 6 + 2=20. The number of patches is 18. The patches are indicated by the double index
i,j, with i = 1,2,3,4,5,6 and j = 1,2,3. In Figure 1, the patch numbers are indicated in the
middle of a patch. The great circle angles of patch edges and cell edge lines are important
to compute field derivatives. The patch corners at the poles are shared by six patches, those
at the equator are shared by four patches and those between the equator and poles are
shared by three patches. From this, and the fact that the edge lines of patches are equal, it
follows that the patch angles at the poles are 60◦ and that two of the angles at the equator
are also 60◦. It also follows that the other two angles at the equator are 120◦. In this paper,
we want to add grid cells for sparse grids to the patches.

Each of the rhomboidal patches has a grid indexed by ii,jj = 0,1,2, . . . ., ie − 1. Figure 1
gives a plot of the indices ii,jj for ie = 5. It can be seen that, with the indices ii,jj = 0,1,2,
. . . , ie, some lines of grid points belong to more than one patch. This representation is
redundant and is not a compact representation of the grid (see St-Li). Consulting Figure 1,
it can be seen that, having run ii and jj only to ie − 1 implies no redundancy and nearly all
grid points are represented. Using the 18 grids for the patches with end point ie − 1 and, in
addition, the two pole amplitudes, results in a compact representation. This representation
includes all grid points and has no double storage for any points.

It is important to have a compact representation for efficient model development.
The compact storage described above for the grid uses data parcels of equal size. There
is another option whereby the grids for patches on the equator (see Figure 1) are slightly
larger than those around the poles. With this option, the grids for equator patches are
indexed ii,jj = 0,1,2, . . . ., ie. For the north-pole and south-pole patches, the grid indices are
ii = 0,1,2, . . . ., ie − 1, jj = 1, . . . , ie − 1.

For the classical o4 scheme, the derivative of a field hii,jj in the direction of the ii index
uses two points to the right and to the left of the target point:

hx,ii,jj = w−2
ii,jjhii−2,jj + w−1

ii,jjhii−1,jj + w0
ii,jjhii,jj + w1

ii,jjhii+1,jj + w2
ii,jjhii+2,jj (1)

In Equation (1), the indices i,j were suppressed. For further explanations in connection
with this, see St-Li. Equation (1) assumes that the grid points are lined up on a great
circle, which is the assumption we make in this paper. Rhomboidal full and irregular
grids, with points not lining up on great circles, are rather expensive and complicated
to implement. Baumgardner’s cloud method (see St-Li) is an example of second-order
approximation on an irregular grid. Its generalization to third order is too expensive to be
feasible (Baumgardner (2004), private communication [16]). Hexagonal sparse grids are
also theoretically rather efficient for irregular grids. This was tested for a plane grid (see
St-Li). Using the hexagonal grid geometry explained later, this can be transferred to the
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sphere. The weights w in Equation (1) depend on the great circle differences between the
grid points involved. The case for the plane is the same.

Grid point differences on the plane must be replaced as great circle differences for the
spherical cases. The treatment of patch boundaries is different for different methods and
for sparse grids. For the example of the classical o4 method, Equation (1) shows that grid
points outside the patch are necessary, which are called the halo.

The Galerkin compiler proposed in Section 3 will allow one to compute the weights in
Equation (1). To compute the flux divergence, the great circle angle between the coordinate
great circle must be known. This is, again, carried out using the routines of the Galerkin
compiler. There is another problem to be solved in connection with Equation (1): the
index ii,jj must be transformed into a compact grid representation. If a point is near the
patch boundary, up to two halo lines of data are needed outside the compact grid. As
indicated above, for some lines such information can be copied from other patches without
interpolation. This grid is called the redundant grid. When consulting Figure 1, it is seen
that some data have to be taken in reverse order. For ie = 5, the data in the target grid are
indexed ii = 0,1,2,3,4,5 and they are copied from a grid line indexed jj = 5,4,3,2,1,0. For an
equatorial grid patch two lines are required outside the patch. Therefore, the halo grid is:
ii = 0,1,2, . . . , ie, jj = −2,−1,0, . . . , ie, ie + 1, ie + 2 and analog for jj. The points with indices
smaller than 0 or larger than ie must be obtained by interpolation. This was performed
in Steppeler et al. (2008) for the icosahedron and the shallow water equations. Here, we
intend to design this in such a way that people from outside, with, at most, a week of
introduction, can use this method to create their own model. When using the Galerkin
Compiler as described in Section 3, much longer introductory times will be needed. From
experience with comparable projects, it is assumed that six months to three years of work
is necessary to transfer a numerical procedure running in a toy model to a realistic model.

