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Abstract: Among air toxics, formaldehyde (HCHO) is an important contributor to urban cancer
risk. Emissions of HCHO in the United States are systematically under-reported and may enhance
atmospheric ozone and particulate matter, intensifying their impacts on human health. During
the 2021 Michigan-Ontario Ozone Source Experiment (MOOSE), mobile real-time (~1 s frequency)
measurements of ozone, nitrogen oxides, and organic compounds were conducted in an industrialized
area in metropolitan Detroit. The measured concentrations were used to infer ground-level and
elevated emissions of HCHO, CO, and NO from multiple sources at a fine scale (400 m horizontal
resolution) based on the 4D variational data assimilation technique and the MicroFACT air quality
model. Cumulative exposure to HCHO from multiple sources of both primary (directly emitted) and
secondary (atmospherically formed) HCHO was then simulated assuming emissions inferred from
inverse modeling. Model-inferred HCHO emissions from larger industrial facilities were greater
than 1 US ton per year while corresponding emission ratios of HCHO to CO in combustion sources
were roughly 2 to 5%. Moreover, simulated ambient HCHO concentrations depended significantly
on wind direction relative to the largest sources. The model helped to explain the observed HCHO
concentration gradient between monitoring stations at Dearborn and River Rouge in 2021.

Keywords: formaldehyde; inverse modeling; cumulative exposure; air quality models; emissions
inventories; air toxics; real-time measurements

1. Introduction

Formaldehyde (HCHO) is an important Hazardous Air Pollutant (HAP) contributing
to cancer risk in the United States (US) [1]. In addition, HCHO exposure can cause eye and
airway irritation, allergies, and pulmonary disease [2]. The US Environmental Protection
Agency (USEPA, Washington, DC, USA) is proposing to update its HCHO inhalation unit
risk (IUR) to 6.4 × 10−6 (µg/m3)−1 so that a long-term average ambient air concentration of
about 1.3 parts per billion by volume (ppb) would correspond to a cancer risk of 1-in-105 [3].
Moreover, the USEPA considers a reference concentration (RfC) of 7 µg/m3, about 5.6 ppb,
as a threshold for non-cancer health impacts [3].

The cumulative impacts of ambient HCHO on human health are difficult to assess. On
the one hand, cumulative exposure to HCHO alone is the result of both direct emissions
(primary HCHO) and chemical formation in the air (secondary HCHO), so a large variety
of organic compounds from a multitude of stationary and mobile anthropogenic sources, as
well as vegetation (biogenic sources), contributes to ambient concentrations of HCHO. On
the other hand, the health impacts of ambient HCHO are exacerbated by reactive chemistry
in the air, which enhances the concentrations of ozone and fine particulate matter (PM2.5)
due to the atmospheric radicals produced by HCHO decomposition [4,5]. Thus, mitigating
HCHO exposure may have multiple air quality co-benefits.

In a previous paper, Olaguer et al. [6] surveyed the scientific literature on regional
models of atmospheric HCHO. They also conducted new 1.3 km horizontal resolution
modeling of the Southeast Michigan (SEMI) ozone nonattainment area in the US. They noted
how current emissions inventories systematically underestimate primary HCHO so that
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regional air quality models severely underpredict ambient HCHO relative to observations
in industrialized cities such as Detroit, Michigan. Citing measurements of ambient HCHO
during the 2021 Michigan-Ontario Ozone Source Experiment (MOOSE) [7], Olaguer et al. [6]
further demonstrated that the urban HCHO deficit could not be explained by inadequate
mechanisms for secondary formation associated with biogenically emitted isoprene, as had
been proposed by Marvin et al. [8].

The University of Michigan School of Public Health (UMSPH) [9] recently reviewed
the status and long-term trends of ambient HCHO exposure in metropolitan Detroit based
on 20 years of monitoring data at three regulatory stations (Dearborn, Southwest Detroit,
River Rouge) within 5 km of each other in a heavily industrialized section of SEMI. Long-
term average concentrations were 2.2 ppb for Southwest Detroit, 2.6 ppb for Dearborn,
and 3.2 ppb for River Rouge. The highest level (River Rouge) corresponded to the 84th

percentile of all ground-level HCHO measurements in the US over the same period, while
the lowest level (Southwest Detroit) was close to the national median. One site (Dearborn)
showed a marginally significant decrease of 0.04 ppb/year, while the other two did not
show any statistically significant trends. In 2021, the year of the MOOSE study, the annual
mean HCHO concentrations at the three sites were 2.26 ppb, 2.35 ppb, and 3.00 ppb for
Dearborn, Southwest Detroit, and River Rouge, respectively [10].

