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Abstract: Substantial reductions in human and economic activities such as road traffic for several 

months in 2020 were one of the consequences of the Coronavirus pandemic. This unprecedented 

change in urban metabolism also affected temperature and air pollutants. This study investigates 

the effects of the first COVID-19 lockdown across 43 cities in Europe. It determines the influence of 

anthropogenic activities on nitrogen dioxide (NO2), ozone (O3), and particulate ma�er (PM2.5), as 

well as on land surface temperature (LST) and the surface urban heat island intensity (SUHII) using 

satellite, modeled, and mobility data. Our findings show that there are great temporal and spatial 

differences and distinct pa�erns between the cities regarding the magnitude of change in the varia-

bles under study. In general, the results indicate a substantial decrease in NO2 concentrations in 

most of the studied cities compared with the reference period of 2015–2019. However, reductions 

could not be a�ributed to mobility changes such as less traffic at transit stations, contrary to the 

results of previous studies. O3 levels increased during the first lockdown in accordance with the 

decreasing NO2 concentrations. The PM pa�ern was inconsistent over time and space. Similar to the 

NO2 results, no relation to the altered mobility behavior was found. No clear signal could be de-

tected for LST and the SUHII, likely due to dominating meteorological influences. 
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1. Introduction 

One of the deadliest and largest global pandemics in history, the Coronavirus disease 

2019 (COVID-19), first appeared in November 2019 in Wuhan, China [1,2]. The first case 

of COVID-19 in Europe was confirmed on 21 February 2020, in France (Spiteri et al., 2020). 

Until the end of May 2023, around 766,500,000 cases have been confirmed globally, with 

6,933,000 deaths [3]. Europe declared 276,300,000 confirmed cases. To combat the virus 

and to reduce infections and mortality, governments put in place numerous measures 

such as travel restrictions, school- and workplace closures, and even complete lockdowns 

[4,5]. In consequence, unprecedented in history, the virus reduced various human and 

economic activities for several months [6]. This exceptional situation changed the envi-

ronment in many ways. For example, changes in the anthropogenic heat release related 

to road traffic emissions and energy consumption for heating and cooling buildings mod-

ified the air- and land surface temperatures (LST) of cities [7–9]. Numerous studies inves-

tigated the LST changes during the first lockdown [9–12] and observed a general decline 

in mean LST compared with the previous years. For instance, Liu et al. [9] found that 
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during the lockdown, the surface urban heat island intensity (SUHII) in China decreased 

by 0.25 K during the day and 0.23 K at night, and the canopy-layer UHII by 0.42 K during 

the day and 0.39 K at night, respectively. In addition, regarding air pollutants, many stud-

ies have already shown that the lockdown restrictions affected anthropogenic-related air 

pollution [4,6,13–16]. This is especially important because indoor and outdoor air pollu-

tion is one of the greatest health risks for people nowadays, claiming about seven million 

lives annually [17]. During the lockdown, spatial differences in the intensity of changes 

were recorded. They are mainly explained due to different strict measures imposed by 

each government, the prevailing sources of emissions, and the weather [18]. The strongest 

air pollution drops were seen in Asia and then in Europe. Less strong drops were regis-

tered in North America and the smallest changes in Africa due to less strict measures [19]. 

In detail, looking at nitrogen dioxide (NO₂), the European Space Agency (ESA) [20] 

noted a 40–50% reduction across Asia and Europe, derived from the Sentinel-5P satellite 

between the end of January and the beginning of February 2020 compared with the same 

period in 2019. The study by Tobías et al. [21] based on ground measurements showed 

similar signals. Here, Barcelona had reductions of −45% to −51%. Both ground measure-

ments and satellite-based studies concluded that the main contributors to the NO₂ reduc-

tion are the decline of road transport and industrial emissions. However, after easing the 

restrictions, concentrations were approximately as high as before the lockdown [18]. 