Therefore, an even simpler method is suggested to enable the owner of a model
to transfer it to a spherical grid. This method consists in the GC_sphere programmers
providing geometric files to the effect that the model programmer has to create only very
simple programs. Geometric files are all index fields gii,jj which are not dynamic. For
simplicity, we again suppress the indices i,j. As an example, the simple ii,jj grid to be used
with the classical o4 method is used. It is possible to extend this to more complicated
numerical methods and grids, such as sparse grids or hexagonal/triangular grids. We
envisage, however, that this increase in complexity is more on the side of the GC_sphere
programmer and that the job of the model developer is not increasing too much by tackling
the more complex grids. This method is described for shallow water models on the sphere.
Three dimensional modelling is possible, as the vertical classical methods can be applied.
For example, the vertical discretization from the target model can be taken over. To obtain
large sparseness numbers, L-Galerkin methods may be used also in the vertical and, in this
case, this can be carried out analog to the horizontal. Full efficiency is obtained when using
the L-Galerkin method also in the vertical, for which a 1D discretization must be added to
the horizontal scheme. Such 1D programs are given in Appendix 2 of St-Li.

For a shallow water model, the model programmer has to define the storage for the
fields u,v,h. Our description is only for the treatment of the field h. For h, the modeler must
provide compact storage hii,jj, ii.jj = 0,1,2, . . . ,ie − 1. The modeler also needs to provide
halo fields with ii,jj = −2,−1,0,1, . . . .,ie,ie + 1. The halo field contains two additional lines
in ii and jj directions.

The geometric grids are provided for a specific resolution. Therefore, it is necessary
that these fields are obtained for different values of ie, dependent on the resolutions for
which the model is to be run.

It is necessary [14] that the h field is given as a function of the geographic coordinates
(λ, ϕ). The geometric fields necessary are λii,jj and ϕii,jj.

Using this field, the initialization of the model is carried out by:

hii,jj = h
(
λii,jj, ϕii,jj

)
(2)
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Equation (2) already provides the shallow water model to be constructed with initial
data for h. Such data can also be plotted in the λ− ϕ space. We need to use a plot routine
using a list of x, y, λii,jj, ϕii,jj and hii,jj values as input. Furthermore, the projection into the
x-y plane can be obtained by using the geometric field xi,j,ii,jj and yi,j,ii,jj. These geometric
fields need to be provided by the GC_sphere programmer and the modeler need not know
how this is performed. Now, we assume it to be the case that the dynamic equations are a set
of conservation laws. For classical o4 differencing, we need to differentiate the right-hand
side RHSii,jj of the dynamic equation, where, as an example, we consider differentiation in
the direction of ii, assumed to represent the coordinate x. We need to compute the right-
hand side on the halo grid. Thus, we call the routine “grid extension” which creates the halo
grid by interpolation. On the server ECS, this routine will be available. On other computers,
it is necessary to create such a routine. This is easy, as the interpolation geometric files can
be made available from GC_sphere once for all. The right-hand side is then available in
grid point form RHSii,jj. Then, differentiation according to Equation (1) must be carried
out. Again, on ECS, a differentiation routine will be available, otherwise it can be created
using Equation (1) and the weights w provided by geometric files.

Time differentiation can be performed by any method available. On ECS, examples for
time differentiation exist, or can be provided by other users. ECS is a cooperative platform.

This provision of modules, here mainly data and field modules, is common for the
development of numerical weather prediction (NWP). In the early days, the author created
plots without any complicated software, only commands steering the pencil. While for
plotting and spectral transforms, for example, the use of software packages has become
common place, there is no reason that spherical-discretization-designated software should
not be used. When the resources to create such a software package are missing, the use
of the platform ECS, and the provision of geometric files, is an option available with little
effort.