The area of metropolitan Detroit investigated by UMSPH is an environmental justice
community in which multiple industrial facilities are located near residential neighbor-
hoods of mostly ethnic minorities and low-income families. A map of the area was provided
by Olaguer et al. [6]. The goal of this study is to infer more accurate estimates for HCHO
emissions in this area than are now available and to compute the resulting spatially dis-
tributed cumulative exposure to ambient HCHO, accounting for both primary sources and
secondary formation on finer scales than possible with current regional models. This is a
necessary intermediate step to address the cumulative impacts of HCHO via the criteria
pollutants, ozone, and PM2.5, which is left to future studies.

Past attempts to quantify primary HCHO using methods other than standard emission
factors or measurements directly at the source included inverse modeling. This technique
infers emissions from ambient air measurements by means of an air quality model and an
optimization scheme that minimizes the differences between atmospheric concentrations
predicted by the model and corresponding observations. Olaguer [11] was the first to
apply a 3D fine-scale inverse model with reactive chemistry to infer HCHO emissions from
a petrochemical facility based on stationary measurements during the Second Texas Air
Quality Study. Olaguer et al. [12] continued this approach in quantifying HCHO emissions
from specific industrial processes at the third largest refinery in the US based on mobile
quantum cascade laser measurements. This study applies the inverse modeling technique
to improve estimates of HCHO emissions and resulting ambient air exposures in the
metropolitan Detroit community of interest. The novelty of this study is that it is the first
attempt to quantify cumulative exposures to HCHO on fine scales based on the realistic
and comprehensive treatment of both primary and secondary sources in an extended
urban area.

2. Methods
2.1. Ambient Air Measurements of HCHO and Related Gaseous Species

The analysis period of this study coincides with the MOOSE binational field campaign
that took place at the international border between the US and Canada, mostly in the
late spring and summer of 2021 [7]. During MOOSE, a mobile laboratory was fielded by
Aerodyne Research, Inc. (Billerica, MA, USA) as a platform for real-time optical absorp-
tion and (electron or chemical) ionization—mass spectrometry measurement techniques.
The Aerodyne Mobile Lab (AML), its instrument manifest, and its operations during
MOOSE are described in detail by Yacovitch et al. [13] and in a forthcoming paper [14].
Note that a sizeable suite of compounds could be measured by the AML at the multiple
parts per trillion (ppt) level, even at frequencies of ~1 s in the case of proton transfer
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reaction—mass spectrometry (PTR-MS) and tunable infrared laser direct absorption spec-
trometry (TILDAS).

The AML measurements were complemented by routine stationary measurements
of hydrocarbons (USEPA Method TO-15) and/or carbonyls (USEPA Method TO-11A) at
the Dearborn, Southwest Detroit, and River Rouge monitoring stations operated by the
Michigan Department of Environment, Great Lakes, and Energy (EGLE). Moreover, limited
measurements of the important nitrogen reservoirs, HONO and HNO3, were made by
a university research team using an annular denuder system [15] at the EGLE Trinity-St.
Mark’s station (42.29582◦ N, 83.12943◦ E) on some days during MOOSE.

The AML measured ambient air concentrations of ozone, nitrogen oxides, and or-
ganic compounds in the area, of interest, which MOOSE participants referred to as the
Dearborn Loop.

2.2. Modeling Methodology

A fine-scale (sub km horizontal resolution) 3D Eulerian air quality model known as
the Microscale Forward and Adjoint Chemical Transport (MicroFACT) model [16] was
used to simulate atmospheric concentrations of various chemical compounds. Transport
of 35 chemical species is simulated in MicroFACT using standard algorithms, including
the Piecewise Parabolic Method [17] and Smolarkiewicz [18] for horizontal and vertical
advection, respectively, while the Euler backward iterative (EBI) scheme [19] serves as the
chemistry solver.

The MicroFACT model accounts for chemical transformations in the air via a chemical
mechanism optimized for urban applications. The mechanism employs 116 gas-phase
reactions for daytime and night-time chemistry and includes heterogeneous reactions for the
secondary production of nitric and nitrous acid on aerosol surfaces. Reaction rates on aerosols
were computed based on a ratio of reaction surface area to air volume of 0.0014 m2 m−3 as in
Zhang et al. [20]. Reactions 8(a) and 8(b) of Zhang et al. [20] were also recently added to
simulate the conversion of NO2 to HONO at the ground.

The 4D variational (4Dvar) data assimilation technique [21] and an adjoint counterpart
to the forward version of MicroFACT (see Supplementary Material of [16] as well as
Equation (S1) of the Supplementary Material of this paper for details of the chemical
Jacobian used to construct the adjoint) were used to perform inverse modeling based on
mobile laboratory and other ambient air measurements during MOOSE. This was the
same method used by Olaguer [11] and Olaguer et al. [12], who employed a predecessor
of MicroFACT to infer petrochemical industry emissions of HCHO from air quality field
campaign measurements in Texas.