Observations of fine inhalable particles with diameters of 2.5 µm and smaller (PM2.5) 

were inconsistent. For example, in Chinese cities, the drop in PM2.5 was generally greatest 

in the more industrialized cities [22]. In comparison with 2017–2019, reductions of −42% 

were noted for Wuhan [16]. In rural areas, where agriculture is the main activity, or places 

where PM is more prevalent due to natural sources, PM remained at higher levels. In ad-

dition, the strictness of the lockdown affected the PM2.5 reduction. Compared with 2019, 

reductions of −7.1 µg/m3 without strict measures and −21.1 µg/m3 with strict measures 

were reported [22]. In South European cities, there were only slight PM reductions (−8%) 

compared with those of 2017–2019 [16]. The drops were recorded especially at traffic sta-

tions and hence a�ributed to transport and fuel combustion reductions. However, in-

creased domestic heating and garden activities such as biomass burning compensated for 

those declines. 

A widespread increase was seen regardingozone (O3). For example, in Barcelona and 

Andalusia, higher O3 concentrations were reported, with +33% to +57% and +5.9%, respec-

tively, obtained from meteorological ground stations, compare with pre-covid levels 

[13,21]. Another study recorded an O3 increase of +17% compared with 2017–2019 for Eu-

rope [16]. The increase is explained due to reductions in NOx emissions resulting in lower 

O3 titration, leading to higher concentrations of O3. Further, it must be considered that O3 

formation is weather dependent, i.e., photochemical sensitive. The sunny weather in this 

period led to a higher O3 formation. 

Thus, the emergence of COVID-19 offers a unique opportunity to understand and 

quantify human impact on the environment. However, most studies focus only on indi-

vidual cities and single variables which may not be sufficiently representative, e.g., 

[10,13,22–24]. Considerably fewer studies analyzed pa�erns within a continent or at a 

global level, e.g., [16,18,25]. In fact, there is a lot of annual variation and thus differences 

between cities. Hence, cities may show significant changes in different directions. Thus, 

the main objectives of this article are first to perform a multiparameter analysis and to 

comprehensively document the spatial and temporal LST and air pollutant variations, 

namely NO2, O3, and PM2.5, during the first lockdown period for 43 cities across Europe, 

compared with the reference period in 2015–2019; and secondly, to determine the influ-

ence of altered anthropogenic activity on those variables. 
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2. Materials and Methods 

2.1. Investigation Period and Study Area 

The investigation period covers the years 2015–2020. Special a�ention was paid to the 

period from 15 March 2020 to 30 April 2020, when the strict policies of the first lockdown 

in Europe stopped various anthropogenic activities nearly completely. The same period, 

i.e., 15 March to 30 April from 2015 to 2019, serves as reference data. A five-year baseline 

was chosen to minimize the impacts of inter-annual climatic variability. The study was 

carried out across Europe. Based on the data availability, it is possible to analyze a sample 

of 43 cities in Europe. The cities can be seen in Figure 1. 

 

Figure 1. Cities under study. 

2.2. Air Pollutants under Study 

For this study, the air pollutants NO2, O3, and PM2.5 were selected. Primary pollu-

tants, i.e., directly emi�ed, such as NO2, are closely linked to human activity [15]. Thus, 

changes in air pollutant concentrations due to changes in anthropogenic behavior are ex-

pected. The main contributors to NO2 emissions in Europe are transport (39%) and energy 

production (16%), commercial, residential, and households (14%), and energy use in the 

industry (12%) [20]. Its lifetime in the atmosphere is between two to six hours in the sum-

mer daytime and 12 to 24 h during the winter and mainly depends on meteorology [26]. 

Due to its short lifetime, NO2 concentrations quickly alter when emissions change. In gen-

eral, higher concentrations are found over densely populated cities, where emissions are 

higher than in the surrounding areas [15]. 

O3 is a secondary pollutant and is thus, unlike NO2, not directly emi�ed. It photo-

chemically forms under solar radiation through chemical reactions of NOx and volatile 

organic compounds (VOCs) [18]. O3 emerges under solar radiation, thus unhealthy con-

centrations are predominantly yielded on sunny days [17]. In the winter, O3 concentra-

tions are lower when NOx levels are usually high, and thus titration is intense [18]. The 

lifetime of O3 depends on meteorology and solar radiation—mainly on the chemistry of 

O3 itself, its oxidant level, and the NOx and VOCs—but on average, its lifetime in the trop-

osphere is about 20–24 days [27]. 