The grids are presented in 2D form. As for the vertical, we envisage a simple column-
wise discretization; no special description for the 3D form is necessary. As sparseness in 3D
is much larger than in 2D, the sparseness factors in Table 1 will also be given for 3D.

Table 1. Number of grid points for the different grids.

Schemes o3 o3o3 hex_o3 hex_o3_QUASAR

ie = 9 (2D) 1458 810 432 324
ie = 9 (3D per three layers) 4374 1134 540 432

dx 555 km 555 km 555 km 555 km

3. The Galerkin Compiler GC_Sphere

The word compiler implies that we have a well-organized piece of code designed
to be used, not only by the developers, but rather by a large community. Here, we think
of the routines for the construction of grids on the sphere. A simple method is the grid
construction on bilinear polygons, which are then projected onto the sphere. This method
is illustrated in Figure 2 and described in detail in St-Li. With a limited programming effort,
it can be realized. Further routines are needed to analyze grid lengths, and other diagnostic
quantities, to compute the halo grid, the weights for differentiation, etc. Even though most
such routines are simple, the number of small routines needed is such that it will be a
major piece of software. In order to be useful, this needs to be shared by a larger group.
The result would be that it would be a major task to create an L-Galerkin model. The file
method described in Section 2 allows one to achieve this without specialized knowledge
on spherical grids. This reduces the number of people necessary with knowledge of
the compiler.
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Figure 2. Upper left: grid points in spherical projection with patch edges as solid lines.
Upper right: same for projection to bilinear surfaces, where the edge grid points are omitted. The
bilinear surfaces are defined by corners and edges of the T36 solid. Its construction is described in
St-Li and is based on Euclid’s lemma. Lower: representation of grid lines. Points on patch edges are
indicated as *. It can be seen that, at patch corners, at all places where 4 or 6 edges meet, the edges of
different patches continue as straight lines. This means that, for these corners, we have straight line
stencils. For the full grid there is one cell per point.

Early NWP models were specific for a computer, and the way to transfer them to
other sites was to reprogram them using model descriptions. Even today, a number of
research and toy models are constructed with no provisions to make them available to
other researchers. This means that cooperation for such models is possible only by joining
the development group and taking over the complete model. Certainly, the trend in NWP
within the last 50 years is towards portability of models and codes. Another trend that can
be seen is towards separate program packages, such as plotting, which are delivered by
specialized groups. This paper suggests the use of spherical grid software in the same way
as with plot routines.

Today’s NWP models are often portable. For example, the model LM [10] used strict
coding rules and a code management system and was developed by a dedicated group.

For the development of GC_sphere, no such dedicated group is visible. Therefore,
a more chaotic way of programming must be tolerated. The aim is to allow cooperation
on spherical grids without having a central management, and to collect contributions as
voluntary offers. Some work on spherical grids with uniform high order, such as [7,8],
was carried out on a shoestring budget and the authors came together in person or by
e-mail contact to work on the problem. While the need for personal meetings and exchange
of guest scientists will remain, it is desirable to accompany this with efficient ways of
making spherical grid expertise easily available to interested researchers. For realistic
meteorological modelling on the spherical grids discussed here, resources for a well-
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organized programming effort are not visible to the author. Therefore, cooperation, leaving
the initiative to each of the partners involved, is considered.

A first step is the use of the file method, which allows for the use of spherical dis-
cretization with few preparations. This method, as proposed in Section 2, requires the
use of some pre-defined resolutions. The difference method is also pre-defined and, for
example, can be the classical fourth-order method. The modeling equations, for example
those for shallow water, 3D non-hydrostatic or passive advection, are approximated by the
user of the file method.