The modeling grid for this study covers an 8 km × 8 km area encompassing the
Dearborn Loop with a horizontal resolution of 400 m. There are 20 vertical layers extending
from the surface to the model top at 1500 m above ground level (AGL). The lowest five
layers have a width of 2 m, while the vertical resolution decreases parabolically with the
height above these layers. A time step of 10 s was selected to ensure computational stability.

MicroFACT uses building-sensitive wind fields generated by the Quick Industrial
Complex (QUIC) urban wind model [22] based on 3D building shape files and available
measurements from ground-based meteorological stations. The QUIC outputs cover an
8.4 km × 8.4 km area slightly larger than the MicroFACT model domain described above
with 5 m horizontal resolution and the same vertical structure. The higher-resolution wind
field was appropriately averaged and staggered relative to the coarser MicroFACT grid to
ensure mass conservation.

2.3. Simulation Periods, Meteorology, and Initial/Boundary Conditions

For this study, two 1 h periods with different prevailing winds were chosen for the
model simulations. The first simulation period (Period 1) was 22 May 2021, 13:13–14:13
local standard time (LST), during which prevailing winds were approximately WNW.
The second simulation period (Period 2) was 30 May 2021, 10:00–11:00 LST, during which
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prevailing winds were approximately NNE. Emissions inferred by inverse modeling should
be interpreted as averages over the appropriate simulation period. Note that the inferred
emissions, while strictly pertaining to the selected 1 h periods, are expressed in equivalent
US tons per year and compared to reported annual mean emissions.

Figure 1 shows wind streamlines at a height of 1 m AGL generated by the QUIC
model, constrained by wind data from the three EGLE monitoring stations in the Dearborn
Loop plus the EGLE station at Allen Park near the southwest corner of the model domain.
The prevailing wind speeds and directions are such that a pollutant signal can propagate
across the entire MicroFACT domain within the simulation period so that an approxi-
mate concentration steady state is established at the end of each simulation (assuming
steady emissions).

Atmosphere 2023, 12, x FOR PEER REVIEW 5 of 21 
 

 

(a) 

 
(b) 

 

Figure 1. Wind streamlines (dark blue arrows) at 1 m AGL generated by the QUIC model for the 
Dearborn Loop area during (a) 22 May 2021, 13:13–14:13 LST and (b) 30 May 2021, 10:00–11:00 LST. 
Light blue colors indicate taller structures. 

To calculate the planetary boundary layer (PBL) height, values of the surface temper-
ature TS,j, and nominal surface wind speed US,j (where j is the simulation period) were 
specified from EGLE station measurements that best reflected the incoming air mass 
(Dearborn for j = 1 and Southwest Detroit for j = 2). Surface pressure, relative humidity, 
and cloud cover were specified based on reported conditions at the Detroit Metropolitan 
Wayne County (DTW) Airport. Values for the friction velocity, Monin–Obukhov length, 
and PBL height were derived from the turbulence parameterization described in the Sup-
plementary Material of Olaguer et al. [23], assuming a surface roughness length of 0.1 m 
and the specified values of TS,j, US,j, and cloud cover. Table 1 summarizes the meteorolog-
ical input parameters assumed in this study. 

Figure 1. Wind streamlines (dark blue arrows) at 1 m AGL generated by the QUIC model for the
Dearborn Loop area during (a) 22 May 2021, 13:13–14:13 LST and (b) 30 May 2021, 10:00–11:00 LST.
Light blue colors indicate taller structures.



Atmosphere 2023, 14, 931 5 of 19

To calculate the planetary boundary layer (PBL) height, values of the surface temper-
ature TS,j, and nominal surface wind speed US,j (where j is the simulation period) were
specified from EGLE station measurements that best reflected the incoming air mass (Dear-
born for j = 1 and Southwest Detroit for j = 2). Surface pressure, relative humidity, and
cloud cover were specified based on reported conditions at the Detroit Metropolitan Wayne
County (DTW) Airport. Values for the friction velocity, Monin–Obukhov length, and PBL
height were derived from the turbulence parameterization described in the Supplementary
Material of Olaguer et al. [23], assuming a surface roughness length of 0.1 m and the
specified values of TS,j, US,j, and cloud cover. Table 1 summarizes the meteorological input
parameters assumed in this study.

Table 1. Meteorological input parameters.