PM2.5 can form through chemical reactions in the atmosphere, forming secondary 

PM. Sources can be from gaseous pollutants such as SO₂, ammonia, or NO2, especially due 

to power plants and combustion. On the other hand, it can be directly emi�ed in the form 

of dust, sea salt, smoke, trace elements, and crustal ma�er [14,17]. In Europe, the main 

anthropogenic contributors of PM2.5 are commercial, residential, and households (56%), 
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industrial processes and product use (11%), agriculture (3%), road transport (11%), and 

energy use in industry (6%) [28]. 

2.3. Data 

This study uses the LST data product from Terra and Aqua MODIS (MxD11A1 v6.1). 

The products are available from LP DAAC as gridded files. Its spatial resolution is 1 km. 

The sun-synchronous satellites traverse the equator at 10:30 and 13:30, respectively, local 

solar time, in the descending orbit and at 22:30 and 01:30 in the ascending orbit. The 

MxD11A1 data product provides the daily LST during the day- and night-time. The daily 

LST data are processed as explained in Sismanidis et al. [29], and the LST mean is calcu-

lated for each city (separately for the urban and the surrounding rural area). 

From the LST, the SUHII is calculated by subtracting the rural arithmetic mean from 

the urban. The aim of calculating the SUHII is to reduce the noise and the existing varia-

tion in the data and make the signal from the changed human activities more pronounced. 

Because the diurnal and seasonal temperature cycle is higher than the expected magni-

tude of temperature differences between the lockdown period and the non-lockdown pe-

riod, we normalized these differences to enhance the signal corresponding to the changed 

human activities. It must be noted that the SUHII also depends on the weather. However, 

by calculating the SUHII temperature variabilities throughout different years, the inter-

annual variabilities and the magnitude of variations are reduced [30]. 

The air pollutant concentrations are from the Copernicus Atmosphere Monitoring 

Service (CAMS). The data assimilation embeds satellite and ground-based/in-situ obser-

vations and numerical models. The used product is the CAMS daily regional analysis. 

Here, one daily average value for each air pollutant is given per major European city [31]. 

Mobility data from Google’s COVID-19 Community Mobility Reports are used to ex-

amine how the number of visits to specific types of places changed during the COVID-19 

lockdown in each city. We also use these data as a proxy for anthropogenic activity. There 

are six types of places, namely residences, transit stations, retail and recreation, grocery 

and pharmacy, workplaces, and parks. For residences, the percent change of average time 

spent at home is provided. The percentual change of one day for a specific place is related 

to a reference value for the respective weekday. The baseline data are the median value 

for each category and each weekday during the five-week period between January 3 and 

February 6 in 2020 before the lockdowns started. Thus, there are seven different reference 

values within a week [32]. 

2.4. Statistical Analysis 

To quantify the changes between the lockdown and pre-COVID period, the data are 

split into two groups. The first group corresponds to the reference period (15 March to 30 

April 2015–2019) and the second to the lockdown period of the first COVID-19 pandemic 

wave (15 March to 30 April 2020). For each variable, the percentage and the absolute dif-

ference between the two groups are computed. 

To assess if the differences between the two groups are statistically significant, and 

to check whether the pre-COVID and lockdown values come from the same distribution 

a two-sample one-sided, a non-parametric Kolmogorov–Smirnov hypothesis test (KS-test) 

was carried out [33]. The significance level is α = 0.05 and the test hypotheses for all vari-

ables under study but ozone are the following: 

 H0: the two distributions are identical, F(x) ≥ G(x) for all x, where F(x) is the lockdown 

and G(x) is the reference period. 

 HA: they do not have the same distribution; the lockdown distributions are shifted 

toward lower values: F(x) < G(x) for at least one x. 