If modifications of the derivative approximation, other resolutions or alternative
grids, such as adaptive are desired, new geometric files must be created. The same is
true for modifications of the grid, for example, for different choices of the grid-dividing
relations on patch edges. For this, the use of the program GC_sphere is necessary. As this
program is not sufficiently organized in its present form, it cannot be easily shared between
different users. The solution is that cooperating users employ the same computer where
GC_sphere resides, which is ECS. For further information, see huckert.com and search
for “meteorology project”. This site is organized in such a way that each user contributes
programs for sharing or not for sharing, as he or she likes. The programs offered to be
shared are put into the public folder. GC_sphere is on this site. As no good program
organization or manual is available, this is a difficulty for its use. The solution to this
problem is that, for a certain project, such as investigating the grid lengths, only a few of the
commands are necessary, the use of which will be no problem when entering cooperations.
In this way, both shortcomings of GC_sphere can be overcome. As an example, let us
consider that, currently, ECS has only rudimentary plotting facilities. These plots are used
for debugging the grid creation, and figures in this paper were created using the elementary
plot procedures of GC_sphere. Attractive plots of results would require better plotting
routines, which can be provided by any volunteering user of ECS and made available using
the public folder. On the other hand, a user of the file system for modeling may want
to plot the grids used and change details of the grid. To achieve this, just a few routines
from GC_sphere are necessary and, with the current state of the program, the only way of
using such routines is through cooperation. It is planned that, for the adventurous user, the
geometric files on huckert.com will be offered and able to be copied without the need to
become a client of ECS.

GC_sphere contains only basic plotting routines. Figure 1 shows the full grid for ie = 5
with the indices. The resolution ie = 9 would make index plotting difficult.

4. Examples of Sparse Grids

GC_sphere is in a state of development. Together with ECS, it will allow the construc-
tion of grids of different types on the sphere. These grids will not be limited to the cubed
sphere and the icosahedron, which presently are the most popular versions of spherical
grids. The examples presented here are based on the T36 solid (St-Li). T36 divides the
sphere into 18 rhomboids. Here, we choose the version with all rhomboids having sides
of equal great circle length. When ie is the number of points on edges, ie = 9 for the full
grid is the shortest resolution, allowing the third-order polynomial representation on the
sphere (St-Li) with full, sparse rhomboidal and hexagonal cells. The grid points for ie = 9
are shown in Figure 3. The edge lines of the patches are plotted as solid lines. It can be seen
that, for patch corners at poles and on the equator, grid lines are not angled and continue
as straight lines. This means that 1D difference stencils can be used. For the 12 patch
edges between pole and equator, one of the great circle lines meets the grid points, when
continued into the neighboring patch. This means that, of such points, differentiation in
one of the directions can be carried out in 1D. For differentiation near patch-edge points, we
have 3- and 4-legged stencils, which can be treated by one-sided third-order differentiation
(See St-Li). The sparse grid for o3 representation is shown in Figure 2. The numerical
treatment is analog to the plane case, except that, near patch edges, angled stencils or
interpolation must be used (St-Li).
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Figure 3. Lot of values of λ (left) and ϕ (right) in projection to the x-y plane. This is an example of
plots to be used for debugging purposes. Gridded data of λ and ϕ are simple examples of geometric
fields and can be used to create initial fields and for plotting.

The sparse grid may be obtained by defining an ie * ie storage and have some points
unused. This, however, leads to an inefficient program; we need a compact storage, where
all storage points are used. The purpose of sparse grids is not only to save storage but
also to have an efficient message passing, which is possible with compact storage. We can
see from Figure 3 that the cells have 4 * 4 = 16 points (inner points of a rhomboidal cell).
The corners and edges belong to more than one cell. From Figure 3, it can be seen that
corner points belong to either 3, 4 or 6 cells. The edge points belong to two cells. The full
grids have 16 amplitudes per cell. All amplitudes on corners and edges belong to more
than one cell. For sparse grids, there are 12 points per cell. For the full grids and patches,
being full surfaces of the original solid, the indices are illustrated in Figure 1. Figure 1
also shows a method of indexing whereby each dynamic point has an unique index, even
though an edge or corner point may belong to more than one patch. The extension of a grid
of a patch by neighboring points is called a halo creation and this operation may require
message-passing on multi-processor computers. As cell corner points belong to four cells,
and edge points belong to two cells, we have five independent dynamic amplitudes per
cell. Let us identify a rhomboidal cell by the index of its left corner; the cell grid is then
within the cell ii, jj = 0,1, . . . , ie/3 − 1. In our example of ie = 9, the indices within a cell
take the values 0,1,2. When the patch indices are i = 1,2,3,4,5,6 and j = 1,2,3, the total cell
index for the cell c is:

c = ci,j,ii,jj(i = 1, 2, 3, 4, 5, 6, j = 1, 2, 3, ii, jj = 0, 1, ..., ie − 1) (3)

