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Abstract: Statistics in the inertial energy transfer range (IETR) of d-dimensional turbulence ( 2 ≤ d ≤ 3)
are studied using a Lagrangian renormalized approximation (LRA). The LRA suggests that the energy
spectrum in the IETR is given by Kd|ε̄|2/3k−5/3, where Kd is a constant and ε̄ is the energy flux across
wave-number k; the energy transfer is forward for dc < d ≤ 3 but inverse for 2 ≤ d < dc, where
dc ≈ 2.065; at d = dc, Kd diverges and the skewness of the longitudinal velocity difference vanishes;
and the d-dependence of the two-time Lagrangian velocity correlation spectra under appropriate
normalization is weak in the IETR.

Keywords: d-dimensional turbulence; inertial energy transfer range; Lagrangian renormalized
approximation

PACS: 47.27.Ak; 47.27.Jv; 47.27.Gs; 05.20.Jj

1. Introduction

It was at an IUTAM Symposium held at Kyoto on 1983 when the second author
(Y.K.) first met Jack Herring, while it was in 1990 at Boulder when the first author (T.G.)
first met him. Since then, both authors have had chances to enjoy discussions with Jack,
including during the workshops of the Geophysical Turbulence Program at the National
Center for Atmospheric Research and his visits to Nagoya. The discussions covered various
topics, but particularly statistical theories of turbulence. Our common interests included the
spectral closure theories, in particular two-point two-time closure approximations. We were
inspired by his works, especially those on spectral closure approaches. The discussions
with him have been friendly and stimulating.

In this paper, we consider the application of a spectral closure approach to turbulence
in the d space dimension with 2 ≤ d ≤ 3. In practice, we use a spectral closure theory based
on a view point of Lagrangian renormalization. The closure theory is called Lagrangian
renormalized approximation (LRA) [1] here. The LRA is a two-point two-time Lagrangian
closure approximation free from any adjustment parameter, and similar in this sense to the
abridged Lagrangian-history direct-interaction approximation (ALHDIA) of Kraichnan [2]
and strain-based ALHDIA of Kraichnan and Herring [3] and Herring and Kraichnan [4].
The equations of the LRA are simpler than those of the ALHDIA and strain-based ALHDIA.

In general, the dynamics of a fluid may be fundamentally different in different space
dimension. For example, vortex stretching plays important dynamic roles in three, but
not two, dimensions. It is not surprising that, given such observations, the statistics of
turbulence may differ fundamentally in different space dimensions. Indeed, studies so far
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suggest that energy in the so-called inertial energy cascade range is transferred in opposite
directions in two and three dimensions, i.e., from large to small eddies (scales) (forward) in
three dimensions, but from small to large scales (backward or inverse) in two dimensions,
if the turbulence has a sufficiently large Reynolds number Re. One may ask: What happens
in spaces of noninteger dimension d between two and three dimensions?

It is difficult to realize turbulence in such noninteger dimension by experiments or
numerical simulation, so that one might think that such a question is purely academic.
However, the history of the statistical mechanics of critical phenomena suggests that
understanding the physics of noninteger dimension may improve our understanding of
physics in three (and two) dimensions, as noted by Fournier and Frisch [5] in a pioneering
study of turbulence in noninteger dimension. The study of turbulence in noninteger
dimension via a closure-theoretical approach may extend the field of the applications of
spectral closures in which both Jack Herring and the authors were/are interested.

In this paper, we begin by considering the homogeneous and isotropic turbulences
(HIT) of an incompressible fluid that obeys the Navier–Stokes (NS) equation in integer
dimensions d with d = 2, 3, 4 · · · . After reviewing certain exact relations in physical and
wave-vector spaces of d-dimension in Section 2, we briefly review, in Section 3, the LRA
equations for HIT in d-dimensions, following Gotoh et al. [6]. In the LRA equations, the
parameter d representing the space dimension plays a key role. The dimension d is limited
to integers in Sections 2 and 3. In Section 4, we take a bold step; we relax d to allow
noninteger values. Assuming that the LRA equations are applicable to noninteger values d,
we analyze (in Section 4) the statistics in the wavenumber range wherein the energy flux
across wavenumber k is independent of k. Here, we refer to this range as the inertial energy
transfer range (IETR). A particular attention is paid to statistics associated with Lagrangian
two-point two-time velocity correlation and the skewness factor of the longitudinal velocity
increment in the ITER; two-time statistics are, in general, not captured in single time
closures such as the eddy-damped quasinormal Markovian (EDQNM) approximation [7]
used in [5,8].