Hypotheses for ozone: 

 H0, ozone: the two distributions are identical, F(x) ≤ G(x) for all x, where F(x) is the 

lockdown and G(x) is the reference period. 
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 HA, ozone: they do not have the same distribution; the lockdown distributions are 

shifted toward higher values: F(x) > G(x) for at least one x. 

3. Results 

3.1. Multiparameter Overview 

Figure 2 shows the results of the individual variables of the KS test combined with 

the relative change in 2020 compared with the reference period. For the KS test, in most 

cases, the null hypothesis can be rejected, i.e., the LST, NO2, and O3 differences between 

the lockdown and reference periods are statistically significant (shown with a circle). If 

there is no statistically significant change in the variable, this is indicated by a rhombus as 

a symbol. This is the case in Eastern Europe for the O3 values and the LST night-time 

values. For PM, the results are variable with no clear signal regarding the spatial distribu-

tion. 

 

 

 

Figure 2. Relative changes in 2020 compared with the reference period of 2015–2019 for NO2, O3, 

PM2.5, and LST combined with the KS test results. The circle means that there is a statistical signifi-

cance (reject H0), i.e., the variable significantly altered during the lockdown period compared with 

the reference period. The rhomb indicates there is no significant change (accept H0) according to the 

KS test. 

In general, a predominant decline in ground-level NO2 was recorded. Although most 

of the cities showed the same signals, the magnitude of change differed city-wise. The 

three cities with the largest percentual NO2 reductions are Luxembourg (−54.0% relative 

change, −12.3 µg/m3 absolute change), Riga (−50.7%, −5.1 µg/m3), and Belgrade (−50.4%, 

−6.8 µg/m3). Hamburg (+10.5%, +1.1 µg/m3), Tirana (+18.4%, +0.7 µg/m3), and Naples 



Atmosphere 2023, 14, 1025 6 of 20 
 

 

(+11.9%, +1.7 µg/m3) show the largest positive anomalies. For O3, a widespread increase is 

evident. The largest positive anomalies are found in Luxembourg (+41.1%, +20.5 µg/m3), 

Cologne (+35%, +15.7 µg/m3), and Paris (+27.1%, +13.1 µg/m3). In contrast to the other cit-

ies, cities in the Iberian Peninsula, Italy, and southern France show lower O3 concentra-

tions in 2020. The greatest changes correspond to Naples (−12.1%, −8.9 µg/m3), Valencia 

(−10.3%, −7.5 µg/m3), and Madrid (7.2%, −5.0 µg/m3). PM2.5 anomalies are inconsistent over 

space. They predominantly decreased in Northern Europe. Strongest reductions can be 

observed in Tallin (−38.4%, −2.9 µg/m3), Vilnius (−37.4%, −4.6 µg/m3), and Oslo (−28.8%, 

−2.8 µg/m3). The highest increases were observed for PM2.5 in Dublin (+43.9%, +1.5 µg/m3), 

Turin (+31.4%, +5.5 µg/m3), and Milan (+19.7%, +4.1 µg/m3). 

3.2. Nitrogen Dioxide 

Figure 3 shows the change in the distribution of the daily NO2 levels averaged for all 

cities. Here, it is apparent that the mean of the NO2 concentration during the lockdown in 

2020 (dark red line) and the binned observations for the individual concentrations are left-

shifted, which means that they have decreased. Furthermore, the density is reduced as 

well, which underlines the fla�er continuous density curve for 2020. The density is calcu-

lated by dividing the frequency by the class width. Thus, it represents the frequency per 

unit for the data in each class. At this point, it must be emphasized that the individual 

cities differ a lot. For some cities (such as Barcelona), the change is high, and in others 

(such as Vale�a), the change is low (Figure 4). 

 

Figure 3. Distribution of the NO2 levels [µg/m³] during lockdown and reference period averaged 

over all cities. The vertical line corresponds to the mean of the period, and the columns to the binned 

observations. 

  
(a) (b) 

Figure 4. Distribution of the daily NO2 levels [µg/m³] during lockdown and reference period for (a) 

Vale�a and for (b) Barcelona. 