Parameter Simulation Period 1 Simulation Period 2

Surface Temperature 298.10 K 288.15 K

Surface Pressure 1.002 atm 1.002 atm

Relative Humidity 47% 37%

Cloud Cover 30% 50%

Nominal Surface Wind Speed 8 m/s 3 m/s

Friction Velocity 0.72 m/s 0.315 m/s

Monin–Obukhov Length −194 m −18.9 m

PBL Height 1407.6 m 407.5 m

Surface Roughness Length 0.1 m 0.1 m

Solar Radiation 820.65 W/m2 875.46 W/m2

Clear Sky Solar Radiation 947.8 W/m2 900 W/m2

The layer temperatures above the surface were extrapolated from the surface tem-
perature assuming the moist adiabatic lapse rate. The resulting vertical profile was used
to compute temperature-dependent chemical reaction rates. Clear-sky photolysis rates
were multiplied by the ratio of the measured solar radiation flux at the EGLE station in
New Haven, Michigan (the nearest station where such measurements are available) to the
corresponding clear-sky solar radiation flux obtained from www.meteoexploration.com
(accessed on 8 March 2023).

The profile of vertical diffusivity was computed from the PBL height, the friction
velocity, and the Monin–Obukhov length based on the urban diffusivity parameterization
of Delle Monache et al. [24] as implemented by Olaguer et al. [12]. The horizontal diffusivity
was set at a constant value of 50 m2/s as in Olaguer [16]. Dry deposition velocities for the
35 transported species were likewise set as in Olaguer [16] based on preceding literature.

The boundary conditions (BCs) for the air quality fields, which also serve as a uniform
prior estimates of initial conditions, are from Olaguer [16] except as follows. For the three
pollutants subject to inverse modeling, namely NO, HCHO, and CO, the BCs were derived
from the minimum AML measurements during the simulation period. For the secondary
pollutants, NO2 and O3, and for the volatile organic compounds (VOCs): isoprene, toluene,
xylenes, acetaldehyde, and terpenes, the BCs were derived from averages of AML measure-
ments during the simulation period. For the hydrocarbons: propene and 1,3-butadiene, BCs
were derived from annual mean concentrations measured at the appropriate upwind EGLE
station (Dearborn or Southwest Detroit). Lastly, BCs for HONO and HNO3 were taken from
MOOSE measurements at the Trinity–St. Mark’s station on 12 June 2021, 9:31–14:39 LST
regardless of the simulation period. Table 2 lists the relevant BCs and deposition velocities
assumed for this study.

www.meteoexploration.com
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Table 2. Chemical boundary conditions and deposition velocities for transported species.

Chemical
Species Symbol

Boundary
Condition (ppb) Deposition

Velocity (cm/s)
Period 1 Period 2

Nitric Oxide NO 0.001 0.002
Nitrogen
Dioxide NO2 6.88 5.20 0.36

Ozone O3 55.7 43.1 0.42
Nitrous Acid HONO 1.64 1.64 1.9

Formaldehyde HCHO 1.20 0.008 0.54
Carbon

Monoxide CO 150.4 115.6

Ethene C2H4 0.734 0.734
Propene C3H6 0.71 0.77

1,3-Butadiene C4H6 0.02 0.03
1-Butene BUT1ENE 0.02 0.02
2-Butenes BUT2ENE 0.075 0.075
Isobutene IBUTENE 0.02 0.02
Isoprene ISOP 0.508 0.179
Toluene TOL 0.74 0.339
Xylenes XYL 0.35 0.147

Organic Nitrates RNO3 0.701 0.701 0.32
Paraffinic Bond PAR 27.9 27.9
Acetaldehyde CH3CHO 0.074 0.022 0.2
Methacrolein +

MVK 1 ISPD 0.508 0.508 0.2

Peroxyacetyl
Nitrate PAN 0.785 0.785 0.27

Methane CH4 1904 1904
Methanol MEOH 2.20 2.20 0.7
Ethanol ETOH 0.697 0.697 0.6

Nitric Acid HNO3 0.66 0.66 2.7
Terpenes TERP 0.635 0.022
Ethane C2H6 1.58 1.58

Ketone Bond KET 5.42 5.42
Glyoxal GLY 0.165 0.165

Methyl Glyoxal MGLY 0.147 0.147 0.2
Unsaturated
Aldehyde 2 OPEN 0.0234 0.0234

Unsaturated
Ketone 2 XOPN 0.0165 0.0165

Cresol CRESOL 0.0191 0.0191 0.2
Higher

Aldehyde ALDX 0.596 0.596

Higher
Peroxyacyl

Nitrate
PANX 0.290 0.290 0.4

NO3 + N2O5 NO3X 0.000696 0.000696 2.7
1 MVK = methyl vinyl ketone. 2 Product of aromatic ring decomposition.