2. Exact Relations
2.1. Navier–Stokes Equation in d-Dimension with d = 2, 3, 4 · · ·

We begin with the NS equation for an incompressible fluid

∂ui
∂t

+ uj
∂ui
∂xj

= − ∂p
∂xi

+ ν∆ui + f ext
i , (1)

and the incompressibility condition

∂ui
∂xi

= 0, (2)

in d-dimensional space (d = 2, 3, 4 · · · ) where ui, xi and f ext
i are the components of the veloc-

ity u, the position x, and the external force in the i-th Cartesian direction (i = 1, 2, 3, · · · , d),
respectively, t is the time, p is the pressure divided by the constant fluid density, and ν is
the kinematic viscosity. Throughout, we employ the summation convention for repeated
indices.

Multiplying Equation (1) by ui and taking the summation over i gives

∂
∂t

1
2 u2

i +
∂

∂xj

[(
1
2 u2

i + p
)

uj

]
= ν ∂

∂xj

(
ui

∂ui
∂xj

)
− ν

∂uj
∂xi

∂uj
∂xi

+ ui f ext
i ,

(3)
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under the incompressibility condition Equation (2). Integrating Equation (1) over the fluid
domain V, one obtains

∂

∂t

∫
V

1
2

u2
i (x)dx = −

∫
V
[ε(x)− ε f (x)]dx, (4)

where the energy dissipation rate ε(x) and energy injection rate ε f (x) at position x are
defined by

ε(x) = ν
∂uj

∂xi

∂uj

∂xi
, (5)

ε f (x) = ui(x) f ext
i (x), (6)

and the integration over the boundary surface of the domain V is assumed to be negligible.
This assumption can be justified under the assumption of periodic boundary conditions,
for example.

2.2. Spectral Relations

In homogeneous and isotropic turbulence (HIT), the single-time two-point velocity
correlation

〈
ui(x, t)uj(x′, t)

〉
depends on x and x′ only via r ≡ x − x′, and its Fourier

transform Qij(k, t) with respect to r may be written in the form

Qij(k, t) =
1

d− 1
Pij(k)Q(k, t), (7)

where Q(k, t) depends on k only via k ≡ |k| and Pij(k) ≡ δij − kik j/k2. The Fourier
transform û(k) of u(r) with respect to r is related to u(r) by

u(r) =
∫

û(k)eik·rddk, (8)

in which the integration is over the entire k-space. The total energy E(t) is given by

E(t) =
〈
u2(t)

〉
2

=
∫ ∞

0
E(k, t) dk, (9)

where the energy spectral density E(k, t) is defined as

E(k, t) =
1
2

Sdkd−1Q(k, t), Sd =
2πd/2

Γ(d/2)
, (10)

and Sd is the surface area of a d-dimensional sphere of unit radius. The brackets 〈 〉 indicate
an appropriate average such as the ensemble or space average.

According to the NS equation, Equation (1), the energy spectrum E(k, t) obeys(
∂

∂t
+ 2νk2

)
E(k, t) = T(k, t) + W(k, t), (11)

where W(k, t) is the energy injected by the external force f ext
i . T(k, t) is the so-called

energy transfer function that represents the energy transfer attributable to nonlinear triad
interactions in the wave-vector space. The energy conservation by the nonlinear term in
the NS equation implies that ∫ ∞

0
T(k, t)dk = 0. (12)

The so-called energy flux across k is defined by

Π(k, t) =
∫ ∞

k
T(k′, t)dk′ = −

∫ k

0
T(k′, t)dk′. (13)
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The average energy dissipation rate per unit mass is given by

〈ε〉 = 2ν
∫ ∞

0
k2E(k)dk, (14)

and the average energy injection rate per unit mass is given by〈
ε f

〉
=
∫ ∞

0
W(k)dk. (15)

Here and hereinafter, we omit the time-arguments at will.

2.3. Statistics in the Inertial Energy Transfer Ranges of Wave-Vector and Physical Spaces

Equations (11) and (13) imply that

Π(k, t) =
∫ ∞

k

[
∂

∂t
E(k′, t) + 2νk2E(k′, t)−W(k′, t)

]
dk′. (16)

Suppose that Re is very large, so that T(k′, t), i.e., the sum of the three terms in the integrand
of Equation (16) is negligibly small (in an appropriate sense) over a certain range of k′, say
kL � k′ � k`. Equation (16) then implies that the energy flux Π(k) is almost constant
independent of k, and we may therefore approximate it as

Π(k) = ε̄, (17)

over the range wherein we have set the constant to ε̄. We assume here that the time
dependence of ε̄ is negligible.

