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Abstract: In the last decade, the spatio-temporal patterns of PM2.5 on various scales, ranging from
global, continent, and country to regional levels, has been the focus of considerable studies. However,
these studies on spatio-temporal variability have concentrated primarily on changes in the spatial
distribution patterns of regional PM2.5 concentrations and ignored temporal characteristics at a
local site from a heterogeneous surface, such as local variability, persistence, and stability of PM2.5

exposure. Understanding the temporal characteristics of PM2.5 concentration changes at the local
scale will help determine the local impacts of PM2.5, such as local exposure risk and vulnerability
to PM2.5. This study aims to reveal the local characteristics of temporal variation at the scale of a
prefecture-level city and its distinct-varying patterns from those at the provincial scale by using the
annual satellite-derived PM2.5 concentration product from 2000 to 2015. The evolutionary trends,
stability, and persistence of annual changes were discovered with a set of time series analysis methods,
such as linear regression analysis + F-test, coefficient of variation method, and Hurst index. The
results show that the increasing trends or slopes of annual averaged PM2.5 concentrations in Jiangsu
Province are not consistent at the prefecture-level city scale, but they are consistent in northern, central
and southern Jiangsu at a larger upward trend since 2000. The areas with significant increasing
trends are concentrated in Xuzhou and Lianyungang and other northern cities. From the viewpoint
of variability, the areas in medium and high variability are mainly aggregated in the areas north of
the Yangtze River. According to the combination of persistence analysis and trend analysis, future
variation in PM2.5 concentrations indicates an inverse persistence for an increasing trend, meaning
the air quality decline in Jiangsu will slow.

Keywords: PM2.5; spatio-temporal change; MODIS time series; trend analysis; variation persistence;
Hurst index; stability analysis

1. Introduction

Exposure to particles with aerodynamic diameters of less than 2.5 µm adversely in-
creases the risks to human health [1,2]. Rapid urbanization and industrialization leads to
widespread PM2.5 pollution, which has heightened global concerns about PM2.5, particu-
larly in developing countries [3]. High-granularity spatio-temporal observations of PM2.5
are required for reliable estimation of the exposure and its impact on human health. Current
observational studies on PM2.5 have focused on the concentration inversion of PM2.5 and
spatio-temporal variation of its coverage using station- and satellite-based exposure data.

Several studies have attempted to use ground-observed PM2.5 concentration products
to analyse long-term spatio-temporal distributions or patterns [4–6]. The commonly used
geographically weighted regression (GWR) is applicable to sparsely populated rural ar-
eas [7], but it cannot be applied to densely populated urban areas due to the spatial sparsity
of ground-based observations [8].

Considerable research has been conducted on the quantitative estimation of surface
PM2.5 concentrations using satellite-driven aerosol optical depth (AOD) by employing
statistical models, such as combining MODIS-derived AOD with meteorological fields and
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land-use information to refine spatial granularity for PM2.5 concentrations [9]. Because nu-
merous estimation algorithms for PM2.5 concentration are available, it is possible to conduct
prospectivestudies on PM2.5 exposure risks. Furthermore, the accumulation of historical
satellite data allows for the long-term exposure assessment of PM2.5 concentrations [10].

The accurate calculation of the time integral of PM2.5 concentrations over a specific
time period is critical in estimating the risk of PM2.5 exposure. This integral calculation is
complicated by the spatial heterogeneity of regions, particularly urban areas. Unfortunately,
the spatial distribution of PM2.5 concentrations changes over time, making quantitative
estimation more difficult. As a result, numerous studies have begun to focus on the spatio-
temporal patterns of PM2.5 concentrations, provided that concentration estimation methods
and long-term satellite data are met [11,12]. The spatio-temporal variability research has
focused on the factors influencing the spatial distribution of PM2.5 concentrations, such as
temperature, wind speed, terrain, land cover, urban land morphology, and so on, as well
as the temporal characteristics of concentration distributions, such as trends, variations,
and persistence over time [11,13,14].

In addition, in recent years, some studies have examined the spatio-temporal pat-
terns of PM2.5 on various scales, ranging from global, continent, and country to regional
levels [12,13,15,16]. Due to rapid urbanization and human activities in recent years, PM2.5 has
been increasingly studied in developing countries using long-term satellite image se-
ries [12,14,17,18]. As a rapidly developing economy, regions of highly urbanized areas
in China have experienced frequent and severe haze events since 2013 [19]. This has
drawn great attention of scholars to China’s PM2.5 pollutions, and thus, a considerable
number of studies on the spatio-temporal changes of PM2.5 have emerged. For example,
PM2.5 concentration data from ground- and satellite-based observations have been used
to analyse the spatial and temporal variation patterns in Chongqing, Beijing, and other
prefecture-level cities [6,20,21]. The results show that the calculated average and temporal
variance are notably different between cities at prefecture-level, while the trends of those
cities are consistent [22–25]. Therefore, more attention should be focused on the variation
intensity and its spatial heterogeneity.