2.4. Initial Emissions Estimates

Initial estimates of point source emissions for CO, NOx (=NO + NO2), and VOCs
were based on the 2017 US National Emissions Inventory (NEI) [25]. One exception was
HCHO, for which initial estimates were based on process-specific emission ratios of HCHO
to CO derived from available stack tests and field study measurements as described in
Olaguer et al. [6]. Initial estimates for HONO were set at 0.8% of NOx emissions [16,26].
Point source emissions were assigned to vertical layers using calculated plume release
heights based on reported stack data for each industrial facility emission point in the NEI
within the model domain. The calculated plume release heights were averaged over each
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horizontal grid cell. Figure 2 shows the resulting distribution of plume release heights for
Periods 1 and 2. Note that the red markers in the figure represent the locations of industrial
facilities or EGLE monitoring sites (see Table 4).
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Figure 2. Cell-averaged plume release heights inferred from point source stack data for Period 1 (left)
and Period 2 (right). See Table 3 for interpretation of red markers.

Table 3. Inverse model error parameters.

Chemical Species Measurement Error (ppb) Background Concentration
Error Covariance (µg/m3)2

NO 1.0 2500

HCHO 0.3 16

CO 50.0 2500

Table 4. Abbreviations for EGLE monitoring stations and notable industrial facilities.

EGLE Monitoring Stations

Dearborn DB
Southwest Detroit SW

River Rouge RR

Industrial Facilities

Ford Dearborn (automotive assembly) FD
Dearborn Industrial Generation (power) DG

Cleveland Cliffs (steel mill) CC
Marathon Petroleum (refinery) MP

Great Lakes Water Authority (wastewater
treatment) WW

Carmeuse Lime (lime producer) CL
EES Coke (coking facility) ES

DTE Energy (power) DT
US Steel (steel mill) US

The highest plume release heights in Figure 2 are associated with power generation,
steel manufacturing, and coking facilities. These sites are either in the northwest section of
the model domain or in the eastern section near the bank of the Detroit River.

The plume rise-adjusted emissions derived from the NEI were kept unchanged except
for NO, HCHO, CO, and NO2. The emissions of the first three compounds were adjusted
by inverse modeling based on AML measurements of their concentrations in ambient air.
The emissions of NO2, while not directly subject to inverse modeling, were indexed to NO
emissions such that the emissions ratio of NO to NOx for all elevated and ground-level
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sources was always 90%. Numerical experiments with wider sets of inversely modeled
compounds beyond NO, HCHO, and CO did not significantly improve the solution quality.

To avoid biasing the inverse model results, the initial point source estimates from the
NEI for NO, NO2, HCHO, and CO were first averaged over the entire horizontal domain.
The domain-averaged values, denoted by EP,i for species i, were re-assigned to grid cells
with non-zero plume release heights as the prior emissions estimates. Note that this method
lowers the total domain emissions of each of the four compounds relative to the initial
NEI-derived estimates. Overall, the prior emissions estimates are purposely conservative.

For stationary non-point sources of NOx and CO, total emissions in the model domain
were set equal to the total NOx or CO point source emissions in the model domain multi-
plied by the ratio of Wayne County (NEI) non-point source emissions to Wayne County
(NEI) point source emissions. These total emissions were then divided by the total number
of horizontal grid cells. The result was assigned to each surface grid cell as a prior non-point
source emissions estimate. The initial estimate for HCHO was obtained by conservatively
multiplying the corresponding value for CO by a factor of 0.0002. Note that because marine
vessels routinely operate in the Detroit River, no distinction was made between land and
water grid cells in assigning non-point source emissions, which are presumed to be largely
produced by combustion. Nevertheless, the possibility of significant non-combustion fugi-
tive emissions of HCHO is considered in the inverse modeling adjustments of ground-
level emissions.

Mobile source emissions were estimated by scaling county-level emissions computed
using the Motor Vehicle Emission Simulator (MOVES) [27] according to the ratio of total
road lengths in each model grid cell to the total road lengths in Wayne County. Biogenic
emissions of isoprene were estimated from the high-resolution regional air quality model
runs described in Olaguer et al. [6]. Grid cell-specific isoprene emissions of 0.024 US
tons/year were assumed for Period 1, and 0.0072 US tons/year for Period 2.

2.5. Error Parameters

The 4Dvar method requires specification of certain error parameters. Some of these
parameters were set independently of the simulation period. These include the assumed
measurement errors for the three species subject to inverse modeling, and the corresponding
prior estimates of the background concentration error covariances, which indicate the
uncertainty in the initial conditions. These parameters are listed in Table 3.

In addition to the error parameters listed in Table 3, prior estimates of the emis-
sion error covariances must also be set to reflect uncertainties in the prior emissions
estimates. These parameters are specific to each simulation period and were tuned to
optimize the agreement between the forward model-predicted concentrations of the three
inverse-modeled species and the corresponding grid cell-averaged ambient concentration
measurements. Separate error covariances were assigned to elevated and ground-level
emission sources.