The anomalies over the curfew period are shown in more detail in Figure 5. Here, the 

differences for each day and city are shown compared with the values for each city in the 
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reference period. In general, the changes in the Eastern European and Scandinavian cities 

are rather small. It is noticeable that there is almost no NO2 concentration difference in 

Sarajevo. In contrast, much lower NO2 concentrations in 2020 (i.e., a strong negative anom-

aly) can be seen in Athens and Luxembourg. Some cities show inconsistent behavior, such 

as Brussels, London, Milan, or Paris. On the other hand, Hamburg, Tirana, and Naples 

predominantly show a positive change in NO2 concentrations compared with the refer-

ence period. Considering all cities, strong concentration declines in 2020 from day 81 of 

the year (22 March) approximately until day 91 (1 April) are noticeable. Thereon, several 

cities show concentration increases compared with the reference period, interrupted again 

by negative anomalies during days 104–106 of the year (14–16 April). 

 

Figure 5. NO2 anomalies [µg/m3] (15 March–30 April 2020 vs. 15 March–30 April 2015–2019). 

Looking at the average weekly pa�ern of all cities (Figure 6), the absolute NO2 con-

centrations are not only lower but the pa�ern itself changed. In general, measured NO2 

concentrations increased, peaking on Fridays, and decreased towards the weekend. A 

comparatively stronger increase in concentrations from Monday to Friday can be seen in 

2020 (~3.5 µg/m3 in 2020 vs. ~2 µg/m3 in the reference period). On Sundays and Mondays, 

the concentrations are the same in 2020. In contrast, in the reference period, higher con-

centrations on Mondays compared with Sundays are observed. 
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Figure 6. Weekly mean NO2 [µg/m3] for all cities during 15 March–30 April in 2020 and the refer-

ence period. 

3.3. Ozone 

Examining the O3 anomalies over the whole period, lower concentrations seem to 

prevail at the beginning of the lockdown. Around days 80 to 90 of the year (22 March–31 

March), however, almost all cities show an increase in O3 concentration (Figure 7). Very 

striking is the strong increase in Athens, Budapest, Cologne, and Luxembourg. This is fol-

lowed by a phase that tends to have less O3 in 2020 that lasts until day 95 (5 April). Until 

day 108 (18 April), most cities show higher O3 concentrations than in the reference period. 

The cities Lyon, Marseille, Naples, Rome, Madrid, and Valencia show strong negative 

anomalies, especially towards the end of the study period from day 109 (19 April). 

 

Figure 7. Ozone anomalies [µg/m3] (15 March–30 April 2020 vs. 15 March–30 April 2015–2019). 

In addition to the fact that surface O3 concentrations are mostly higher in 2020, con-

centrations tend to be higher on weekends (Figure 8). The pa�ern itself in 2020 compared 

with the reference period is similar. However, there is a smaller concentration increase in 

2020 (~1.9 µg/m3) towards the weekend than in 2015–2019 (~4.2 µg/m3). In addition, O3 

concentrations decrease in the reference period from Monday to Friday, whereas for 2020, 

they do so only until Wednesday. Further, the pa�ern is inverse in comparison to NO2. 

 

Figure 8. Weekly mean ozone levels [µg/m3] for all cities 15 March–30 April in 2020 and 2015–2019. 
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3.4. Particulate Ma�er 

PM2.5 shows only a small shift in the mean concentration (Figure 9). Looking at the 

histograms, the bins are distributed in a greater range in 2020. Thus, both observations 

with higher and also with lower daily values are recorded in 2020, even though it has a 

comparatively lower density curve. The anomalies are not only inconsistent over space 

but also over time (Figure 10). However, it is noticeable that between days 77 and 80 (18 

March–21 March), in some cities, there was a simultaneous increase in PM levels in 2020, 

followed by a drop until approximately day 86 (27 March). From day 87, with a few ex-

ceptions (e.g., Vale�a, Naples), there was a positive anomaly that lasted about three days. 

 

Figure 9. Distribution of the daily PM2.5 levels [µg/m³] averaged over all cities during lockdown and 

reference period. 

