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Abstract: Magnetic helicity plays a tremendously important role when it is different from zero on
average. Most notably, it leads to the phenomenon of an inverse cascade. Here, we consider decaying
magnetohydrodynamic (MHD) turbulence as well as some less common examples of magnetic
evolution under the Hall effect and ambipolar diffusion, as well as cases in which the magnetic field
evolution is constrained by the presence of an asymmetry in the number density of chiral fermions,
whose spin is systematically either aligned or anti-aligned with its momentum. In all those cases,
there is a new conserved quantity: the Hosking integral. We present quantitative scaling results
for the magnetic integral scale as well as the magnetic energy density and its spectrum. We also
compare with cases were a magnetic version of the Saffman integral is initially finite. Rotation in
MHD turbulence tends to suppress nonlinearity and thereby also inverse cascading. Finally, the role
of the Hosking and magnetic Saffman integrals in shell models of turbulence is examined.

Keywords: decaying turbulence; MHD turbulence; chiral magnetic effect; Hall effect; shell models

1. Introduction

This paper is part of a special issue commemorating the work of Jack Herring. His sci-
entific career started off with papers on the effect of the solar wind on the lunar atmosphere
in 1959 [1]. In 1961, he extended this work to exoplanet atmospheres [2]. He also worked
on stellar opacities [3]. In all those cases, he was very much ahead of its time. At the time
of Parker’s prize-winning paper on the discovery of non-static solutions [4], the physical
reality and properties of the solar wind were still rather unclear and under-appreciated.
Likewise, Herring’s work on stellar opacities was well before proper numerical stellar
structure and evolution models became available; the Henyey method [5] (solving a matrix
equation instead of using an iterative shooting method from both ends) became known
only in 1964. Subsequently, Herring turned to hydrodynamic convection and turbulence –
topics that then determined much of his future work. During his career, he never really
worked on magnetic fields or helicity, but he did interact with people on a daily basis,
who were very much involved in these subjects, both early on [6] and also later during
his career [7]. It is therefore not surprising that this special issue also extends to topics
involving magnetic fields and helicity.

Having helicity in a system usually requires external factors such as stratification and
rotation [8–10]. In this sense, the absence of helicity may be regarded as the more generic
situation. It may therefore also seem natural that helicity does not play an important role
when it is absent on average. This is believed to be the case in hydrodynamic turbulence,
but it changes when magnetic fields are involved. Although both kinetic and magnetic
helicities are ideal invariants, only the magnetic helicity has a non-ideal dissipation that is
slower than that of the magnetic energy. By contrast, the dissipation of kinetic helicity is
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faster than that of kinetic energy [11,12]. Therefore, in the magnetic case, helicity plays a
very important role in a way that is unknown in the hydrodynamic context. But is this still
true when the net magnetic helicity is actually zero?

The physical situations of interest here include the decay of primordial magnetic fields
in the early Universe during the radiation-dominated era, when the electric conductivity
is high and the initially generated magnetic field can only decay. When the plasma is hot
enough, the chirality of fermions also plays an important role, leading to an interplay with
magnetic helicity. Another situation of interest is when only the Hall effect plays a role, so
there are then no fluid motions, but just the flow of electrons. This is relevant in neutron
star crusts, which are solid, so the ions are immobile. Another application is to the solar
wind on scales below the proton gyroscale, where the ions create a smooth motionless
background. The induction equation with just the Hall effect included leads to interesting
decay dynamics—remarkably similar to ordinary magnetohydrodynamics (MHD). In all
those cases, magnetic helicity can play a role even when it vanishes on average. In those
cases, magnetic helicity fluctuations may be responsible for driving an inverse cascade
similar to the case of nonvanishing mean magnetic helicity.

Less obvious examples of the dynamics discussed above include the Sun, because
here the magnetic helicity is usually nonvanishing on average [13]. Even in the solar
wind, where the conditions resemble those of decaying turbulence, the magnetic helicity
is observed to be nonvanishing on average and systematically of opposite signs in the
northern and southern hemispheres [14]. Near the ecliptic, however, the magnetic helicity
fluctuates around zero [11] and may also be in a state of decay, so this may be another
example where magnetic helicity fluctuations play an important role.

2. Nonhelical Turbulence and the Hosking Integral

In this section, we discuss the Hosking integral and why it is crucial to understanding
nonhelical MHD turbulence with strong magnetic fields. Unlike the case of weak magnetic
fields, when the dynamics is still controlled by the presence of hydrodynamic effects, we
are dealing here with effects that are specific to the presence of magnetic fields, albeit with
zero average. We focus on decaying turbulence.

2.1. Nonhelical Inverse Cascading and Scaling Relations

Already in 2001, it was noted that, even in the nonhelical case of a turbulently de-
caying magnetic field, there is a small amount of inverse cascading in the sense that for
wavenumbers below the peak, the magnetic energy spectrum rises with time uniformly
for all lower k [15]. The actual amount of this rise was small and one could have argued
that it was just because of numerical inaccuracies. Subsequent simulations [16], however,
confirmed such inverse cascading and those authors discussed the potential interplay
between the shallower kinetic energy spectrum proportional to k2 and the steeper magnetic
energy spectrum proportional to k4. The qualitative idea was that the shallower velocity
spectrum pushes the magnetic spectrum upward, which then would drive more kinetic
energy at small k, and so forth.