As shown in Appendix A, if such a range k is sufficiently wide, we obtain the approxi-
mation

DLLL(r) = −
12ε̄

d(d + 2)
r, (18)

over the corresponding range of r, i.e., ` ≡ (1/k`)� r � L (≡ 1/kL), where DLLL =
〈
u3

r
〉

is the third-order structure function of the longitudinal velocity increment ur = (r/r) ·
(u(x + r)− u(x)). We call this range inertial energy transfer range (IETR), and the wave-
number range kL � k � k` is called the IET wave-number range (simply, IETR). The
relation (18) with ε̄ = 〈ε〉 can be derived from a generalization of the Kármán–Howarth–
Kolmogorov (KHK) equation for d = 3 to any arbitrary integer d > 0 for freely decaying
turbulence with f ext

i = 0 [9–11].
For freely decaying turbulence in three dimensions (d = 3), Equation (18) with ε̄ = 〈ε〉

gives Kolmogorov’s 4/5-th law [12],

DLLL(r) = −
4
5

ε̄r. (19)

Kolmogorov noted that under the assumption that the skewness S of ur defined by

S ≡ DLLL(r)
[DLL(r)]3/2 , (20)

is constant, Equation (19) gives

DLL(r) = C3(ε̄r)2/3, (21)

where DLL ≡
〈
u2

r
〉
, C3 = [−4/(5S)]2/3 is a nondimensional constant, and we have used

ε̄ > 0. A similar statement holds true for d 6= 3, i.e., if the skewness factor is constant, then
Equation (18) gives

DLL(r) = Cd(|ε̄|r)2/3, (22)
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where Cd is a nondimensional constant, but may depend on d. Here, we use |ε̄| instead of ε̄
to allow the possibility that ε̄ may be negative.

In spectral space, Equation (21) gives

E(k) = Kd|ε̄|2/3k−5/3, (23)

provided that the IETR is sufficiently wide, where Kd is a nondimensional constant that
may depend on d. Straightforward algebra shows that Cd is related to Kd by

Cd = 2.56Γ(d/2)Kd/Γ(d/2 + 4/3), (24)

where Γ is the gamma function [6]. Equations (18), (20), (22) and (24) then give

S(d) = − 12
d(d + 2)

ε̄

|ε̄|

(
Γ(d/2 + 4/3)

2.56Γ(d/2)

)3/2

K−3/2
d , (25)

where we have replaced S in Equation (20) by S(d).

3. LRA Equations in Integer Dimension d
3.1. LRA Equations

One of the main interests in the study of turbulence is how to theoretically predict the
transfer T(k, t). Extensive studies have been made on this problem. Readers may refer to,
for example, the review by Zhou [13] for a recent and comprehensive review of the studies.

The LRA is one of the closure theories that give approximations for the transfer
T(k, t) [1]. Let Qij(x, x′, t, s) be the two-time two-point Lagrangian velocity correlation
defined by

Qij(x, x′, t, s) ≡
〈
vi(x, s|t)vj(x′, s|s)

〉
, (t ≥ s) (26)

and Gij(x, x′, t, s) is the Lagrangian response function defined by

Gij(x, x′, t, s) ≡
〈
δvi(x, s|t)/δ f j(x′, s)

〉
, (t ≥ s) (27)

where v(x, s|t) is the generalized velocity defined as the fluid velocity at time t of the fluid
particle that was at position x at time s, δ fi(x, t) is an infinitesimal force term added to the
right-hand side of Equation (1), and δ/δ denotes functional differentiation. Since v(x, t|t)
is just the Eulerian velocity u(x, t), we have Qij(x, x′, t, t) =

〈
ui(x, t)uj(x′, t)

〉
.