However, most of these studies on spatio-temporal variability have focused primar-
ily on the change trend prediction in the spatial distribution patterns of regional PM2.5
concentrations and ignored local temporal characteristics, such as local variability, persis-
tence, and stability over a heterogeneous surface of PM2.5 exposure [25,26]. It is worth
rethinking that comparing the trend characteristics between provinces at the national or
regional scale does not take into account the high heterogeneity of the underlying surface
within provinces. Temporal characteristics at smaller or local scales match better with the
spatial variability of the underlying surface. Furthermore, understanding the temporal
characteristics of PM2.5 concentration changes at the local scale will help determine the
local impacts of PM2.5, such as the local exposure risk and vulnerability to PM2.5.

This work aims to investigate the local intrinsic characteristics of cities in Jiangsu
Province based on a series of PM2.5 concentrations from 2000 to 2015. We performed a
analysis using a trend analysis and the F-test, as well as temporal variation and stability
analysis using the variation coefficient. Then, for Jiangsu Province, we conducted a per-
sistence analysis of the PM2.5 spatial distribution to obtain four persistence types: strong
inverse persistence, weak inverse persistence, weak persistence, and strong persistence.
Furthermore, a combination of the trend and persistence analysis was used to gain insights
into the spatial variability of the exposure risk and vulnerability in Jiangsu Province. This
work brings insights about the specific local temporal characteristics linked to the PM2.5
variations at a prefectural level rather than a regional or national level, and contributes
geographical diversity in trend persistence or inertia by examining the prefectural cities
than limiting the analysis to provincial or regional areas in Jiangsu. In addition, our ap-
proaches are more interpretable and intuitive than data-driven machine learning methods
as our main objective is to mine for dominant patterns of temporal variation rather than to
forecast upcoming series. In the near future, investigating the impacts of local underlying
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surface spatio-temporal variability of PM2.5 concentrations will soon exploit these local
time-varying properties with the availability of higher-spatial-resolution PM2.5 products.

2. Materials and Methods
2.1. Study Area

As shown in Figure 1, Jiangsu Province is located in the centre of the eastern coast of
Mainland China, spanning a longitude of 116◦18′E to 121◦57′E and a latitude of 30◦45′N to
35◦20′N, in the lower reaches of the Yangtze River and the Huai River, bordering the Yellow
Sea to the east, with a coastline of 954 km, bordering Shandong to the north, Anhui to the
west, and Shanghai and Zhejiang to the south-east. The inter-provincial land boundary line
is 3383 km and covers an area of 107,200 km2, accounting for 1.1% of the total area of the
country, with the least land area per capita among the Chinese provinces and regions.

Figure 1. Location of the study area with topographical information.

With the flat topography and huge plains, Jiangsu is one of the provinces with
the lowest terrain in China. The Yangtze River Delta Plain, the Eastern Coastal Plain,
the Southern Jiangsu Plain, the Jianghuai Plain, and the Huanghuai Plain make up the ma-
jority of the province’s 70,600 km2 of plains, which dominate the landscape. The province’s
low hills are largely found in the Laoshan Mountains, Yuntai Mountains, Ningzhen Moun-
tains, Maoshan Mountains, Yili Mountains, and Huaiyin Mountains, which together make
about 14% of the province’s total area [27].

Jiangsu Province is located in the climatic transition zone between the warm-temperate
and subtropical zones, with a distinct humid monsoon climate. The weather is mild
throughout the region, with abundant rainfall and distinct seasonal changes. The province’s
average annual sunshine hours are 2000–2600 h, with a sunshine percentage of 48–59%,
with more sunshine hours in summer and less in winter, more in spring than in autumn in
Huabei, and more in autumn than in spring in Huainan. The province’s average annual
precipitation ranges from 724 to 1210 mm, and the province’s annual evaporation ranges
from 900 to 1050 mm, with an obvious trend of increasing evaporation from east to west
due to the influence of humid ocean currents [28]. Each region’s average temperature
ranges from 13 to 16 ◦C, gradually increasing from north-east to south-west. The province
has numerous interconnected rivers and dense water networks. According to statistics
from 2017, Jiangsu has 17,300 km2 of inland water surface area, which accounts for 17% of
the province’s total area, making it the province with the highest proportion of water area
in the country (according to Jiangsu Statistical Yearbook 2017). The province has over 2900
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large and small rivers, 290 lakes, and over 1100 reservoirs. Taihu Lake and Hongze Lake,
located in the wet Jiangnan and northern Jiangsu plains, respectively, are two of China’s
five largest freshwater lakes.

With a 22.8% of forest coverage in 2016, Jiangsu Province holds 1.56 million hectares
of forests. Deciduous broad-leaved forests, mixed evergreen broad-leaved forests, and ever-
green broad-leaved forests make up the majority of the many forms of terrestrial vegetation.
Wet and aquatic vegetation as well as salt vegetation are examples of non-zonal vegetation.