 

Figure 10. PM2.5 anomalies [µg/m3] (15 March–30 April 2020 vs. 15 March–30 April 2015–2019). 
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3.5. Land Surface Temperature 

For both LST and SUHII, there is no clear signal of change (Figure 11). In total, there 

was only a very slight LST and SUHII reduction. Uncorrected weather data show both 

higher and lower LST in 2020 compared with the reference period and strongly diverge 

temporally and spatially (Figure 12). 

 
(a) (b) 

Figure 11. Distribution of the (a) LST [°C] and (b) SUHII [K] averaged over all cities during lock-

down and reference period. 

 
(a) (b) 

Figure 12. (a) LST [°C] and (b) SUHII [K] anomalies (15 March–30 April 2020 vs. 15 March–30 

April 2015–2019). 

3.6. Mobility Data 

Figure 13 shows the percentual change of anthropogenic mobility during the study 

period (red box: 15 March to 30 April 2020) and the time after the first lockdown in Madrid 

and Stockholm. The cities of Madrid and Stockholm were selected as examples of a strict 

lockdown and a lockdown with very few ordinances, respectively. Spain and Italy, in gen-

eral, had the most stringent measures, while the government of Sweden imposed almost 

no restrictions [34]. Scandinavian and Baltic cities had less strict measures, which was also 
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the case in Germany, where schools have been closed, but the industrial sector largely 

remained open [35]. 

 

 

Figure 13. Percentual mobility change from the baseline, Madrid, and Stockholm during 15 March–

1 August 2020. 

After the restrictions were imposed in mid-March, mobility was clearly reduced. All 

categories were visited less, except for “residential” because more time was spent at home. 

In general, the greatest changes can be observed in the categories of retail, recreation, and 

transit stations, and the least in parks, grocery, and pharmacy. After easing the re-

strictions, mobility gradually increased again, with parks being visited more than usual. 

It must be stated that the baseline is in February and that fewer parks are visited in winter 

than in summer anyway. However, mobility behavior has still not returned to the levels 

seen in the summer of 2020. Furthermore, the data show a weekly pa�ern. People were 

outside more and less at home on weekends but in total less than usual. Regarding the 

workplaces and transit stations, more people worked from home and did not use public 

transport. In contrast, on weekends, most of the employees do not work and changes are 

rather marginal. A detailed insight into how each mobility category changed in the indi-

vidual cities can be seen in Appendix A. 

Comparing the two cities, in Madrid, mobility was much more restricted, public life 

almost came to a halt, and thus mobility data show a greater decline. Transit stations, park 

visits, and retail and recreation had a change of almost −90%. Furthermore, significantly 

more time was spent at home. Buying groceries was the only allowed opportunity to leave 

the house [34]. In contrast, in Stockholm, the surplus of time spent at home was signifi-

cantly lower (~+20%) than in Madrid (~+35%). In addition, changes at transit stations and 

workplaces were only about 50%. From the end of March and ongoing, parks were visited 

more than during the baseline period, reaching a maximum of +75%. At the beginning of 

June, the visits to parks considerably increased compared with the baseline in Stockholm 

(the large daily variations are because park visits are influenced by the weather condi-

tions). Thus, the two exemplary selected cities clearly illustrate how different strictness 

levels are reflected in changes in mobility behavior. 

In Figure 14, we examine how daily mobility is related to the variables under study, 

where each point corresponds to the value of one city on one day. As an example, the 
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change in the number of visitors at transit stations is selected. The other categories follow 

the same pa�ern, except for “residential”, which shows an inversed pa�ern (not shown). 

The data distribution of the change in visitors at transit stations and the absolute NO2 

values is clearly not linearly correlated (Figure 14a). Furthermore, it is useful to look not 

only at the absolute NO2 values, but also at the change in NO2 concentrations compared 

with the change at transit stations. The representation of the two allows inferences about 

how the NO2 values change related to the change in the number of visitors at transit sta-

tions. In Figure 14b, it can be seen that there were fewer people at transit stations and that 

the NO2 concentration has predominantly decreased during COVID-19. More im-

portantly, it becomes evident that the change in visitors at transit stations has no visible 

influence on the NO2 change. Overall, we could not establish a clear relationship between 

mobility and the variables under study. 