The choice of the initial magnetic energy being proportional to k4 is important here.
When such a spectrum was used in the first numerical simulations [15], the authors made
reference to the early work in Ref. [17], where causality arguments were put forward.
Nowadays, however, Ref. [18] has become the standard reference for the choice of an initial
k4 spectrum. Later, it turned out that with a shallower initial k2 spectrum, no inverse
cascading can be found [19,20]. The reason for this particular aspect will be discussed in
more detail in this paper.

In 2014, the idea of an inverse cascade in the nonhelical case with a k4 spectrum
became really very clear [21]. This paper was on the arXiv since April 2014, but the paper
was published only in February 2015. The results were reproduced in the relativistic
context in Ref. [22]. Their work was on the arXiv since July 2014 and made reference to
the 2015 paper. The significance of both findings is that it presents early support for the
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subsequent discovery of the Hosking integral as a new invariant in MHD turbulence at
large magnetic Reynolds numbers.

When the Hosking integral was discovered in Ref. [23], it was originally called the
“Saffman helicity invariant”. As already pointed out in Ref. [24], H. K. Moffatt informed the
community of the fact that this term may be misleading, because the term ‘helicity invariant’
is reserved for integrals that are chiral in character. He also recalled that Saffman never
considered helicity in his papers. The term “magnetic helicity density correlation integral”
may be more appropriate, but it is rather clumsy. Following [25], where this quantity was
called the Hosking integral, this term continued being used by others [26,27]. It should also
be noted that ‘integral’ instead of ‘invariant’ is appropriate since applications to turbulence
apply always to finite Reynolds and Lundquist numbers. In this connection, it should be
emphasized that the Hosking integral tends to decay with time in a power-law fashion
and that the exponent decreases with increasing Lundquist number Lu approximately
as Lu−1/4 [24].

The energy decay in turbulence is usually characterized by the energy spectrum E(k, t).
In the following, we sometimes add the subscripts K and M for kinetic and magnetic energy
spectra and other quantities. We focus here on magnetic energy spectra, EM(k, t), which
are defined such that

∫
EM(k, t)dk = 〈B2〉/2µ0 ≡ EM(t) is the magnetic energy, and µ0 is

the vacuum permeability. The decay can then be parameterized by EM(t) and the magnetic
integral scale, which is defined in terms of the magnetic energy spectrum as

ξM(t) =
∫ ∞

0
k−1EM(k, t) dk

/ ∫ ∞

0
EM(k, t) dk. (1)

One can always attempt to describe the relations for ξM(t) and EM(t) through power laws.
In addition, the spectrum can evolve underneath an envelope,

EM(k, t) ≤ const× kβ, (2)

which is in general different from the initial subinertial range spectrum, EM(k, t0) =
const× kα, where α is the subinertial range slope. The three relations for ξM(t), EM(t), and
EM(k, t) can then be constrained through dimensional arguments once we have a good idea
about the relevant dimensional quantity that governs the decay.

In 2017, the decay of a nonhelical turbulent magnetic field is found to be described
by an exponent β that was determined to be between β = 1 [28] and β = 2 [20], but it was
unclear why any of those two possibilities, or any other one, would have to be expected.
This is what the Hosking integral now explains, namely that β = 3/2.

Figure 1a shows magnetic energy spectra at four different times for a nonhelical mag-
netically dominated run corresponding to Run K60D1bc in Ref. [24]. Here, k is normalized
by the initial peak wavenumber k0. We clearly see that the spectrum exhibits inverse
cascading in that the spectral magnetic energy increases with time at small k, as indicated
by the upward arrow on the left. The overall energy does of course decay, as indicated by
the decline of the spectral peak and the decrease of spectral energy at large k, as indicated
by the downward arrow on the right.

To quantify the temporal changes of ξM(t) and EM(t), it is convenient to compute the
instantaneous scaling exponents [28]

q(t) = d ln ξM/d ln t and p(t) = −d ln EM/d ln t; (3)

see Figure 1b. We see that with time (larger red symbols), the solution evolves toward
the point (q, p) = (4/9, 10/9), as is also theoretically expected [24]. Although we mainly
focus on the case of nonhelical magnetic fields, we also compare in Figure 1b with the
expected solution for the fully helical case (orange), and include solutions for hydrodynamic
turbulence that are governed either by the Loitsyansky or the Saffman integrals.
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Figure 1. (a) magnetic energy spectra, normalized by I−1/2
H k−3/2

0 ; the dashed dotted line shows the
envelope 0.028 (k/k0)

3/2 under which the spectrum evolves. The times are ck1t = 3, 7, 17, and 58.
(b) qp diagram showing as red dots the convergence of p(t) versus q(t) toward the Hosking attractor
(q, p) = (4/9, 10/9). The blue symbols denote the Loitsyansky and Saffman attractors, respectively,
and the orange symbol denotes the magnetic helicity attractor.