2.2. Annual Surface PM2.5 Product

The study employed an authoritative and publicly available PM2.5 product from
the Atmospheric Composition Analysis Group of Dalhousie University [29]. The annual
surface PM2.5 product (version: V4.NA.01) covers 1998 to 2015 with a spatial resolution
of 1 km. It is derived from the AOD product calculated with the GEOS-Chem chemical
transport model using remote sensing data from NASA MODIS, MISR, and SeaWIFS.
In addition, a geographically weighted regression (GWR) model is used to calibrate ground-
based PM2.5 monitoring data [30]. The PM2.5 data of version V4.NA.01 was obtained
from the Socioeconomic Data and Applications Center (SEDAC)—hosted by the Center for
International Earth Science Information Network (CIESIN) at Columbia University (http://
sedac.ciesin.columbia.edu/, accessed on 7 October 2015 ). Due to the provider’s change
in employment, a new address (https://sites.wustl.edu/acag/datasets/ surface-pm2-5/,
accessed on 31 July 2022) is maintained by Washington University in St. Louis [30]. In
comparison with the ground-based observation on PM2.5 concentrations, related studies
have tested the dataset with an accuracy of 0.8 in several Chinese regions [12,31], allowing
for its reliable use in Jiangsu. Hence, the PM2.5 series data from 2000 to 2015 are selected
for the Jiangsu Province in this work.

2.3. Methods

In this study, time series analysis techniques, such as univariate linear regression and
the corresponding F-test, coefficient of variation method, and Hurst index, were used to
examine the temporal variation characteristics and spatial pattern evolution of PM2.5 in
Jiangsu Province since 2000. In Figure 2, the detailed methodology is displayed.

The developed methodology comprises three steps: In the beginning, zonal statistics
with the vector data of Jiangsu’s administrative divisions were used to determine the yearly
average PM2.5 concentration for 13 prefecture-level cities, three main subregions, and the
entire province. On this premise, the univariate linear regression of the trend analysis
was used to reveal the temporal fluctuation of PM2.5 concentrations for the above zones.
Secondly, trend analysis methods of univariate linear regression were also utilized for pixel-
wise trend prediction and the spatio-temporal mapping of trends. Moreover, the F-test were
used to examine the confidence of the trend statistical analysis. The variation coefficient,
meanwhile, was calculated to quantify the stability characteristics of the PM2.5 concentra-
tion time series changes. Finally, with the Hurst index, the persistent characteristics of
various trends in the time series of PM2.5 concentrations were investigated. Combining
the current trends, the possibility of trend continuation or reversal in the future can be
estimated for PM2.5 concentrations. The overall statistical criteria are listed in Table 1 and
more details of the methods are given below.



Atmosphere 2023, 14, 943 5 of 17

Figure 2. Technical workflow.

Table 1. Statistical criteria for analysing the temporal characteristics.

Statistical Methods Criteria Input Description

Linear Regression θslope C
The slope of the regression line
to indicate the trend of
variation.

F C, Ĉi, C, U, Q
F-test to determine the
significance of the estimated
trends.

Variation coefficient V Ci
The coefficient to measure
variability of the series.

Hurst Index

Yi C
The i-th element of
equal-length subsequences
from C

Zk,i Yi

The cumulative deviation of
the k-th element in the i-th
subsequence Yi in

Ri Zk,i The extreme deviation of Yi.
Si Yi The standard deviation of Yi.

(R/S)l Ri, Si

The rescaled extreme deviation
from the expected rescaled
extreme deviations of (Ri/Si).

H (R/S)l

The index to indicate the
persistence for variation or
trends.

2.3.1. Univariate Linear Regression

In this study, the trend analysis is based on univariate linear regression and is per-
formed directly with time as the independent variable. Trend analysis for the series at each
pixel can yield the spatial pattern of a trend, which can directly describe the characteristics
of regional changes [12]. As the most straightforward way to estimate trends, the univariate
linear regression can effectively remove outliers and avoid interference from additional
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factors to obtain the dominant trend. The slope of the fitted straight line reflects the overall
trend of PM2.5 concentrations from 2000 to 2015. It is calculated using Equation (1):

θslope =
n×∑n

i=1 i× Ci −∑n
i=1 i ∑n

i=1 Ci

n×∑n
i=1 i2 − (∑n

i−1 i)2 (1)

where θslope is the slope of the regression line, n is the number of years within a series, i is
the number of years from 1 to 16, and Ci is the PM2.5 concentration in year i.