In statistically homogeneous turbulence, Qij(x, x′, t, s) and Gij(x, x′, t, s) depend on x
and x′ only via r ≡ x− x′. Let the Fourier transforms with respect to r of Qij(x, x′, t, s) and
Gij(x, x′, t, s) after an appropriate normalization be, respectively, Qij(k, t, s) and Gij(k, t, s).
The LRA gives a closed set of equations for Pim(k)Qmj(k, t, s) and Pim(k)Gmj(k, t, s). (Since
the pressure in Equation (1) kills the compressible part of δ fi, it is shown that
Pim(k)Gmj(k, t, s) = Pim(k)Gmn(k, t, s)Pnj(k). The latter expression instead of the former
was used in Kaneda (1981)). In HIT, they may be written in the form

Pim(k)Qmj(k, t, s) =
1

d− 1
Pij(k)Q(k, t, s), (28)

Pim(k)Gmj(k, t, s) = Pij(k)G(k, t, s), (29)

where Q(k, t, s) and G(k, t, s) depend on k only via k. Since v(x, t|t) = u(x, t), as noted
above, and the fluid is incompressible, we have Pim(k)Qmj(k, t, t) = Qij(k, t, t) = Qij(k, t),
where Qij(k, t) is the Fourier transform of

〈
ui(x, t)uj(x′, t)

〉
with respect to r ≡ x− x′. For

t = s, Equation (28) with Q(k, t, t) = Q(k, t) therefore reduces to Equation (7). The same
closure equations as those in the LRA were derived by Kida and Goto [14] for d = 3.

We quote here the LRA equations for T(k, t), Q(k, t, s) and G(k, t, s) in integer dimen-
sion d ≥ 2 from Gotoh et al. [6] as follows. Readers may refer to their paper for the details
of the derivation, and to Kaneda [15] for the basic ideas and properties of the LRA.
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The single time correlation Q(k, t) ≡ Q(k, t, t) obeys(
∂

∂t
+ 2νk2

)
Q(k, t) = TQ(k, t) + WQ(k, t), (30)

where

TQ(k, t) = 2Ndk4−d
∫∫

∆
dpdq (pq)d−2(1− x2)

d−3
2 b(d)kpq

×
∫ t

−∞
Gd(k, t, s)Gd(p, t, s)Gd(q, t, s)Q(q, s)[Q(p, s)−Q(k, s)] ds, (31)

WQ(k, t) =
1

Sdkd−1 W(k.t), (32)

and

b(d)kpq = d
( p

k

)2
(1− x2) +

p
k
(2z3 − 3z− xy), (33)

Nd =
Sd−1

(d− 1)2 , (34)

∫∫
∆dpdq denotes the integral over the domain of p, q such that (k, p, q) can be the length of

the sides of a triangle, and (x, y, z) denotes the cosines of the interior angles opposite the
triangle sides (k, p, q), respectively. Here, we assume that the time t is large enough, so that
we may let the lower bound of the time integral in Equation (31) be −∞.

The Lagrangian two-time velocity correlation Q(k, t, s) satisfies the fluctuation–
dissipation relation

Q(k, t, s) = Gd(k, t, s)Q(k, s, s), t ≥ s (35)

and the Lagrangian response function Gd(k, t, s) satisfies Gd(k, s, s) = 1 and(
∂

∂t
+ νk2 + µd(k, t, s)

)
Gd(k, t, s) = 0, t ≥ s (36)

where

µd(k, t, s) =
∫ ∞

0
dp kp Jd

( p
k

)∫ t

s
Gd(p, t, s′)E(p, s′)ds′, (37)

Jd(x) = Md Ĵd(x), (38)

Ĵd(x) = Ĵd(1/x)

=

{
xF(1,−d/2, d/2 + 2, x2), x ≤ 1
1
x F(1,−d/2, d/2 + 2, 1/x2), x > 1

(39)

Md =
4Sd−1

(d− 1)2Sd
B
(

d + 3
2

,
1
2

)
, (40)

F is Gauss’ hypergeometric function and B is the beta function. Here, we omit terms that
disappear when f ext

i = 0.
According to Equation (31), the energy flux is given by

Πd(k, t) = SdNd

∫ ∞

k
dk′
∫∫

∆
dpdq k′3(pq)d−2(1− x2)

d−3
2 b(d)k′pq

×
∫ t

−∞
Gd(k′, t, s)Gd(p, t, s)Gd(q, t, s)Q(q, s)[Q(p, s)−Q(k, s)] ds, (41)

in the LRA. It can be confirmed that, as in three dimensions, the detailed balance and the
energy conservation by the nonlinear term in the NS equation hold in the LRA in any
integer dimensions (≥2).
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3.2. LRA Equations in the IETR

A simple dimensional analysis using the idea of Kolmogorov’s similarity theory [16]
suggests that E(k) and Gd(k, t, s) in the IETR, where Equation (17) holds, are given by the
following similarity forms:

E(k) = Kd|ε̄|2/3k−5/3, Gd(k, t, s) = Gd(k, τ) = gd(σ),
τ = t− s, σ = γ|ε̄|1/3k2/3τ, γ =

√
MdKd,

(42)

where Kd is the Kolmogorov constant in d-dimension. Here and hereafter we assume the
statistical stationarity in the IETR.