Before we continue, it is useful to clarify the concept of what we often refer to as a
‘governing quantity’. Take, for example, standard hydrodynamic Kolmogorov turbulence.
Here, the rate of energy transfer per unit mass ε (which is the rate of energy input and
also the rate of energy dissipation) is such a quantity and the relevant physical scaling
laws can be expressed in terms of powers of ε and other relevant variables such as the
wavenumber k itself. This then yields for the energy spectrum per unit mass the expression
E(k) = CKε2/3k−5/3, where CK is a dimensionless coefficient of order unity (the Kol-
mogorov constant; typically CK ≈ 1.6). Other such governing quantities include the mean
magnetic helicity density 〈h〉 and some other quantities that are crucial to the physics. They
are usually constant or well conserved.

2.2. The Loitsyansky and Saffman Integrals in Hydrodynamics

In the hydrodynamic case, the decay of turbulence can follow different behaviors
depending on the relevant conservation law. (In practice, conserved quantities are usually
not perfectly conserved under turbulent conditions, and some are better conserved than
others. Which one is the most relevant quantity depends on the relative conservation
properties under different circumstances.) One such conserved quantity is the Loitsyansky
integral [29,30],

IL = −
∫
〈u(x) · u(x + r)〉 r2 d3r, (4)

which is believed to play an important role. This integral reflects the local conservation of angular
momentum and has dimensions [IL] = m7 s−2. If this quantity governs the decay of turbulence,
the time dependence of the growth of the integral scale can be motivated by dimensional
arguments as ξ(t) ∝ Ia

Ltb, where the exponents a and b must be, on dimensional grounds,
a = 1/7 and b ≡ q = 2/7. The kinetic energy then obeys EK ∝ I2/7

L t−10/7, i.e., p = 10/7. The
envelope under which the peak of the spectrum evolves obeys EK(k, t) ≤ CL ILk4.

Another conserved quantity is the Saffman integral,

IS =
∫
〈u(x) · u(x + r)〉d3r, (5)

which has dimensions [IS] = m5 s−2. Similarly, if this quantity governs the decay of
turbulence, the time dependence of ξ must be ξ(t) ∝ Ia

Stb, where a = 1/5 and b ≡ q = 2/5
on dimensional grounds. The kinetic energy then obeys EK ∝ I2/5

L t−6/5, i.e., p = 6/5. The
envelope under which the peak of the spectrum evolves obeys in this case EK(k, t) ≤ CS ISk2.
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Whether IL or IS determine the decay depends on the existence of long-range correlations,
as can be seen from the Taylor expansion of the kinetic energy spectrum as [23,29]

2EK(k→ 0) ≡ Sp(u)(k→ 0) =
IS

2π2 k2 +
IL

12π2 k4 + . . . , (6)

where an initially non-vanishing Saffman integral automatically implies a k2 scaling in
the subinertial range. Thus, the decay does depend on the infrared part of the initial
kinetic energy spectrum. In that case, the slope is the same as that required for the initial
spectrum so that the Saffman integral is indeed nonvanishing. Furthermore, as pointed out
in Ref. [23], owing to the invariance of IS and IL, both an initial k2 and a k4 spectrum will
remain unchanged. This implies that there can be no inverse cascading in hydrodynamics.

2.3. The Magnetic Saffman Integral: Comparison with the Hosking Integral

As already pointed out in Ref. [23], the formulation of Section 2.2 can also be applied to
the magnetic field, except that there is no reason for the magnetic version of the Loitsyansky
integral to be conserved. The magnetic Saffman integral (hereafter ISM), on the other
hand, might indeed be conserved. Physically, it would reflect the local conservation of
magnetic flux. Again, when ISM is non-vanishing initially, we expect a quadratic magnetic
energy spectrum, which would also persist at later times. For a steeper k4 subinertial range
magnetic energy spectrum, however, the magnetic Saffman integral must vanish and the
Hosking integral is then expected to play a dominant role. It is defined as

IH =
∫
〈h(x)h(x + r)〉d3r, (7)

where h = A · B is the magnetic helicity density with dimensions [h] = [B]2[x]. In ordinary
MHD, we can express the magnetic field as an Alfvén velocity, i.e., we write the magnetic field in
Alfvén units, so [B] = m s−1. Therefore, [h] = [x]3[t]−2, and thus [IH] = [B]4[x]5 = [x]9[t]−4.
If IH plays a governing role in the decay, we expect therefore ξM(t) ∝ I1/9

H t4/9, EM ∝ I2/9
H t−10/9,

and EM(k, t) ≤ CH IHk3/2.
The Hosking integral is in general expected to be different from zero [23]. This

automatically implies a quadratic scaling of the helicity variance spectrum, Sp(h). Here,
Sp(h) =

∮
4π |h̃|

2 k2dΩk/(2πL)3 denotes the shell-integrated spectrum, a tilde marks a
quantity in Fourier space, and Ωk is the solid angle in Fourier space, so that

∫
Sp(h)dk =

〈h2〉. The quadratic scaling for a finite Hosking integral follows from the expansion

Sp(h)(k→ 0) =
IH

2π2 k2 + . . . (8)

In three dimension, a quadratic spectrum corresponds to white noise. We also know that
the spectrum of a quadratic quantity cannot be more blue than that of white noise [31], so it
seems impossible to have a helicity variance spectrum whose subinertial range is steeper
than k2.