To determine the significance of the estimated trends, the F-test was used. Note that
the significance level reflects the level of belief in the trend change and has nothing to do
with the rate of change. The formula for calculating this is as follows:

F = U × n− 2
Q

, (U =
n

∑(Ĉi − C)2, Q =
n

∑(Ci − Ĉi)) (2)

where U is the sum of squares of regression, Q is the sum of squares of error, Ci is the actual
observed value of year i, Ĉi is the predicted value, C is the mean value of the 16-year series,
and n is the number of years. According to the estimated significance level, these trends
can be classified into the following nine classes as listed in Table 2.

Table 2. Temporal trend description of PM2.5 variation in nine classesaccording to p value.

Trend Description Criteria

Highly significant decrease θslope < 0,p < 0.05 or p < 0.01
Significant decrease θslope < 0,0.05 < p < 0.10 or 0.01 < p < 0.05
Insignificant decrease θslope < 0,p > 0.10 or p > 0.05
Highly significant constant θslope = 0,p < 0.05 or p < 0.01
Significant constant θslope = 0,0.05 < P < 0.10 or or 0.01 < p < 0.05
Insignificant constant θslope = 0,p > 0.10 or p > 0.05
Insignificant increase θslope > 0, p > 0.10 or p > 0.05
Significant increase θslope > 0,0.05 < p < 0.10 or 0.01 < p < 0.05
Highly significant increase θslope > 0, p < 0.05 or p < 0.01

2.3.2. Coefficient of Variation

The coefficient of variation is a statistical measure of the variation of a temporal series.
It enables to accurately capture the fluctuation characteristics of the PM2.5 concentration
time series at each pixel. The higher the coefficient of variation, the more discrete the distri-
bution of the PM2.5 concentration is, and the inter-annual variation of the concentration
is more volatile; conversely, it indicates that the distribution of the PM2.5 concentration
is concentrated, and the series is regarded as stable. It is calculated using the following
formula.

V =

√
1
n ∑n

i=1(Ci − 1
n ∑n

i=1 Ci)2

1
n ∑n

i=1 Ci
(3)

where n is the number of years and C is the PM2.5 concentration of the i-th year.

2.3.3. Hurst Index

The Hurst index is frequently described as the “index of dependence” or “index
of long-range dependence”. It estimates the relative tendency of a time series to either
substantially regress to the mean or to cluster in a certain direction [32]. In other words, it
can be considered as a trend inertia. We used the Hurst index to measure the long-term
memory of the series, which is related to the autocorrelations of the time series, and the
rate at which these decrease as the lag between pairs of values increases. In this paper,
the rescaled range (R/S) analysis was used to estimate the Hurst index. The rescaled
range analysis examines a data series to determine the persistence or mean-reverting
tendencies within that data [33]. For the PM2.5 concentration series C = {C1, C2, . . . , Cn},
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the rescaled range was calculated as follows: The time series C is first divided into m
equal-length subsequences Y , the length of which is l. The elements of Y is denoted as Yi,
and Yi = {Ci, Ci+1, . . . , Ci+l−1}. Here we assume that the length of the subsequence can be
variable, i.e., l can be 2, 4, 8, or 16. Simultaneously, the number of subsequences is set as 8,
4, 2 and 1. For a subsequence Yi, the mean-adjusted subsequence Zi is calculated by

Zk,i =
m

∑
k=1

(Ck,i − µi), k = 1, 2, ..., m (4)

where Zk,i is the cumulative deviation of the k-th element in the i-th subsequence Yi and
µi is the mean value of Yi. Next, the extreme deviation Ri of the i-th subsequence is given
as follows,

Ri = max(Zk,i)−min(Zk,i) (5)

Si is the standard deviation of Yi and the rescaled extreme deviation (R/S)l is defined
as all the expected m-rescaled extreme deviations and calculated as,

(R/S)l =
1
m

m

∑
i=1

Ri/Si (6)

The (R/S)l varies significantly corresponding to the length l of a subsequence. Finally,
the Hurst index H can be estimated using Equation (7),

log (R/S)l = log K + H · log l (7)

where K is a constant. The least squares regression of log(l) and log((R/S)) can be used to
estimate the H. The Hurst index H indicates the persistence of changes or trends, which
includes three cases corresponding to the value of H:

• if 0.5 < H < 1, the time series is considered to be persistent, which means that the
characteristics of future changes will be the same as those of past changes. The closer
H is to 1, the more visible the persistence is.

• If H is equal to 0.5, the time series is a random series without long-term persistence.
• if 0 < H < 0.5, the time series exhibits inverse persistence, which means that the trends

of future change and those of previous change are extremely unlike.