This index is also the index of the leftmost corner point of the rhomboid. A cell with
index i,j,ii,jj (here ii,jj = 0,1,2) has five independent grid points with index k = 1,2,3,4,5. A
field h on the spherical grid is indexed as:

h = hi,j,ii,jj,k(k = 1, 2, 3, 4, 5) (4)

The naming convention is such that, for k = 3, we have the leftmost corner point of
the cell. The relation of the patch and cell indices i,j,ii,jj and pointer k to the full grid index
i,j,ii’,jj’, where ii’,jj’ = 0,1,2,..., ie is explained below.

A simple example of a geometric field is λ and ϕ depending on the spherical grid
indices. For the classical o4 grid shown in Figure 3 this is λi,j,ii,jj and ϕi,j,ii,jj. These geometric
files can be used to transfer the field data available in λ− ϕ coordinates to the grid. The
same geometric field can also be used to plot a gridded field in the λ− ϕ plane; for an
example, huckert.com transfers to the ECS server and give examples of geometric files for
people who are not users of ECS.



Atmosphere 2023, 14, 966 13 of 17

When gridded fields are given, the divergence of a flux vector is a weighted sum of
some neighboring grid points. When the indices of the neighbors and the weights are given
as geometric files, the computation of time derivatives and the creation of a realistic model
is not too difficult. Therefore, if modelling is limited to cases where geometric files are
available, the transfer of a realistic model to spherical grids is not too difficult and will not
require a large knowledge of spherical geometry.

The pointer variable k is introduced to create a compact storage for sparse fields. This is
explained for the rhomboidal cell as shown in Figure 4. We introduce celldim = 1

3 ie, where,
for ie, only values divisible by three are admitted. While we have ii,jj = 0,1,2,3,4,5,6,7,8,9 for
the case ie = 9, we replace them by iic and jjc, iic,jjc = 0,1,2 for the rhomboidal case shown in
Figure 4. For the rhomboidal sparse grid case in Figure 4, we have five dynamic amplitudes
belonging to the cell ii,jj = 3iic,3jjc. The points belonging to cell ii,jj are:

ii + 2, jj
ii + 1, jj

ii, jj
ii, jj + 1
ii, jj + 2

(5)
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to 9 which indicate the pointer variable. This pointer variable numbers the amplitudes for each cell.
It is seen thet the amplitudes from each cell combine to give a complete sparse grid within each cell.

For the pointer index k = 1,2,3,4,5, the points given in Equation (5) are defined in the
sequence given in Equation (5). We have already seen in Section 1 that these points form
a compact set. For the case of a 2D sparse rhomboidal grid, we have for the pointer k the
range k = 1,2,3,4,5, and we obtain the first index k = 1 shown in Equation (5):

hiic ,jjc ,k = h3iic+2,jjc (6)

For values of k = 2,3,4,5, analog equations are obtained from Equation (5). In Equation (6),
iic, jjc are the compact indices and ii,jj are the indices of the full grid. Note that, for the
sparse rhomboidal case treated here, all amplitudes are on the cell edges.

The other indices shown in Equation (5) are defined analogously. Figure 4, at the
bottom right, shows the position of the pointer indices k on the sphere. While with ie = 9
the range of ii,jj is 0,1,2,3,4,5,6,7,8, the range of iic,jjc is 0,1,2. The indices iic,jjc, k cover 5 * 9
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values for ie = 9 and are a compact representation. The indices ii,jj cover 81 values and are
not a compact set.