In Figure 2, we show magnetic energy and magnetic helicity variance spectra for initial
spectra of the form

EM(k, t0) = const× kα

1 + (k/k0)α+5/3 ∝

{
kα for k� k0,
k−5/3 for k� k0,

(9)

for α = 2 and α = 4. We solve the isothermal compressible MHD equations using the PENCIL

CODE [32] with 10243 mesh points. As expected, and as pointed out previously [19,20], there
is inverse cascading only for α = 4, but not for α = 2. Nevertheless, we see that Sp(h)
retains a k2 spectrum at low wavenumbers in both cases. This suggests that the Hosking
integral is indeed always conserved; see Figure 2b,d. It may, however, be less dominant
than the magnetic Saffman integral.
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Figure 2. Comparison of Sp(B) (a,c) and Sp(h) (b,d) for α = 2 (a,b) and α = 4 (c,d). The dashed-dotted
lines indicate k3/2 scaling in (c) and k2 scaling otherwise.

To determine the relevant integrals, IH and ISM, it is convenient to plot compensated
spectra. Specifically, to determine ISM and IH, we scale both Sp(B) and Sp(h) by 2π2/k2.
The result is shown in Figure 3. Thus, in summary, we have

ξM(t) ≈ 0.16 I1/5
SM t2/5, EM(t) ≈ 4.2 I2/5

SM t−6/5, EM(k) ≈ 0.037 ISM(k/k0)
2. (10)

If the initial spectrum is not ∝ k2, but ∝ k4, we have

ξM(t) ≈ 0.15 I1/9
H t4/9, EM(t) ≈ 3.8 I2/9

H t−10/9, EM(k) ≈ 0.025 I1/2
H (k/k0)

3/2. (11)

It is remarkable that the prefactors for the Saffman and Hosking scalings are very close to
each other; see Table 1 for a summary of the nondimensional prefactors in the relations

ξM(t) = C(ξ)
i Iσ

i tq, EM(t) = C(E)
i I2σ

i t−p, EM(k) = C(E)
i I(3+β)/σ

i (k/k0)
β, (12)

where the index i on the integrals Ii and the coefficients C(ξ)
i , C(E)

i , and C(E)
i stands for SM

or H for magnetic Saffman and Hosking scalings, respectively, and σ is the exponent with
which length enters in Ii: σ = 5 for the magnetic Saffman integral (i = SM) and σ = 9 for
the Hosking integral (i = H). Interestingly, while β and p can uniquely be related to q via
β = 2/q− 3 and p = 2(1− q) [28], the exponent σ is not uniquely linked to q and we have
σq = 2 for Saffman scaling and σq = 4 for Hosking scaling.

The value of C(E)
SM only makes sense when α = β = 2, while that of C(E)

H only makes
sense when α = 4 and β = 3/2. For the other cases, the subinertial range spectrum is not
parallel to kβ, so α and β are said to be incompatible with each other (see Table 1) and the
given values of C(E)

SM and C(E)
H only yield crossings in the middle of the subinertial range.
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Figure 3. Compensated spectra for α = 2 (a,c,e) and α = 4 (b,d,f). From (a,b), the horizontal
dashed-dotted lines indicate that ISM ≈ 0.23 and 0.09, respectively, and from (c,d) they indicate that
IH ≈ 2× 10−3 and 5× 10−4, respectively. The asymptotic values estimated from (e,f) are discussed
in the text and in Table 1.

Table 1. Summary of nondimensional prefactors in the relations for ξM(t), EM(t), and EM(k, t). The
numbers in parentheses indicate that the slope β is incompatible with the value of α.

α β C(ξ)
SM C(ξ)

H C(E)
SM C(E)

H C(E)
SM C(E)

H

2 2 0.16 0.15 4.2 3.8 0.025 (0.05)
4 3/2 0.15 0.13 4.0 3.5 (0.02) 0.037

We see from Figure 3a that for α = 2, the compensated value (2π/k2) Sp(B)→ ISM ≈ 0.2.
For α = 4, on the other hand, we only see a flat envelope, i.e., (2π/k2) Sp(B) ≤ 0.1, i.e.,
2EM(k, t) ≤ 0.1/(2π2/k2) (k/k0)

2. From Figure 3c,d, we see that (2π/k2) Sp(h)→ IH ≈ 0.001
in both cases, i.e., for α = 2 and α = 4, respectively.

Given that we now know the values of ISM and IH, we can compensate the time
evolutions of ξM(t) ∝ tq with q = 2/5 = 0.4 and q = 4/9 ≈ 0.44, and those of EM(t) ∝ t−p

with p = 6/5 = 1.2 and p = 10/9 ≈ 1.1. The results for the corresponding coefficients in
Equation (12) are summarized in Table 1.