3. Results
3.1. Temporal Variation Characteristics of the PM2.5 Concentration

Analysing with univariate linear regression, the estimated trends of the annual average
concentrations of PM2.5 in the whole province, subregions, and various cities is shown in
Figure 3. The province as a whole exhibits an overall oscillating upward trend, increasing
at an average rate of 0.434 µ g/cm3, and the PM2.5 concentration increased by 0.92 µg/cm3

in 2015 compared to 2000. The PM2.5 concentration increased the fastest between 2012
and 2013, with an increase of 11.15 µ g/cm3, accounting for 53.30% of the overall increase.
The highest value of 69.61 µg/cm3 was reached in 2015, indicating an overall deterioration
in air quality. The three subregions—the southern, the central, and the northern—all exhibit
a varying upward trend overall, increasing at rates of 0.2773, 0.3754 and 0.5353 µg/cm3

per year, respectively. The fastest increase was observed in northern Jiangsu, where the
PM2.5 concentrations in 2015 rose by 18.13, 22.09, and 21.82 µg/cm3 compared to 2000.
The three subregions essentially reached the highest values in 2015, with values of 69.61,
70.89, and 68.15 µg/cm3, respectively. The northern and central regions of Jiangsu showed
the fastest increase between 2012 and 2013, with increases of 11.42 and 13.34 µg/cm3,
accounting for 52.34 and 60.38% of the overall increase, respectively. Southern Jiangsu
experienced the fastest growth of PM2.5 concentrations between 2000 and 2001, with an
increase of 9.30 µg/cm3 that accounted for 51.26% of the overall increase. Following that,
the PM2.5 concentration gradually fluctuated upwards.
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Figure 3. The estimated trends in annual PM2.5 concentrations over various cities and subregions
of the Jiangsu Province from 2000 to 2015. (a) Jiangsu; (b) Southern Jiangsu; (c) Central Jiangsu; (d)
Northern Jiangsu; (e) Suzhou; (f) Wuxi; (g) Changzhou; (h) Nanjing; (i) Zhenjiang; (j) Yangzhou; (k)
Taizhou; (l) Nantong; (m) Xuzhou; (n) Suqian; (o) Lianyungang; (p) Huaian; (q) Yancheng.

Additionally, Figure 3 depicts the change patterns of PM2.5 concentrations during the
previous 16 years in each prefecture-level city of Jiangsu Province. PM2.5 concentrations of
each prefecture-level city exhibit a strong rising trend and consistent fluctuations, following
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a similar trend as the province, while the concentration fluctuations of PM2.5 between
prefecture-level cities varied most in magnitude and rate and were inconsistent with that
of the whole province. Lianyungang, with an increasing rate of 0.6559 µg/cm3 of the
PM2.5 concentration, had the greatest increase in PM2.5 concentration, followed by Xuzhou
City in the north. Wuxi and Suzhou, with the highest PM2.5 concentration levels in 2000,
are generally stable and show the slowest rates of growth. In terms of magnitude variation,
the PM2.5 concentrations of Yancheng, Huai’an and Lianyungang in northern Jiangsu,
Yangzhou and Taizhou in central Jiangsu, and Nanjing in southern Jiangsu all increased by
more than 45.00%.

Note that the reduction in PM2.5 concentration in each prefecture-level city between
2006 and 2012—particularly in 2012—was primarily brought about by the positive effects
of the 11th Five-Year Plan’s “energy conservation and emission reduction” policies and the
12th Five-Year Plan’s “green development, building a resource-saving and environment-
friendly society” policies in Mainland China.

As shown in Figure 4a, the spatial distribution of θslope fitted by regression is given and
indicates the pixel-wise trends and change intensity of the PM2.5 concentration in Jiangsu
Province. The value of θslope varies from−0.11 to 0.91, suggesting that the θslope of the PM2.5
concentrations of most areas is greater than zero. To be exact, the proportion of the area with
increasing PM2.5 concentration accounts for 99.15%. For cities, it is evident that Xuzhou
and Lianyungang in northern Jiangsu have the highest slope values of PM2.5 concentration
growth, indicating a definite trend of air quality deterioration and the quickest increase in
concentration. Conversely, the cities around Taihu Lake in southern Jiangsu, such as Wuxi
and Suzhou, hold a zero slope value, indicating that the change in PM2.5 concentrations in
these areas is negligible.

(a) (b)
Figure 4. The spatial distribution maps of PM2.5 change trends and corresponding significance levels
for Jiangsu Province. (a ) Slope value; (b) significance change.

The significance of the change in PM2.5 concentration over the entire Jiangsu Province
can be divided into nine categories based on the significance level of the F-test. Since three
categories account for negligible, only five categories are finally obtained and displayed
in Figure 4b. With respect to the growth trends, Yangzhou in the centre of the region and
Lianyungang, Xuzhou, and Suqian in the north account for the majority of regions where
there is a 24.78% increase at the 90% confidence level and a 9.49% increase at the 95%
confidence level. Turned to decreasing trends, the areas where PM2.5 decreased accounted
for about 0.84% of the total area, mainly distributed in the cities along Taihu Lake. At last,
the area of unchanged PM2.5 concentrations is extremely small, accounting for only 0.01%.