The prior estimate of the point source emission error covariance QP,i for species i
was applied only to elevated sources and is modeled in terms of the prior point source
emissions estimate EP,i (see above), the cell-averaged plume release height hP (meters), and
the tunable parameter αi as follows:

QP,i = αiE2
P,iexp

(
hP
25

)
. (1)

The prior estimate of the ground-level emission error covariance QS,i for species i was
applied only to surface cells with no stacks present and is modeled in terms of the prior
ground-level emissions estimate ES,i and the tunable parameter βi as follows:

QS,i = βiE2
S,i. (2)
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In the case of NO and CO, Equation (2) was only applied when the maximum mea-
sured ambient concentration of NO in a grid cell exceeded 50 ppb or if the maximum
measured ambient concentration of CO in the same grid cell exceeded 300 ppb. This was
partially intended to represent transient vehicular traffic plumes beyond longer-term aver-
age mobile source emissions. For HCHO, the ground-level emission error covariance allows
for non-combustion fugitive emissions that are not correlated with NO or CO emissions.

Note that the inverse modeling method used in this study combines automated
emissions adjustments by the 4Dvar technique with the heuristic emissions tuning via the
parameters αi and βi. The selected values of αi and βi are listed in Table 5. The lower values
of these parameters for Period 2 relative to Period 1 may reflect a lower PBL height, less
traffic emissions, or the disposition of sources relative to the prevailing winds.

Table 5. Emission error covariance parameters.

Chemical Species
αi βi

Period 1 Period 2 Period 1 Period 2

NO 0.001 0.0002 0.00015 0.00005

HCHO 0.005 0.0004 22.0 9.0

CO 0.1 0.005 0.02 0.01

2.6. Observed Ambient Concentrations

The AML sampling plan during MOOSE was largely, though not exclusively, focused
on the chemical fingerprinting of point sources. Other objectives included co-location with
EGLE monitoring stations during high ozone days, characterization of lake breeze front
chemical conditions, and coordinated actions with other mobile laboratories. The Dearborn
Loop was sampled during 12 of the 40 days that the AML was present in the SEMI region.
The two simulation periods of interest to this study were selected because of the prevailing
wind directions relative to the two EGLE monitoring stations with the most measurements
(Dearborn and Southwest Detroit), and because they facilitated contrasting analyses of the
emission sources within the Dearborn Loop area.

For this study, AML measurement records with over 150 ppb of NO or 1000 ppb of CO
were filtered from the analysis. This was intended to remove interferences from individual
motor vehicle plumes without eliminating the transient influences of mobile source fleets,
as explained above.

Figure 3 shows grid cell-averaged measurements of ambient concentrations of the
three inverse-modeled species during Periods 1 and 2. Note that for Period 1 there were
coincident 24 h average HCHO concentration measurements available at the Southwest De-
troit and River Rouge monitoring stations. These measurements were treated as indicative
of the hourly averages at those locations during Period 1. There were no corresponding
station measurements available during Period 2, as carbonyls were only measured every
6 days at best.

There is a significant difference in the magnitudes of the measured ambient concentra-
tions between the two periods of interest. Period 1 concentrations are much higher than
those measured during Period 2. This is likely due to the significant influence of emissions
from the industrial facilities at the northwest corner of the domain, which were upwind of
the AML measurements during Period 1.
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The cell-averaged ambient concentrations obtained from ~1 s frequency measurements
by the AML were treated by the inverse model as constant during the data assimilation
time window. The results of the MicroFACT modeling based on these observation-based
inputs are discussed in the next section.

3. Results
3.1. Inferred Emissions

Figure 4 displays emissions inferred by MicroFACT for elevated sources. In Period 1,
the influence of point sources in the vicinity of the Dearborn Industrial Generation clearly
stands out. However, there is a weaker contribution from sources around Cleveland Cliffs



Atmosphere 2023, 14, 931 11 of 19

and Marathon Petroleum. Maximum HCHO cell emissions for Period 1 are 12.2 US tons
per year (tpy). During Period 2, elevated HCHO cell emissions of 1 tpy (maximum of
1.7 tpy) from the coking, power, steel, and waste treatment industries on the eastern side of
the domain are comparable to the emissions on the northwest side.
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Figure 5 shows emissions inferred by the inverse model for ground-level sources.
The contours of cell emissions during both periods have coherent large-scale structures
that suggest the influence of mobile sources, such as industrial truck traffic. Maximum
ground-level HCHO cell emissions are 4.8 tpy for Period 1 and 3.7 tpy for Period 2.
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year (tpy) for ground-level sources during Period 1 and Period 2. See Table 3 for interpretation of
red markers.