2.4. The Effect of Rotation

Rotation suppresses hydrodynamics turbulence. This is modelled by including
the Coriolis force, −2Ω× u, on the right-hand side of the momentum equation, which
then reads

Du
Dt

= −c2
s∇ ln ρ− 2Ω× u +

1
ρ
[J × B +∇ · (2ρνS)], (13)

where D/Dt = ∂/∂t + u ·∇ is the advective derivative, cs is the isothermal sound speed,
Ω is the angular velocity, J = ∇× B/µ0 is the current density, µ0 is the permeability, ρ is
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the density, ν is the viscosity, and Sij = (∂iuj + ∂jui)/2− δij∇ · u/3 are the components of
the rate-of-strain tensor.

In Figure 4, we show Sp(B) and Sp(h) for Ω/csk0 = 10−3, 0.01, 0.1, and 1 for runs
with α = 4, which are otherwise the same as that of Figure 2c,d. We see a clear suppression
of inverse cascading already for Ω/csk0 = 10−3 and a very strong suppression when this
parameter is unity. This is caused by the suppression of the turbulent velocity and thereby
of the u× B nonlinearity in the induction equation.

To express the angular velocity in a physically more meaningful way, we note that
in the run with Ω/csk0 = 1, the rms Mach number, urms/cs, drops below 10−3 by the end
of the run, while for Ω/csk0 = 10−3, it still stays well above 10−3. This means that in the
latter, the Coriolis number, Co ≡ 2Ω/urmsk0, is around unity when rotational suppression
becomes appreciable. At t = 104, the values of Co are 1.2, 22, 500, and 104 for our four runs
in Figure 4.

Figure 4. Sp(B) (a,c,e,g) and Sp(h) (b,d,f,h) for Ω/csk0 from 10−3 (a,b: Co = 1.2) to Ω/csk0 = 1
(g,h: Co = 104). The times are 220 (black), 1000 (blue), 4600 (orange), and 22,000 (red).

3. Extensions of the Hosking Idea

Equation (7) is the Hosking integral in its original form. In the meantime, two further
variants of IH have been considered. One is where h has been replaced by htot = A ·B+2µ5/λ,
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where µ5 is the chiral chemical potential (here in units of an inverse length) and λ is a coefficient
that quantifies the coupling between fermions and electromagnetic fields. The case 〈htot〉 = 0
has been studied recently in Ref. [33]. Another variant of the Hosking integral is that in the
case where the magnetic field is controlled by the electromagnetic induction from the Hall
effect, which we discuss next.

3.1. Hall Effect

In neutron star crusts, the ions are immobile and the current is only carried by electrons
with the velocity ue = −J/ene, where e is the electric charge and ne is the electron density.
As alluded to in the introduction, a similar situation occurs in the solar wind on scales
below the proton gyroscale, where the ions constitute a smooth background [34]. The
induction equation with the induction from ue × B therefore takes the form [35]

∂B
∂t

= ∇×
(
− 1

ene
J × B− ηµ0 J

)
, (14)

where η is the magnetic field diffusivity. In the presence of magnetic helicity, one finds
an inverse cascade with an overall decay of the magnetic field and a growth of spectral
magnetic energy at small wavenumbers below that of the peak of the spectrum [34]. In the
present paper, however, the focus is on the nonhelical case, which was already considered
in B20, but understood mathematically only later [36].

In this context, it is important to note that the natural dimensions of the magnetic
field here are no longer m s−1, but m2 s−1. This was already emphasized in Ref. [37], who
used e = 1.6× 10−19 A s, µ0 = 4π × 10−7 T m A−1, and ne ≈ 2.5× 1040 m−3 for neutron
star crusts, so we have eneµ0 ≈ 5× 1015 T s m−2, and therefore

B
eneµ0

=
B

5× 1015 T
m2

s
, (15)

which is why we say B has dimensions of m2 s−1 in the Hall cascade. This modifies all
the dimensional arguments related to B correspondingly. In particular, the units of the
magnetic helicity are [h] = m5 s−2 and those of energy spectra are also m5 s−2. Therefore,
one has q = p = 2/5. This scaling was confirmed in Ref. [37].

In the nonhelical case, the modified Hosking integral has dimensions m13 s−4, and
therefore q = 4/13 (instead of 4/9 in MHD). Furthermore, p = 10/13 (instead of 10/9 in
MHD), but still β = 3/2 (just like in MHD). While such a scaling was already seen in the
original simulations of Ref. [37], the work in Ref. [36] showed that the modified Hosking
integral is indeed conserved. In Figure 5a,b,d,e, we show that, also for Hall dynamics, the
Saffman scaling is obeyed for α = 2, while Hosking scaling is obeyed for α = 4.