Hexagonal grid cells are created as sub-grids of the full grid shown in Figure 2 They
are available when the cell grid numbers icell

e is a multiple of 3: icell
e = 3celldim. We have,

then, ie = 9celldim. The smallest hexagonal grid on the sphere is obtained for celldim = 3
and ie = 9. The sparse hexagonal grid was used in a plane [7] Here, we created the grid for
a sparse hexagonal o3 method on the sphere where all amplitudes are on the hexagonal
edges. As a previous attempt suffered from inconvenient data storage, here, the pointer
method is used for compact data storage. A hexagonal cell is numbered by the index of
the cell center. A hexagonal cell has 6 corner point amplitudes and 12 edge amplitudes. A
compact subset can be obtained by the pointer method. This means that, for the definition
of compact storage, we have 8 amplitudes to be defined by the pointer variable of the
full grid and an additional number of inner 18 + 1 = 19 points. This means that, for the
sparseness factor in two dimensons, we have 8: (19 + 8) which is much larger than obtained
with rhomboids for the plane. The sparseness becomes much larger with three dimensions.
The QUASAR method (St-Li) potentially brings the sparseness to 6:27.

The sparse hexagonal grid for celldim = 1 has ie = 9 and 3 hexagons per patch. Some
of the hexagons degenerate to pentagons. St-Li used the o2 representation while, here, the
grid for o3 is created. Figure 5 shows the grid:
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Figure 5. Left: position of amplitudes for the sparse hexagonal grid for patch j = 1,i = 5. The
hexagonal centers belonging to this patch are indicated by *. Note that the points indicated by * carry
no amplitudes, but the amplitudes at some of the surrounding edge and corner points are stored
there. Since for ie = 9 this is the lowest resolution with hexagonal cells on the sphere, we have three
hexagons/pentagons belonging to this patch. Two are inside the patch and one on a patch corner.
The dynamic amplitudes belonging to these hexagons are indicated by +. Note that some of the cell
grid points belonging to this patch belong to the neighboring patches j = 1, i = 4. In combination of
all patches we have a complete sparse hexagonal grid on the sphere. Note that the cell center does
not carry an amplitude. To the center of a hexagonal cell we have eight compact amplitudes and
for pentagonal cells, five. Note that the poles are centers of hexagonal cells, but the corresponding
amplitudes are carried by neighboring cells. The indicated amplitude positions form a compact set.
This means that, the combination of the amplitudes for all cells provides all grid points. Right: Plot
of the amplitude points for the combination of all patches. With * those hexagon centers are noted
which carry data. The north pole is the center of a hexagon, but this does not carry amplitudes.
The south-pole hexagon center carries data and it stores 18 grid points, 6 corner grid points and
12 edge points.

5. Examples

Examples of geometric fields are λi,j,ii,jj and ϕi,j,ii,jj. These fields can be used to import
initial value into a spherical grid model and to plot such grids. Figure 3 gives an example
of a plot based on these geometric files and also for the projection to the x-y plane, which
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requires the geometric files xi,j,ii,jj and yi,j,ii,jj. This demonstration is for the full grid or the
o4 grid. The procedures for forming derivatives will depend on further geometric files,
which are differentiation weights, angles between coordinates, etc. When such procedures
have to be created inside a target model, this is potentially time consuming. When geometric
files containing differentiation weights, coordinate line angle, etc. are pre-computed, the
creation of such differentiation routines is expected to require exchange visits of no longer
than one week.

The gridded values of λi,j,ii,jj and ϕi,j,ii,jj allow the importing of the initial fields into
spherical grids.

As this example is rather simple, we give another example for differentiation using the
classical o4 method on the full grid. For a patch, the points are indexed by ii,jj. The formula
given below are easily transferred into a computer program: let a field fl, such as a flux
component belonging to a dynamic field, be given by f lii,jj where, again, the patch index i,j
is suppressed. The coordinate directions ii and jj are on great circles. In the differentiation
in ii directions given by Equation (1) the weights w−1

ii,jj, etc. must be given as geometric files
where, from Equation (1), we can see that there are five w gridded fields which must be
given as geometric files. For differentiation in jj directions, we need weights w−1

ii,jj, which
are another five files to be provided as geometric files. In order to have the derivative in
any other direction, such as x and y, we must know the angle αii,jj and can, for the classical
o4 method, compute divergences and time derivatives of fields and use any time marching
method to integrate the model.