  
(a) (b) 

Figure 14. (a) Absolute NO2 concentrations vs. percentual change at the transit station during the 

lockdown in 2020; (b) percentual change of NO2 vs. percentual change at the transit station for the 

lockdown period. 

4. Discussion 

4.1. Nitrogen Dioxide 

In agreement with many other studies [15,19,21,36,37], strong reductions in NO2 lev-

els in most European urban areas are observed. Regarding the weekly pa�ern of air pol-

lutants, several studies depicted the same results as stated here. Masiol et al. [38] explain 

the pa�ern by arguing that less NO2 is emi�ed on weekends due to the fact that fewer 

people drive to work, and that heavy-duty vehicles are not allowed to drive on Sundays 

in most European cities. The pollutants accumulate within the week and reach their max-

imum on Friday because commuter traffic is reduced on weekends. For a distinct a�ribu-

tion to lockdown effects, improvements in air quality due to implemented measures 

should be taken into account. Some trend analysis of the five-year reference period of each 

city resulted in inconclusive results due to the high inter-annual variability and the com-

parably short period, and thus was not suitable to provide a consistent and robust esti-

mate of the expected 2020 NO2 baseline concentrations for each city. The aggregated 

trend-based results paint a much clearer picture and agree with the mean-based analysis 

employed by this work. Overall, they too suggest that the NO2 concentration decreased 

but by a smaller magnitude (2.0 µg/m³ instead of 3.6 µg/m³). Thus, follow up studies 

should include post-2020 data to provide a be�er trend estimation and a�ribution. More-

over, weather effects should be eliminated, e.g., by using neural networks as suggested by 

[39]. Additional evidence for a lockdown-related signal is provided by the weekly cycle. 

The fact that NO2 concentrations are very similar on Mondays and Sundays in 2020 sug-

gests that fewer people drove to work during the lockdown. On the contrary, under nor-

mal conditions, more emissions are emi�ed on Mondays than on weekends. 
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4.2. Ozone 

The increase in O3 is related to the strong decline in NO2, a precursor of O3. Besides 

meteorological conditions, the ratio of NO2 and VOCs determines ozone production. If 

NO2 levels decrease, the VOC/NOx ratio is high, chemical titration with NO is reduced, 

and O3 levels increase. However, the response of O3 formation to changes in the VOC/NOx 

ratio is nonlinear [14,23,36,40]. The study of Shi et al. [40] states that reductions in traffic-

related NO emissions lead to increases in O3 concentrations during the daytime. Further, 

they emphasize that sunny weather during the lockdown enhances the oxidizing process 

and leads to higher photochemical production of O3. However, possible divergences can 

be explained by the fact that O3 is regionally well-mixed and can be transported down-

wind, which can dominate local signals [36]. Thus, there is a high probability that the ob-

served reductions of O3 in some cities such as Madrid, Valencia, or Naples can be at-

tributed to meteorological processes. 

The weekly O3 pa�ern can be indirectly a�ributed to human metabolism because of 

its chemical relationship to NO2. O3 shows the inverse pa�ern of NO2, i.e., an increase on 

weekends. This increase is observed in large parts of the world [16,41,42] and can be asso-

ciated with a reduction in traffic, i.e., NO2 emissions, followed by a reduced titration of O3 

[13,21]. However, in 2020 the changed human metabolism influenced the “business as 

usual” pa�ern and caused changes in the weekly variation of O3. 

4.3. Particulate Ma�er 

PM surface concentration changes are weak and inconsistent with no clear increase 

or decrease signals even within one city over the study period. Several studies partly cor-

roborate these results and the lack of a geographical homogenous signal [36,40]. Strong 

variations can be expected because PM has various emission sources [43]; hence, no clear 

relationship between PM and traffic is found. On the one hand, reductions in primary 

emissions of PM and its precursors such as NO2 and VOCs emi�ed—for example from 

cars—led to declines. At the same time, the emissions from sectors such as agriculture, 

e.g., fertilizing, biomass combustion, waste burning, construction works, and industry, 

were not strongly affected by those measures. Especially in Western Europe, PM levels 

were high in early spring due to fertilizer spreading [36,44]. Furthermore, it must be con-

sidered that the lockdown took place in early spring, when air temperatures were still 

cool, and residential heating was necessary. With the surplus of time spent at home, heat-

ing in houses increased. In particular, wood burner stoves contribute to high PM levels 