During Period 1, there were 40 grid cells with inferred elevated emissions greater than
1 tpy, for which the average HCHO:CO mass emission ratio was 5.2%. During the same
period, there were 41 grid cells with inferred ground-level emissions greater than 1 tpy.
Two cells had a HCHO:CO ratio greater than 1, suggesting that fugitive sources of HCHO
were more important than combustion sources at these locations. The average ground-
level HCHO:CO mass emission ratio for the remaining 39 grid cells during Period 1 was
2.2%. Similarly, during Period 2 the average HCHO:CO ratio for the 34 cells with elevated
emissions greater than 1 tpy was 2.0%, while the seven cells with ground-level emissions
greater than 1 tpy had an average ratio of 3.6%. The average HCHO:CO ratio for all grid
cells was 2.4% for Period 1 and 0.4% for Period 2. These results confirm the assumption
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by Olaguer et al. [6] based on stack tests and other field data that incomplete combustion
emissions from industrial sources apart from landfill-gas-fired stationary engines should
typically yield HCHO:CO mass ratios between 2 and 10%.

3.2. Simulated Ambient Concentrations and Solution Quality

Figure 6 shows the final surface concentrations of NO, HCHO, and CO predicted
by the MicroFACT model at the end of the two simulation periods based on the inferred
emissions. During Period 1, there is a large portion of the model domain with ambient
HCHO concentrations between 3 and 6 ppb, whereas during Period 2 ambient HCHO
concentrations are mostly below 2 ppb, except on the eastern side near or downwind of the
steel, coking, and power generation facilities, and in the vicinity of the Southwest Detroit
monitoring station where the AML measured high ambient concentrations of HCHO during
Period 2 (see Figure 3). Clearly, simulated HCHO exposures in the Dearborn Loop area
depend significantly on wind direction relative to the largest sources.
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Figure 7 displays scatter plots and linear regressions of measured vs. predicted
ambient concentrations for NO, HCHO, and CO during Periods 1 and 2, while Table 6
lists the regression parameters. The solution qualities are best for NO and CO, as their
regression slopes and correlation coefficients are closest to 1. Because HCHO is as much a
secondary pollutant as a directly emitted compound, it is more difficult to get a high-quality
solution than for the primary pollutants, NO and CO. Nevertheless, the HCHO solution is
acceptable, as the square of the Pearson correlation coefficient (r) is greater than 0.5, while
the regression slope is still reasonably close to 1 for both simulation periods.
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Table 6. Slope, intercept, and Pearson correlation coefficient (r) from linear regression analysis.

Chemical Species
Period 1 Period 2

Slope Intercept r Slope Intercept r

NO 1.12 −2.81 0.887 0.99 −2.40 0.772

HCHO 0.76 0.55 0.708 0.83 −0.20 0.728

CO 0.98 −52.0 0.789 0.85 −13.5 0.836

4. Discussion

The HCHO emissions estimated in this study stand in sharp contrast to the corre-
sponding emissions obtained or inferred from reports to the State of Michigan in 2017
by industrial facilities in the Dearborn Loop area. Table 7 lists these facility emissions
as recorded in the Michigan air emissions reporting system (MAERS), a public database
maintained by EGLE [28]. The NOx, CO, and VOC emissions data in MAERS were the
basis for the 2017 NEI data used to derive initial emissions estimates for the model. Note
that the facilities in Table 7 are listed in order of their reported CO emissions. Except for
Marathon Petroleum, these facilities have recorded HCHO emissions far below 1 tpy.

Table 7. 2017 data from the Michigan air emissions reporting system (MAERS).

Facility NOx (lbs/year) CO
(lbs/year) VOC (lbs/year) HCHO

(lbs/year)

AK Steel
(Cleveland

Cliffs)
Dearborn Works

756,406 33,105,096 96,759 12

US Steel Great
Lakes Works 1,960,104 29,811,671 103,421 117

EES Coke
Battery

LLC
2,701,308 809,502 179,943 0

Dearborn
Industrial

Generation
1,052,385 563,358 29,500 324

Carmeuse Lime,
Inc.

River Rouge
Operation

869,008 420,488 0 0

DTE Electric
Company

River Rouge
Power Plant

3,038,094 351,680 10,059 13

Marathon
Petroleum

Company LP
776,493 316,764 685,307 9349

Great Lakes
Water

Authority
297,272 155,894 26,015 2

Ford Motor
Company

Rouge Complex
128,684 28,825 1,635,947 4

The underestimation of primary HCHO is caused by the corresponding emission
factors in the USEPA’s AP-42 database [29] being out-of-date. However, in 2014 the USEPA
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made changes in VOC, NOx, and CO emission factors for flares and other units at refineries
in response to legal action [30]. Moreover, emissions inventories usually do not include
primary HCHO that is formed as a product of incomplete combustion (PIC) prior to release.
As discussed by Olaguer et al. [6], these combustion emissions have been successfully
measured in the field with contemporary ultraviolet/visible, and/or infrared spectroscopic
techniques. Such field measurements, however, have mostly not been incorporated into
emission factor determinations for HCHO.