According to Figure 5, the varying trends are typically consistent with those of the
entire province, but the varying intensity is inconsistent. In the southern Jiangsu region,
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all other cities saw a 100% increase in PM2.5 concentrations except for Suzhou, Wuxi,
and Changzhou. In the northern Jiangsu region, the proportion of Lianyungang exhibited
an upward trend of 86.77% at the 95% confidence level and 59.58% at the 90% confidence
level. At the 90% confidence level, the percentages of increasing trends in Xuzhou, Suqian,
Huaian, Yancheng in northern Jiangsu, Yangzhou and Nanjing in central Jiangsu are
59.27, 44.97, 24.56, 22.68, 13.94 and 10.14%, respectively. The decreasing trends of PM2.5
concentrations are aggregated in Suzhou, Wuxi and Changzhou along Taihu Lake in
southern Jiangsu Province, with an area of about 825.00 km2, only accounting for 0.84% of
the total area, and the confidence level is low.
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Figure 5. A statistical bar chart of the area proportions of five trends over different cities in Jiangsu.

3.2. Stability Analysis of the PM2.5 Concentration Changes

The variability characteristics of the PM2.5 concentration series in Jiangsu Province
from 2000 to 2015 are obtained using the coefficient of variation method, as shown in
Figure 6a. The mapping of variation coefficient V is then reclassified into five classes
using the natural breakpoint method, with the results displayed in Figure 6b. Table 3
shows the outcomes of zonal statistics according to three subregions and prefecture-level
cities for the stability of PM2.5 concentration variations in 13 cities and three subregions in
Jiangsu Province.

A general spatial pattern of “high in the north and low in the south” is seen in Jiangsu
Province’s coefficient of variation for the PM2.5 concentrations from 2000 to 2015, ranging
from 0.05 to 0.12. Among them, the area in northern Jiangsu with high volatility is 21.87
million km2, accounting for 88.21% of the area in the province; the area in southern Jiangsu
with low volatility is 98.79% of the area in the province; and the variability in central Jiangsu
is between northern and southern Jiangsu. Accordingly, in Jiangsu Province, the variability
of the PM2.5 concentration generally decreases from northern to southern Jiangsu, with the
least volatility and reasonably consistent inter-annual variability in southern Jiangsu.
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(a) (b)
Figure 6. Spatial distribution of variation coefficient of PM2.5 change from 2000 to 2015. (a) V value;
(b) V class.

Table 3. Statistical results of the area of PM2.5 change trend simulated from 2000 to 2015.

Region Lowest Lower Med Higher Highest

Jiangsu 8091 14,698 24,325 26,626 24,792
Southern Jiangsu 7993 11,166 4798 1991 61
Central Jiangsu 98 3169 9868 5251 2861
Northern Jiangsu 0 363 9659 19,384 21,870
Suzhou 4114 2598 381 77 0
Wuxi 2740 1463 0 0 0
Changzhou 715 3420 152 0 0
Nanjing 38 1077 3514 1808 61
Zhenjiang 386 2608 751 106 0
Yangzhou 0 667 3442 1760 500
Taizhou 98 1697 1528 1808 694
Nantong 0 805 4898 1683 1667
Xuzhou 0 0 2940 5385 2916
Suqian 0 20 1894 3465 2622
Lianyungang 0 9 866 3645 3006
Huaian 0 0 2071 3208 4142
Yancheng 0 334 1888 3681 9184

There is a distinct spatial pattern of variability inside each prefecture-level city, despite
the fact that the overall spatial pattern of the province’s variability is “high in the north
and low in the south.” Northern Jiangsu’s high-volatility region accounts for 42.65% of
the region, with Yancheng City’s high volatility making up for 60.87% of the city. On the
other hand, Huai’an, Lianyungang, Suqian, and Xuzhou City, with 43.97, 39.94, 32.77,
and 25.94% of the area, respectively, have the highest volatility. In the central Suzhou
region, the cities of Yangzhou, Taizhou, and Nantong account for 54.04, 26.23, and 54.10%,
respectively, of the area of moderate volatility. In southern Jiangsu, the cities with most
stable changes are Suzhou, Wuxi, Changzhou, Zhenjiang, and Nanjing, with low-volatility
zones accounting for 65.19, 57.38, 16.68, 10.02, and 0.58%, respectively.

3.3. Persistence Analysis of the PM2.5 Concentration Changes

The persistence of the PM2.5 concentration fluctuations between 2000 and 2015 over
Jiangsu Province is shown in Figure 7a thanks to the Hurst index analysis. Figure 7b
illustrates the reclassification of the Hurst index into the four categories: strong inverse
persistence (SIP), weak inverse persistence (WIP), weak persistence (WP), and strong



Atmosphere 2023, 14, 943 12 of 17

persistence (SP). The zonal statistics-derived persistent estimates of the PM2.5 concentration
changes in the 13 prefecture-level cities and three subregions are presented in Table 4.