It should be noted that earlier work on the Hall cascade focussed on the concept
of Whistler turbulence [38], where the Whistler time tw was identified as the governing
timescale [34]. The definition of tw in Ref. [34] involved the electron plasma frequency and
the electron gyrofrequency such that the electron mass drops out. Therefore, tw can more
easily be written as

tw =
L2

Brms/eneµ0
, (16)

which is just the characteristic time based on the magnetic field expressed in units of
a diffusivity; see Equation (15). Earlier interpretations in terms of Whistler waves [34]
seem therefore artificial and obscured the relevant interpretation of the magnetic field as a
quantity with dimensions of m2 s−1.
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Figure 5. Sp(B) (a–c) and Sp(h) (d–f) for Hall dynamics with α = 2 (a,d) and α = 4 (b,e), and for
ambipolar diffusion with α = 4 (c,f). Note the presence of inverse cascading for α = 4 in panels (b,c),
although Sp(h) changes at k/k0 � 1 in all cases. The straight lines indicate k3/2 scaling in (b) and k2

scaling otherwise.

Observationally, the inverse cascade with helicity may be more easily accessible, and
this has already been tried in the context of neutron stars [39]. Measuring inverse cascading
in the solar wind is conceptually harder, because the system is statistically steady and more
advanced stages of decay would only correspond to larger distances from the Sun. On the
other hand, most of the spacecrafts are located near the ecliptic and might therefore allow
better insight into nonhelical inverse cascading. Unfortunately, most of the observations
focus on the high frequency range of the spectrum [40], while the low frequency range is
dominated by noise, making it nearly impossible to say anything about inverse cascading
to even larger scales.

3.2. Ambipolar Diffusion

The Hall effect is a two-fluid effect where the two components are the positive and
negative charge carriers. Another two-fluid effect is ambipolar diffusion where the charged
fluid with positive and negative charge carriers is taken as one component and neutrals are
taken as the other component. The governing equation is

∂B
∂t

= ∇×
(
− J × B

ρiνin
× B− ηµ0 J

)
, (17)

where ρi is the ion density and νin is the ion–neutral collision frequency.
Unlike the Hall effect in neutron star crusts, where the magnetic field is said to have

dimensions of m2 s−1, we can here write

B
√

ρiµ0
=

B
1.5× 10−16 T

m
s

, (18)

where we used ρi = 1.7× 10−26 kg m−3 for the interstellar medium with an ionization
fraction of 10−5 and a neutral density of one proton per cubic centimeter. This is why we say
that with ambipolar diffusion, just like in MHD, B has dimensions of m s−1. For this reason,
we also see in Figure 5c,f qualitatively the same decay behavior as in ordinary MHD.
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3.3. Chiral MHD

For chiral MHD, the induction equation attains an extra term under the curl that leads
to a contribution to the electric field proportional to the product of the magnetic field and a
pseudoscalar given by the chiral chemical potential, expressed here as a wavenumber [41].

µ5 = 24 αem (nL − nR) (h̄c/kBT)2, (19)

where αem ≈ 1/137 is the fine structure constant, and nL and nR are the number densities
of left- and right-handed fermions, respectively. The uncurled induction equation takes
then the form

∂A
∂t

= η(µ5B− µ0 J) + u× B, J = ∇× B/µ0. (20)

The term ηµ5B leads to a growth of the magnetic field for wavenumbers k < µ5, just in
the same way as in mean-field dynamo theory [8–10], but here no mean-field theory is
invoked. The generated magnetic field is fully helical, but the relevant quantity is now the
total chirality density

htot = A · B + 2µ5/λ, (21)

and it is its volume average that is conserved, i.e., 〈htot〉 = const, provided the boundary
conditions are periodic and/or closed, i.e., perfectly conducting. As the magnetic field
grows, µ5 decreases. The rate of this change is proportional to the parameter λ, which we
take here as an adjustable parameter, but in reality is it given by an expression involving
the temperature; see Equation (49) of Ref. [41].

It is important to point out that the physical chiral chemical potential (which has
the units of an energy) is sometimes defined differently. First, the authors of Ref. [33]
used Lorentz-Heaviside units, which implies another factor of 4π in the numerator of the
conversion factor (or rather the lack of a 4π factor in the denominator), and, second, there is
also a factor of 2 in the denominator, so h̄c/8αem instead of h̄c/4αem for the conversion factor
of [33], because they defined their physical chiral chemical potential as half the difference
between the physical right- and left-handed chiral chemical potentials. In addition, there
is a sign difference between Refs. [41] and [33], but this affects only the physical chiral
chemical potential and not our equations, where µ5 has the units of a wavenumber.

It turns out, perhaps not surprisingly, that in this case, when 〈htot〉 = 0, the turbulence
decays again in such a way that q = 4/9 and p = 10/9 and, again, β = 3/2. This
is just like in ordinary (but nonhelical) MHD. In this case, however, 〈h〉 6= const, but
its modulus decays ∝ t−r in a way that is compatible with the real-space realizability
condition, |〈h〉| ≤ 2EMξM, i.e., r = p− q = (10− 4)/9 = 2/3. This was also confirmed in
Ref. [33]. This study was then applied to the problem of baryogenesis [42], where one tries
to explain the small excess of matter over antimatter in the Universe, which is referred to
as baryon asymmetry.