The LRA equations are confirmed to be consistent with the similarity forms in
Equation (42). Upon substitution of the similarity forms (42) of Equation (10) into
Equation (37), the integral converges appropriately at small and large wave-number limits.
Via substitution, one can reduce Equation (36) to

dgd(σ)

dσ
+

(∫ ∞

0
dx x−2/3 Ĵd(x)

∫ σ

0
dξ gd(x2/3ξ)

)
gd(σ) = 0. (43)

Similarly, by substituting the similarity forms, one can reduce the expression
Equation (41) for the energy flux in the IETR to

Πd(k) = |ε̄|K3/2
d

4d Sd−1

(d− 1)2Sd
√

Md
Ad, (44)

where

Ad =
∫ 1

0
du log(1/u)

∫ u+1

max(u,|1−u|)
dv Θd(1, u, v)D̄d(1, u, v), (45)

D̄d(1, u, v) = (1− x2)
d−3

2 u−8/3
[
(b̄(d)1uv + b̄(d)1vu)v

−8/3 − (b̄(d)1uvud+2/3v−8/3 + b̄(d)1vuvd−2)
]
, (46)

b(d)1uv = d b̄(d)1uv = d
(

u2(1− x2) +
u
d
(2z3 − 3z− xy)

)
, (47)

and Θd is the triple relaxation time defined by

Θd(1, u, v) =
∫ ∞

0
gd(s)gd(u2/3s)gd(v2/3s) ds. (48)

4. Statistics in the IETR for 2 ≤ d ≤ 3

Up to this point, we have assumed that the space dimension d is an integer, and we
derived the relations in Sections 2 and 3. We now take the bold step of assuming that we
can continue to use Equation (25) and the LRA equations in a noninteger dimension d with
2 < d < 3. If so, we can solve Equation (43) to obtain gd numerically for any noninteger
dimension d, in 2 < d < 3, in the same way as in Refs. [17–19]. Note that Expression (9)
in Ref. [18] for a damping factor η is too small by a factor of 2; thus, some factors must be
corrected. For example, C (K2 in the present notation) is too small by a factor of 21/3, and,
thus, should be C = 7.41.

Figure 1a shows the response function Gd(k, t − s) plotted against |ε̄|1/3k2/3τ for
d = 2.0, 2.1, · · · , 3 and dc± = dc ± 0.0001, where dc ≈ 2.065. The function Gd decays
more rapidly as d decreases from 3 and rapidly moves to zero just above and below dc.
However, it decays more slowly as d changes from dc to 2. Figure 1b shows that the values
of gd as a function of σ =

√
MdKd|ε̄|1/3k2/3τ are almost independent of d. Given the

fluctuation–dissipation relation (35), this implies that the normalized two-point two-time
Lagrangian-correlation spectrum Q(k, t, s)/Q(k, s, s) is also almost independent of d under
an appropriate normalization of time.
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Figure 1. Response function for d = 2, 2.1, 2.2, · · · , 3 and dc± = dc ± 0.0001 and dc = 2.065.
(a) Gd(k, τ) plotted against |ε̄|1/3k2/3τ. (b) Normalized response function gd(σ).

Substituting the values of gd thus obtained and integrating Equation (41) numerically,
we derive estimates of Kd for the given d, as in previous studies. The numerical code used
in this study is based on that of Ref. [6]. The values of Kd thus obtained are plotted in
Figure 2a,b. It is seen that Kd as a function of d tends to K2 = 7.43 for d = 2 and K3 = 1.73
for d = 3, respectively, and diverges at a point dc. These numerical estimates, 7.43 and 1.73,
are in agreement with the estimates 7.41 and 1.72 [6,14,17–19] within a difference of less
than 0.6%.