(a) (b)
Figure 7. Spatial distribution of the Hurst index of the PM2.5 change from 2000 to 2015 in Jiangsu
Province. (a) Hurst index; (b) Hurst class.

Table 4. Spatial distribution of the Hurst index of the PM2.5 change from 2000 to 2015 in Jiangsu
Province.

Zone SIP WIP WP SP

Area Percent Area Percent Area Percent Area Percent

Jiangsu 10,789 10.95 83,539 84.78 4146 4.21 59 0.06
Southern Jiangsu 3425 13.16 22,008 84.58 529 2.03 59 0.23
Central Jiangsu 2751 12.95 18,435 86.78 58 0.27 0 0
Northern Jiangsu 4613 9 43,096 84.06 3559 6.94 0 0
Suzhou 1824 25.42 5352 74.58 0 0 0 0
Wuxi 814 19.33 2954 70.17 393 9.33 49 1.16
Changzhou 192 4.48 3998 93.22 89 2.08 10 0.23
Nanjing 429 6.61 6019 92.67 47 0.72 0 0
Zhenjiang 166 4.31 3685 95.69 0 0 0 0
Yangzhou 0 0 6307 99.09 58 0.91 0 0
Taizhou 6 0.1 5815 99.9 0 0 0 0
Nantong 2745 30.3 6313 69.7 0 0 0 0
Xuzhou 2958 26.31 8243 73.32 41 0.36 0 0
Suqian 207 2.59 7767 97.14 22 0.28 0 0
Lianyungang 756 10.05 4581 60.88 2188 29.08 0 0
Huaian 659 7 8172 86.76 588 6.24 0 0
Yancheng 33 0.22 14,333 95.01 720 4.77 0 0

In Jiangsu Province, the Hurst index for the persistence estimation of the PM2.5 concen-
tration ranges from 0.30 to 0.65, demonstrating a pattern of “reverse persistence dominated
by positive persistence”. In total, 4.27% of the whole province presented positive persis-
tence, and 4.21% presented weak positive persistence. On the other hand, 95.73% of the
province’s areas exhibited anti-persistence, and 88.56% exhibited weak anti-persistence.
With a total size of 3559 km2, the areas of weak anti-persistence make up the majority of
Jiangsu Province’s northern region, accounting for 85.84% of the positive persistence area
of Jiangsu Province. When compared to northern and central Jiangsu, the areas of weak
anti-persistence in central Jiangsu obtain the highest percentage at 86.78%, while the areas
of strong anti-persistence in southern Jiangsu obtain the highest percentage at 13.16%.

In addition, the spatial distribution of the Hurst index at the city-scale also exhibits
significant differences. The largest area of weak positive persistence is found in Lianyun-
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gang, covering 2188 km2, or 29.08% of its municipal territory. On the other hand, Nantong,
Xuzhou, and Suzhou, which account for 30.3, 26.31, and 25.42% of their municipal terri-
tory, respectively, are the top three cities with strong anti-persistence. Taizhou, Yangzhou,
Suqian, Zhenjiang, Yancheng, Changzhou, and Nanjing are the prefecture-level cities with
the area percentage of weak anti-persistence areas higher than 90%, accounting for 99.90,
99.09, 97.14, 95.69, 95.01, 93.22, and 92.67%, respectively.

3.4. Comprehensive Analysis of the Trend and Persistence of PM2.5 Concentration Changes

To synthetically analyse the interrelationship between the change trend and per-
sistence and their combination pattern in space. We applied superposition analysis to
combine the Hurst index and change trend results to obtain a new spatial pattern, as shown
in Figure 8. The figure presents eight spatial combination patterns, including decrease and
strong anti-persistence, decrease and weak anti-persistence, decrease and weak positive per-
sistence, increase and strong anti-persistence, increase and weak anti-persistence, increase
and weak positive persistence, increase and strong positive persistence, and no change.
Furthermore, by using zonal statistical analysis, the trend and persistence of changes in
PM2.5 concentrations in three subregions and 13 cities in Jiangsu Province are obtained,
as shown in Figure 9.

Figure 8. The spatial mapping of change characteristics for PM2.5 concentrations based on the
Slope value and Hurst index.
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Figure 9. The area proportions of six classes of change within each city as indicated by the Slope value
and Hurst index. Blue color refers to the class of decrease and strong anti-persistence; skyblue color
refers to the class of decrease and weak anti-persistence; green color refers to the class of decrease and
weak persistence; yellow color refers to the unchanged class; gold color refers to the class of decrease
and weak persistence; orange color refers to the class of increase and weak anti-persistence.