The Hosking scaling was confirmed for 〈µ5〉ξM � 1 [42], but in the opposite limit
of 〈µ5〉ξM � 1 the Hosking scaling was no longer obeyed and then both 〈µ5〉 and ξM are
believed to be approximately independently conserved [33]. Trying to understand this
more thoroughly must be a goal for future studies, where one may hope to reach much
larger scale separation between the different relevant wavenumbers in the system, such as
the wavenumber k0 of the peak of the magnetic energy spectrum and the value of µ5.

In Figure 6, we plot magnetic energy and magnetic helicity spectra, as well as magnetic
helicity variance spectra for a chiral MHD run with balanced chirality and an initial k4

spectrum for the magnetic field. We see standard inverse cascading with β = 3/2. Next we
compare with the case of an initial k2 spectrum; see Figure 7. In this case, there is still weak
inverse cascading, which is probably a consequence of the strong contribution from mean
magnetic helicity conservation over extended spatial patches.
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Figure 6. (a) Magnetic energy (solid lines) and magnetic helicity spectra (dotted lines), and (b) mag-
netic helicity variance spectra for a chiral MHD run with balanced chirality and an initial k4 spectrum
for the magnetic field. In (a), positive (negative) magnetic helicities are indicated by small red (blue)
dots. The four large dots denote the positions of ξ−1

M . Their colors are the same as those of the solid
lines in (b) and correspond to the times 1500, 5000, 15,000, and 50,000.

Figure 7. Similar to Figure 6, but with an initial k2 spectrum. Note the presence of slight inverse
cascading in (a), although Sp(htot) = const at k/k0 � 1 in (b). The different colors refer to the same
times as in Figure 6.

Departures from the conservation of the Hosking integral based on htot have been seen
when µ5 < k0 [42], but here we have µ5 > k0. To understand more thoroughly the regime
where µ5 � k0, we would need to have much larger numerical resolution. A possible
alternative is to use shell models [43], as will be discussed next. However, it is unclear
whether such models can capture the relevant effects related to the Hosking integral or the
chiral magnetic effect.

4. Hosking Integral in Shell Models of Chiral MHD

Shell models describe turbulence through real or complex scalar variables on con-
centric shells in wavenumber space such that certain conservation laws are obeyed. In
MHD, the relevant conservation laws are those of total chirality, total (magnetic plus kinetic)
energy, and cross helicity. The Hosking integral describes helicity fluctuations over different
scales, and does not have a direct counterpart at the level of shell models. However, the
scaling properties resulting from its conservation, could still be manifest in shell models
describing the decay of MHD turbulence.

The Hosking integral is particularly important in cases where the mean chirality
vanishes. It is also conserved otherwise when the mean total chirality is non-vanishing, but
then the conservation of the mean chirality is usually more important. It is also important
that the magnetic field is strong, because otherwise the decay properties are dominated by
the hydrodynamic turbulent decay. Our goal here is to investigate the decay of magnetic
fields with vanishing net chirality in chiral MHD using shell models.



Atmosphere 2023, 14, 932 13 of 17

In a shell model, we describe the state of the system in shells of logarithmically spaced
wavenumbers kn = 2n, where n = 0, 1, 2, . . . , N denotes the shell and N is the truncation
level. For N = 30, for example, we can span ten orders of magnitude in wavenumber. In
MHD, one usually considers complex variables Bn and un for the magnetic and velocity
fields. The mean magnetic and kinetic energy densities are given by

EM = 1
2

N

∑
n=0
|Bn|2 and EK = 1

2

N

∑
n=0
|un|2. (22)

In shell models, the fluid density is constant and therefore not indicated in the definition of
the kinetic energy. Also the permeability factor in the magnetic energy has been omitted.

Magnetic helicity is a signed quantity, i.e., it can be positive or negative. How to
describe this in a standard shell model is a matter of convention. One approach is to
associate even and odd shells with the decomposition into positively and negatively
polarized modes of the field. This idea was first developed for the kinetic helicity [44]. This
then leads to the definition of the magnetic helicity as [45–47]

HM =
N

∑
n=0

(−1)n|Bn|2/kn, (23)

which satisfies the realizability condition

kn|HM(kn)| ≤ 2EM(kn). (24)

To preserve the preferential growth of positively (negatively), polarized modes on
even (odd) shells, we write[

ηk(kn − (−1)nµ5) +
d
dt

]
Bn = 1

6 ikn [M(u, B)−M(B, u)], (25)

where the µ5 term leads to a growth of |bn|2 for even (odd) values of n when µ5 is positive
(negative), and M(x, y) is a nonlinear functional, where x and y stand for the full n-
dependent arrays. The essence of shell models is to couple only nearest and next-nearest
neighbors. We refer to this model as type I. This prescription then leads to

M(x, y) = xn+1yn+2 + xn−1yn+1 + xn−2yn−1 (type I). (26)

As already emphasized in Section 2.4, the velocity plays a crucial role in producing an
inverse cascade. It is governed by the Navier-Stokes equation with the Lorentz force
included. There are then two further quadratic nonlinearities for u and B; see Refs. [45–47]
for details.