It is numerically clear that Ad is positive, so Πd given by Equation (44) is, thus, also
positive; the energy transfer is forward at dc < d ≤ 3 but negative (backward) at 2 ≤ d < dc.
If one assumes Ad ∝ (d− dc) at small |d− dc|, we obtain Kd ∝ |d− dc|σ with σ = −2/3,
which is in good agreement with the numerical result of Figure 2b and agrees also with
that of Fouriner and Frisch [5], who argued that Kd diverges at d = dFF and the exponent
is −2/3, on the basis of the EDQNM approximation, where dFF ≈ 2.05, which is very
close to dc = 2.065 noted above. In the EDQNM approximation in Fouriner and Frisch [5],
Π(k) in the IETR is given by Equation (44) but with Gd(k, τ) in Equation (42) replaced
by GEDQNM(k, τ) = exp(−µkτ), and 1/µk represents the local eddy turnover time and is
given by

µk = λd

(∫ k

0
r2E(r)dr

)1/2

, (49)

and λd is an adjusting parameter. The critical dimension dFF is seen to be independent of
the choice of λd.
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Figure 2. Variation of Kd by d. (a) Kd vs. d for 2 ≤ d ≤ 3. Values at d > dc (d < dc) are shown in
red (blue). The numbers are K2 = 7.43 and K3 = 1.73. The inset figure shows a close-up of Kd near
dc ≈ 2.065. (b) Kd vs. |d− dc| in logarithms. The numbers are the slopes (red: d > dc, blue: d < dc).

Substitution of the values of Kd thus obtained from Equation (25) gives the values of
the skewness factor S(d), which are plotted in Figure 3. It is seen that S(d) decreases as d
decreases from d = 3, and changes its sign at d = dc where Kd diverges.
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Figure 3. Variation of the skewness factor S(d) with d. Values at d > dc (d < dc) are shown in red
(blue). The arrow indicates dc ≈ 2.065.

5. Discussion

The overlap of the curves of gd for different d in Figure 1b is impressive. This implies
that the time dependence of the normalized Lagrangian two-point two-time correlation
Qd(k, t, s)/Qd(k, s, s) and that of the Lagrangian response function Gd(k, t, s) under an
appropriate normalization of time are insensitive to the difference in the space dimension.
It would be interesting to explore the physics behind the overlap and implications thereof.

The skewness S(d) of the velocity increment must be 0 if the statistics of the velocity
field are Gaussian. Hence, S(d) is a measure of the degree of the non-Gaussianity of the
turbulence statistics. The results in Section 4 show that S(d) monotonically approaches
the Gaussian value, i.e., 0, with the departure of the dimension d from 3, in the range
dc < d < 3, and increases from 0 in the range 2 < d < dc.

Recently studies have been made on turbulence in noninteger space dimensions d < 3
using a fractal Fourier decimation model; see, for example, [20–25], and references cited
therein. Studies so far made suggest that the non-Gaussianity of small-scale statistics
depends on the space dimension d. In this respect, the results in Section 4 noted above are
consistent with this, although the model used here is based on continuation of the LRA at
integer dimensions to noninteger dimension 2 < d < 3; this differs from the decimation
model. It would be interesting to apply the LRA to the decimation model to see if the
LRA can well capture the influence of d on the statistics related to the skewness S(d) in
the model.
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Appendix A. Relation between Πd(k) and DLLL(r)

In this Appendix, we consider the relation between the energy flux in wavenumber
space and the third-order moment DLLL(r) of the longitudinal velocity increment. Let us
consider the following quantity [26],

εd(r) ≡ −
1
4
∇r ·

〈
|δu|2δu

〉
, δu(r) = u(x + r)− u(x). (A1)

In terms of εd(r), the energy transfer flux Πd(K) in the wavenumber space is given by

Πd(K) =
1

(2π)d

∫ K

0
dkkd−1

∫
dΩd(k)

∫ ∞

0
drrd−1

∫
dΩd(r) εd(r)e−ik·r . (A2)

where Ωd(r) (Ωd(k)) denotes the surface of the unit sphere centered at r = 0 (k = 0) in
the d-dimensional physical (wave-vector ) space. If statistical isotropy is assumed, we can
write εd(r) = εd(r) and perform the surface integrals. The result is

Πd(K) = ZdK
∫ ∞

0
dr(Kr)

d
2−1 J d

2
(Kr)εd(r), Zd =

S2
d

(2π)d 2
d
2−1Γ

(
d
2

)
, (A3)

where J d
2
(x) is the d/2-th-order Bessel function. The function εd(r) for the isotropic tur-

bulence is expressed in terms of the cubic moment of the longitudinal velocity increment
DLLL(r) as

εd(r) = −
1

12

(
d + r

d
dr

)(
d + 2 + r

d
dr

)
DLLL(r)

r
. (A4)