The idea of geometric files is that the cooperation between the spherical modeler and
the specialist of a meteorological model, such as WRF, MPAS or ICON, need not be close.
The implementation of Equation (1) as a program is simple enough that it may be sufficient
to pick up a geometric file from the internet site ECS (go through huckert.com) to create a
model in the precomputed resolution. Note that, for the SE method, the same procedures
can be used as for o4. For SE, the grid is more irregular than for o4, but SE also uses the
full grid.

Other L-Galerkin methods can be used in a similar way, such as o3o3. In particular,
with sparse grids, the geometric files require adaptation to the grid.

Note that we create a procedure for differentiation. Once this differentiation routine is
available, the form of the equation to be used will still be the choice of the meteorological
modeler, not the spherical grid provider. For example, the discretization of 1

2 u2
x or u · ux is

established by the same differentiation procedure; only the preparation of the field to be
differentiated on the grid is different. The options for the form of equations, and how to
approximate the product of the fields, are the choice of the model developer.

6. Conclusions

The paper described a system of spherical grids on the T36 solid, including rhom-
boidal/triangular cells, for the classical o4 differencing, for o3o3 sparse grid schemes and
for sparse hexagonal cells on the sphere. A software concept designed for the cooperation
of a number of independent partners is described and a simple example given. This concept
imposes few rules for the participants and, consequently, no definite expectations on other
partners are possible. The provision of a set of geometric files allows the transfer of a
realistic model to spherical grids without deep knowledge of spherical grids. The use of
the method of geometric files and rather few very simple subroutines, in combination with
geometric files, can be used to transfer L-Galerkin toy models existing on a plane to the
sphere and, in a second step, change them to realistic models by using a target model such
as WRF or ICON. It is suggested that GC_sphere be used for visualizing the sphere in a
similar way as a system of plot routines are used to visualize model fields.
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7. Future Research Directions and Possibilities with Exa-Flop Computers and
L-Galerkin Methods for Weather Prediction and Climate Research

This paper mainly concerns L-Galerkin methods on sparse grids with the aim of
reducing computer run times. It can be expected that global models for forecasting purposes
will reach a resolution of 1 km globally for weather forecasts and less for climate research.
Within a grid box, LES simulations using 1000 * 1000 * 1000 points seem realistic. Local basis
functions were used. For such applications, it will also make sense to use basis functions
with the support of the whole modeling area where, often, very few amplitudes are used.
Such applications may be called low dimensional approximations as, in comparison to the
solutions with local basis functions, the solution is a low dimensional surface in phase space.
For climate applications, such solutions can define the attractor. Note that the definition of
climate, with only a few measuring sites, requires the assumption of a low dimensional
attractor. A famous example of a low dimensional climate attractor is the Chaotic Loernz
attractor [15], which is obtained by a low dimensional approximation for the convection
between plates. This means that people living in a cubic cave would have the Lorenz
chaotic solution [2] as the climate attractor. Living in caves is a consideration for settlement
on Mars. Galerkin methods can help to find attractors for the earth system including its
dynamic equation. For the very high resolutions of global weather prediction models
which are now envisaged, such low dimensional attractor solutions could be considered
for the smallest model scales. Consider, for example, a global model with grid boxes of
1 * 1 * 1 km. Using a high resolution within such a box, the simulation of turbulence
is possible. It seems likely that there is a 1D attractor whose amplitude is determined
by the boundary amplitudes of the box. The attractor may be computed by offline high
resolution simulations of a single grid box, and L-Galerkin methods allow one to compute
the effect of the local solution on the global solution. L-Galerkin methods work in the
same way for polynomial or other solutions. Only local basis functions can be shown to be
polynomials. The different box solutions may fit together to form a discontinuous field and
are complimented by the continuous function spaces used for larger scales. As currently
discontinuous and continuous Galerkin methods are a subject of research, the formalism to
carry out such a project is already known. No concrete steps have, however, been taken to
realize such models which, by low dimensional modeling within a grid box of 1 * 1 km,
would extend the resolution from 1 km to a few cm.
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