As already mentioned, an important PIC co-emitted with HCHO is CO, although
CO is itself an active agent in reducing NOx [31]. The maximum elevated cell emissions
of CO inferred by this study were 7103 tpy (=14.2 million lbs/year) in Period 1 and
7608 tpy (=15.2 million lbs/year) in Period 2, while the maximum ground-level cell emis-
sions were 542 tpy and 491 tpy for Periods 1 and 2, respectively. The magnitudes of the
inferred point source emissions suggest that some of the reported CO emissions in Table 7
may be overestimates, especially for the two steel mills. Even if this were true, the applica-
tion of typical HCHO:CO ratios would still yield HCHO emission estimates well over 1 tpy
for these sources.

For NO, the maximum elevated cell emissions for Periods 1 and 2 were 366 tpy
(=731,051 lbs/year) and 64 tpy (=128,580 lbs/year), respectively, while the corresponding
maximum ground-level cell emissions were 169 tpy in Period 1 and 77 tpy in Period 2. As
was the case for CO, the inferred point source emissions for NO are generally lower than
the reported values in MAERS.

The levels of HCHO emissions inferred by the MicroFACT model may be sufficient
to explain the ambient HCHO concentrations consistently measured at the three EGLE
stations in the Dearborn Loop over the last two decades, as well as the concentration
gradient between the Dearborn and River Rouge sites measured in 2021 (see Figure 6).
While only two wind directions over two 1 h periods were simulated in this study, it is not
difficult to see how different wind directions over a long period would alternate between
the high exposure scenario of Period 1 and the low exposure scenario of Period 2. Figure 8
displays a wind rose based on measurements at DTW airport between 2018 and 2022.
Northwesterly and northeasterly wind directions are prominent in the long-term data. In
contrast, the dominant southwesterly wind direction should generate low HCHO exposures
like those in Period 2, as the major emission sources would be downwind of or peripheral
to most of the affected residential areas. Thus, the resulting long-term average HCHO
exposures over the populated areas in the Dearborn Loop would likely be very similar to
those indicated by the EGLE station measurements.
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5. Summary and Conclusions

This study has demonstrated the feasibility and utility of inverse modeling for estimat-
ing widespread industrial emissions of chemically reactive compounds and quantifying
cumulative exposure to HAPs with multiple primary and secondary sources. The results
have practical implications for air quality policy and regulations because they identify a
range of specific industrial sources that may be subject to controls to mitigate inhalation
exposure to toxic HCHO and reduce the ambient concentrations and health impacts of
criteria pollutants. These controls may include minimizing or improving the efficiency of
flares, adding oxidation catalysts to stationary engines, and better detecting and capturing
fugitive emissions.

The main conclusions drawn from this study are as follows:

• HCHO emissions from individual industrial facilities mainly representing the power,
steel, coking, and waste treatment industries likely exceed 1 tpy.

• The average emission ratios of HCHO to CO in combustion sources emitting more
than 1 tpy of HCHO are roughly 2 to 5%. This is consistent with known ratios from
stack tests and other field measurements.

• Both elevated point sources and ground-level sources contribute significantly to ambi-
ent HCHO exposures.

• When winds favor the transport of emission plumes from the largest industrial sources
towards the interior of the study area, widespread exposure to ambient concentrations
of HCHO between 3 and 6 ppb may occur. Otherwise, ambient HCHO is mostly
below 2 ppb (roughly the US national median) except in the vicinity or immediately
downwind of large sources.

• Application of the MicroFACT model helped to explain the observed HCHO con-
centration gradient between the EGLE monitoring stations at Dearborn and River
Rouge in 2021. The gradient arises because of the importance of primary HCHO on
the local scale versus broader plumes of secondary HCHO, which would result in a
more homogeneous distribution of ambient concentrations.

• Longer-term exposure to HCHO will result from a mix of favorable and unfavorable
wind conditions, such that the measured long-term average HCHO concentrations at
the three EGLE monitoring sites in the study area are likely good indicators of local
population exposure.

In the future, the inverse model may be enhanced by utilizing automated techniques
for estimating initial error covariances, such as pattern recognition (e.g., positive matrix
factorization) or artificial intelligence, to distinguish source behaviors. This will minimize
subjectivity and increase the accuracy of inverse modeling results. The cumulative impacts
of HCHO including the enhancement of ambient ozone and PM2.5 would also be an
important avenue for further investigation.
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