Substituting Equation (A4) into Equation (A3) and performing integration by parts, assum-
ing that the integrands rapidly move to zero for small and large r, we obtain

Πd(K) = −
1

12
ZdK

d
2 +2

∫ ∞

0
dr r

d
2 +1 J d

2 +2(Kr)
DLLL(r)

r
. (A5)

Conversely, εd(r) can also be expressed in terms of Πd(k) as

εd(r) = 2
d
2−1Γ

(
d
2

)
r
∫ ∞

0
dk (kr)1− d

2 J d
2
(kr)Πd(k). (A6)

Substituting Equation (A4) into the above equation, and integrating in r over the domain
[0, r] under the conditions DLLL(r) ∝ r3 for r → 0, we obtain

DLLL(r) = −12Γ

(
d
2

)( r
2

)1− d
2
∫ ∞

0
dk k−1− d

2 J d
2 +2(kr)Πd(k). (A7)

Expressionsin terms of the transfer function Td(k) were obtained for d = 2 by [27] and for
integer dimensions d ≥ 2 by [8]. Equation (A7) indicates that the skewness S(d)(r) changes
sign depending on Πd(K) = ε̄, being negative in the forward energy cascade range, but
negative in the inverse energy cascade range.

Suppose that Πd(k) = ε̄ in the IETR. Then, the integrals of Equations (A6) and (A7)
converge, and yield

εd(r) = −
1
4
∇r ·

〈
|δu|2δu

〉
= ε̄, (A8)

and
DLLL(r) = −

12
d(d + 2)

ε̄r, (A9)
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respectively, which are consistent with Equation (A4), as expected.

References
1. Kaneda, Y. Renormalized expansions in the theory of turbulence with the use of the Lagrangian position function. J. Fluid Mech.

1981, 107, 131–145. [CrossRef]
2. Kraichnan, R.H. Lagrangian-history closure approximation for turbulence. Phys. Fluids 1965 8, 575–598. Erratum in Phys. Fluids

1966, 9, 1884. [CrossRef]
3. Kraichnan, R.H.; Herring, J.R. A strain-based Lagrangian-history turbulence theory. J. Fluid Mech. 1978, 88, 355–367. [CrossRef]
4. Herring, J.R.; Kraichnan, R.H. Numerical comparison of velocity-based and strain-based Lagrangian-history turbulence approxi-

mations. J. Fluid Mech. 1979, 91, 581–597. [CrossRef]
5. Fournier, J.D.; Frisch, U. d-dimensional turbulence. Phys. Rev. A 1978, 17, 747–762. [CrossRef]
6. Gotoh, T.; Watanabe, Y.; Shiga, Y.; Nakano, T.; Suzuki, E. Statistical properties of four-dimensional turbulence. Phys. Rev. E 2007,

75, 016310. [CrossRef]
7. Orszag, S.A. Analytical theories of turbulence. J. Fluid Mech. 1970, 41, 363–386. [CrossRef]
8. Clark, D.; Ho, R.D.; Berera, A. Effect of spatial dimension on a model of fluid turbulence. J. Fluid Mech. 2021, 912, A40. [CrossRef]
9. Fukayama, D.; Oyamada, T.; Nakano, T.; Gotoh, T.; Yamamoto, K. Longitudinal structure functions in decaying and forced

turbulence. J. Phys. Soc. Jpn. 2000, 69, 701–715. [CrossRef]
10. Hill, R.J. Equations relating structure functions of all orders. J. Fluid Mech. 2001, 434, 379–388. [CrossRef]
11. Yakhot, V. Mean-field approximation and small parameter in turbulence theory. Phys. Rev. E 2001, 63, 026307. [CrossRef]
12. Kolmogorov, A.N. Dissipation of energy in locally isotropic turbulence. C. R. Acad. Sci. USSR 1941, 32, 16–18.
13. Zhou, Y. Turbulence theories and statistical closure approaches. Phy. Rep. 2021, 935, 1–117.
14. Kida, S.; Goto, S. A Lagrangian direct-interaction approximation for homogeneous isotropic turbulence. J. Fluid Mech. 1997, 345,

307–345. [CrossRef]
15. Kaneda, Y. Lagrangian renormalized approximation of turbulence. Fluid Dyn. Res. 2007, 39, 526–551. [CrossRef]
16. Kolmogorov, A.N. The local structure of turbulence in incompressible viscous fluid for very Large Reynolds numbers. C. R. Acad.