Another approach to treat helicity is to write the equations separately for the positively
and negatively polarized modes and thus have evolution equations for u±n and B±n . We
refer to this model as type II. The helicity density can then be written as [48]

HM =
N

∑
n=0

(
|B+

n |2 − |B−n |2
)/

kn, (27)

and the magnetic energy is EM = ∑N
n=0(|B+

n |2 + |B−n |2). The evolution equations for B±n
take then the form
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[
ηk(kn ∓ µ5) +

d
dt

]
B±n = 1

6 ikn [M±(u, B)−M±(B, u)] (type II), (28)

where [48]
M±(x, y) = x∓n+1y±n+2 + x∓n−1y∓n+1 + x±n−2y∓n−1. (29)

Note that for the intermediate terms, the signs in the superscripts are the same, i.e.,
u−n−1B−n+1 appear in the evolution of B+

n and u+
n−1B+

n+1 in the evolution of B−n ; see also
Ref. [49], where such models were proposed independently.

In Figure 8, we present models of types I and II with N = 30 shells using λ = 1010,
k0 = 214 = 16, 384 ≈ 1.6× 104, ν = η = 5× 10−11, and µ5 is computed as µ5 = −µM, where
µM ≡ HMλ/2 ≈ 1.8× 105 is the chiral chemical potential equivalent of the magnetic helicity.

Figure 8. Evolution of EM(k, t) from shell models of (a) type I and (b) type II. The times are 10 (red),
1 (orange), 0.1 (green), 0.01 (blue), and earlier times are denoted by black lines of different line types.
Note the presence of inverse cascading in both cases.

In all cases, we start with a k2 spectrum, so we expect to see no inverse cascading.
Looking at the results of Figure 8, however, this does not seem to be the case. Our results
are still preliminary, but our conclusion so far is that shell models may not capture the
same inverse cascade behavior that we have found in the direct numerical simulations.
On the other hand, more parameter studies are warranted before one can draw more firm
conclusions. One must also remember that departures from the conservation of the Hosking
integral have been seen in certain direct numerical simulations [42].

5. Conclusions

In this paper, we have presented a discussion of the Hosking integral in various
contexts in which it has been considered so far: ordinary MHD, MHD with chiral fermions,
as well as just the induction equation – either with Hall nonlinearity or with ambipolar
diffusion nonlinearity. When the total chirality vanishes (non-chiral case with zero magnetic
helicity or chiral case with finite magnetic helicity balancing the fermion chirality) it is the
correspondingly adapted Hosking integral that governs the decay of EM(t) ∝ t−p and the
increase of ξM(t) ∝ tq with p = 10/9 and q = 4/9 for both ordinary MHD and also just the
induction equation with ambipolar diffusion. When the nonlinearity is given by the Hall
effect, on the other hand, we have p = 10/13 and q = 4/13. The case with chiral fermions is
somewhat special, because now the magnetic field is actually fully helical, but this helicity
is balanced by fermion chirality. Again, in that case the Hosking integral determines the
decay behavior. However, there is also another decaying quantity: the mean magnetic
helicity density, which is now actually finite and balanced by fermion chirality. It is found
to decay like t−2/3.

In previous work on decaying turbulence, the decay properties of hydrodynamic
and MHD turbulence were motivated by the use of self-similarity and invariance of the
governing equations under rescaling [28,50]. This is different in the present work where we
have just made use of dimensional arguments. Still, the use of invariance under rescaling
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is necessary to motivate the equilibrium line p = 2(1− q) in the qp diagram in Figure 1b.
It will therefore be interesting to find out whether the existence of this line could also be
motivated by other means. It probably can, as implied by the derivation of Equation (12),
and this might reveal a more basic relation to the parameter that there was called σ.

An open question is whether the Hosking integral can also play a role in driven
MHD turbulence, for example. One possibility could be the production of inverse cascade
behavior where magnetic energy grows on wavenumbers below the energy injection
wavenumber. This could then leads to a turbulent subinertial range scaling of the form

EM(k) ∝ Ia
Hkb. (30)

Using dimensional arguments, we would find 3 = 9a− b and 2 = 4a for balancing the
dimensions of length and time, respectively. Therefore, a = 1/2 and b = 3/2. Thus, b
is positive and equal to the Kazantsev slope known in kinematic nonhelical small-scale
dynamos [51]. Whether or not there is actually a connection with Kazantsev’s small-scale
dynamo theory remains another open question.

In our work we have also examined whether some aspects of the Hosking integral
might be reproducible with shell models. At the moment, this does not seem to be the
case, but this could well be a consequence of not having performed sufficiently extensive
parameter studies. Thus, more work might be warranted.
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