The class of increase with weak anti-persistence, as one of the eight combination types,
accounts for 84.09% of the province’s total area. This is followed by the combination class
of increase with strong anti-persistence, and increase and weak positive persistence, ac-
counting for 10.82 and 4.19% of the province’s area, respectively. Less than 1% of the area is
occupied by the remaining five combination classes. The three combinations—increase and
strong anti-persistence, increase and weak anti-persistence, and increase and weak positive
persistence—are scattered over northern and central Jiangsu. Moreover, the corresponding
three categories made up 9, 84.06, and 6.94%, respectively, in northern Jiangsu.

With respect to the individual cities, each city indicates a unique combination of trend
and persistence patterns. The decrease and strong anti-persistence category is primar-
ily designated to Suzhou and Changzhou. The Suzhou–Wuxi–Changzhou metropolitan
area is designated with the decrease and weak anti-persistence category. Note that only
Wuxi is designated with the decrease and weak positive persistence category. The remain-
ing 12 prefecture-level cities, except for Yangzhou, are designated with the increase and
strong anti-persistence category. The top three by area proportion are Nantong, Xuzhou,
and Suzhou with percentages od 30.30, 26.31, and 23.72%, respectively. The predominant
class in each city is the increase and weak anti-persistence class, and the top three by
area proportion are Taizhou, Yangzhou, and Suqian City, with percentages of 99.90, 99.09,
and 97.12%, respectively. The class of increase and weak positive persistence is mainly
designated in Lianyungang, Wuxi and Huai’an, with an area share of 29.07, 8.93 and 6.24%,
respectively. Note that with an area proportion of almost 0, the class of increase and strong
persistence and the unchanged class are only distributed in Wuxi, Changzhou and Suzhou.

4. Discussion

Compared with similar studies in China, our work focuses more on the intensity of
temporal variation as well as persistence or inertia than trends in change. In addition,
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smaller geographical scales are considered corresponding to the spatial variability of the
underlying surface. Although some scholars at the same scale have carried out the analysis
of spatio-temporal patterns for prefecture-level cities in southern Jiangsu, Shandong, An-
hui, Beijing–Tianjin–Hebei and the whole of China, only the studies with ground-based
PM2.5 concentrations over Shandong and Beijing–Tianjin–Hebei region introduced the con-
cept of convergence or a relationship between pollution intensity and space–time variation
to characterize the inertia of change [22,23]. From a data perspective, our study analyses
the characteristics of temporal variation at a higher granularity using satellite-derived
PM2.5 products, while the results demonstrate that such temporal characteristics vary with
respect to spatial variability of the underlying surface. This will further inspire subsequent
studies on the interaction between the underlying surface and temporal variation patterns.

Limited by the spatial and temporal resolution of the PM2.5 data, our study only
analyses the inter-annual variability characteristics and cannot further explain the influence
of seasonal climate on the temporal phase variability characteristics. In the near future,
multi-timescale investigations of the local underlying surface on the spatio-temporal vari-
ability of PM2.5 concentrations will soon exploit these local time-varying properties with
the availability of higher-spatial-resolution PM2.5 products.

5. Conclusions

In this paper, we focus on the time series analysis of PM2.5 concentrations in Jiangsu
Province from 2000 to 2015. The spatio-temporal patterns of trends, stability and persistence
are mapped and analysed with the methods of univariate linear regression, coefficient of
variation estimation and Hurst index estimation. The main conclusions are as follows:

(1) The increasing trends or slopes of PM2.5 in Jiangsu Province are not consistent at
the prefecture-level, but they are consistent in northern, central and southern Jiangsu at
a larger scale. In detail, the overall pattern is that the PM2.5 concentration growing rate
decreases from north to south. In particular, Xuzhou and Lianyungang have significantly
more serious PM2.5 air pollution than other regions and the fastest rising concentrations.
In contrast, the urbanization level of cities around Taihu Lake was already higher than in
the north in 2000, as well as the PM2.5 air pollution. Thus, PM2.5 concentrations of these
lakeside cities began at a high level and and increase at a slow rate. This suggests that
the intensity of urbanization activities is one potential cause for the increase in PM2.5 air
pollution.

(2) The spatial pattern of temporal variability of PM2.5 concentrations in Jiangsu
generally shows a decreasing pattern from north to south. The areas with variability from
medium to high levels are mainly aggregated in areas north of the Yangtze River. Yancheng
has the highest degree of fluctuation, followed by Huai’an and Lianyungang, while Suzhou
and Wuxi have the most stable variability of PM2.5 concentrations, with a strong inertia to
external disturbance factors.

(3) Combining the results of the persistence analysis and trend analysis, it can be
found that the pattern of the combination of increase and weak anti-persistence accounts
for most of Jiangsu, while the area of the strong persistence region is the least, indicating
that PM2.5 air pollution in Jiangsu Province may develop in a good direction in the future,
i.e., there is a possibility of it slowing down the deteriorating trend of air quality in the
future. However, the combined pattern of increase and weak positive persistence exists
in Lianyungang, Yancheng and Wuxi, and thus, the PM2.5 air pollution in these areas will
maintain the deterioration trend.
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