Sci. USSR 1941, 30, 301–305.
17. Kaneda, Y. Inertial range structure of turbulent velocity and scalar fields in a Lagrangian renormalized approximation. Phys.

Fluids 1986, 29, 701–708. [CrossRef]
18. Kaneda, Y. Inertial range of two-dimensional turbulence in a Lagrangian renormalized approximation. Phys. Fluids 1987, 30,

2672–2675. [CrossRef]
19. Gotoh, T. Passive scalar diffusion in two dimensional turbulence in the Lagrangian renormalized approximation. J. Phys. Soc. Jpn.

1989, 58, 2365–2379. [CrossRef]
20. Frisch, U.; Pomyalov, A.; Procaccia, I.; Ray, S.S. Turbulence in noninteger dimensions by fractal Fourier Decimation. Phys. Rev.

Lett. 2012, 108, 074501. [CrossRef] [PubMed]
21. Lanott, A.S.; Benzi, R.; Malapaka, S.K.; Toschi, F.; Biferale, L. Turbulence on a fractal Fourier set. Phys. Rev. Lett. 2015, 115, 264502.

[CrossRef] [PubMed]
22. Buzzicotti, M.; Biferale, L.; Frisch, U.; Ray, S.S. Intermittency in fractal Fourier hydrodynamics: Lessons from the Burgers equation.

Phys. Rev. E 2016, 93, 033109. [CrossRef] [PubMed]
23. Buzzicotti, M.; Bhatnagar, A.; Biferale, L.; Lanotte, A.S.; Ray, S.S. Lagrangian statistics for Navier–Stokes turbulence under Fourier

mode reduction: Fractal and homogeneous decimation. New J. Phys. 2016, 18, 113047. [CrossRef]
24. Ray, S.S. Non-intermittent turbulence: Lagrangian chaos and irreversibility. Phys. Rev. Fluids 2018, 3, 072601. [CrossRef]
25. Picardo, J.R.; Bhatnagar, A.; Ray, S.S. Lagrangian irreversibility and Eulerian dissipation in fully developed turbulence. Phys. Rev.

Fluids 2020, 5, 042601. [CrossRef]
26. Frisch, U. Turbulence; Cambridge University Press: Cambridge, UK, 1995.
27. Cerbus, R.T.; Chakraborty, P. The third-order structure function in two dimensions: The Rashomon effect. Phys. Fluids 2017,

29, 111110. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1017/S0022112081001705
http://dx.doi.org/10.1063/1.1761957
http://dx.doi.org/10.1017/S0022112078002153
http://dx.doi.org/10.1017/S0022112079000343
http://dx.doi.org/10.1103/PhysRevA.17.747
http://dx.doi.org/10.1103/PhysRevE.75.016310
http://dx.doi.org/10.1017/S0022112070000642
http://dx.doi.org/10.1017/jfm.2020.1173
http://dx.doi.org/10.1143/JPSJ.69.701
http://dx.doi.org/10.1017/S0022112001003949
http://dx.doi.org/10.1103/PhysRevE.63.026307
http://dx.doi.org/10.1017/S0022112097006289
http://dx.doi.org/10.1016/j.fluiddyn.2007.02.005
http://dx.doi.org/10.1063/1.865922
http://dx.doi.org/10.1063/1.866031
http://dx.doi.org/10.1143/JPSJ.58.2365
http://dx.doi.org/10.1103/PhysRevLett.108.074501
http://www.ncbi.nlm.nih.gov/pubmed/22401207
http://dx.doi.org/10.1103/PhysRevLett.115.264502
http://www.ncbi.nlm.nih.gov/pubmed/26764993
http://dx.doi.org/10.1103/PhysRevE.93.033109
http://www.ncbi.nlm.nih.gov/pubmed/27078449
http://dx.doi.org/10.1088/1367-2630/18/11/113047
http://dx.doi.org/10.1103/PhysRevFluids.3.072601
http://dx.doi.org/10.1103/PhysRevFluids.5.042601
http://dx.doi.org/10.1063/1.5003399

	Introduction
	Exact Relations
	Navier–Stokes Equation in d-Dimension with d=2,3,4 @汥瑀瑯步渠
	Spectral Relations
	Statistics in the Inertial Energy Transfer Ranges of Wave-Vector and Physical Spaces

	LRA Equations in Integer Dimension d 
	LRA Equations
	LRA Equations in the IETR

	Statistics in the IETR for 2d 3
	Discussion
	Appendix A
	References