[43,44]. Another reason for inconsistent signals in PM levels are local and regional mete-

orological conditions. PM levels can be influenced by temperature, humidity, precipita-

tion, vertical mixing, and advection [25]. Moreover, regional and long-range air mass 

transport can significantly affect local PM concentrations positively or negatively [44]. For 

example, reductions in PM levels from road traffic can be overwhelmed by PM air mass 

transportation from more polluted regions [40]. All these factors counteracted the reduc-

tions in traffic and contributed to inconsistent signals. Finally, traffic-related measures to 

reduce harmful PM in cities had already been implemented within the EU before the lock-

down started [43]. The fact that no strong changes in the PM levels were recorded can 

therefore also be due to previously taken measures that aimed to improve the air quality 

over the years. 

4.4. Relationship of the Air Quality Variables and LST with Mobility Data 

In contrast with other studies [45], we were not able to observe a clear relationship 

between the air pollutants, the LST, and the mobility variables, even though other works 

clearly a�ribute the NO2 declines to traffic depletion due to the stay-at-home order 

[14,15,46]. The transport sector is the largest contributor to NO2 emissions in Europe [28]. 

Thus, changes in surface NO2 levels serve as an indicator of altered human activities and 

local mobility. However, the results of this study indicate that the change in visitors at 
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transit stations has no or only a low influence on NO2 emissions. Even though the results 

show that the number of visitors to transit stations has fallen significantly, this does not 

necessarily imply that fewer buses or trains operated, because timetables were likely 

maintained. This is also supported by Ropkins and Tate [47], which suggests that public 

transport in the UK, especially buses, did not stop during the lockdown. Therefore, air 

pollutants from this source remained close to pre COVID-19 levels. Nevertheless, the fact 

that a general decline in NO2 values was recorded may be due to great reductions in traffic 

with privately-owned cars and is not related to public transport. However, the mobility 

data only consider transit stations and public transport, not individual car driving. 

The PM also shows a weak relationship with the mobility data. This is in line with 

the findings of Efe [48]. Even though some studies showed positive correlations between 

mobility and PM, a�ributing the drop in PM to traffic restrictions, e.g., [49], several studies 

obtained similar pa�erns to the ones observed here. For example, the study of Munir et 

al. [44] shows the same negative, weak correlation with PM2.5, although they only consid-

ered Northern England. They assumed that PM concentrations are primarily regulated by 

the weather and regional PM transportation than by traffic. Furthermore, in a dispersion 

modeling experiment in Sheffield, it becomes clear that PM emissions are mainly con-

trolled by point sources and not by traffic [50]. The lockdown took place in spring when 

most households still used heating. Household heating is a substantial contributor to PM 

levels. This is especially relevant considering that people were ordered to stay at home as 

much as possible to combat the virus [36]. Shi et al. [40] illustrate in their study that PM2.5 

shows a complex response to the lockdown measures. Road traffic makes a rather small 

contribution to PM. In contrast, secondary sources such as residential solid fuel use and 

industrial activity have a larger impact on PM levels. In addition, non-lockdown-affected 

sectors such as agriculture and livestock contribute to PM emissions [21,36]. Thus, changes 

in people’s mobility behavior do not always lead to reduced PM levels, because traffic is 

not the sole origin of PM. 

Finally, it must be emphasized that there is no simple monocausality between air 

pollutants, temperature, and human mobility. There are several factors that have not been 

highlighted in this work such as meteorological conditions and chemical-physical reac-

tions that influence the air pollutant levels. In fact, it would be too trivial to get a linear 

relationship between temperatures and air pollutants and the change in human activities, 

which depend very much on atmospheric conditions. Because the cities under study have 

very different microclimates, a simple derivation and inference to a single component are 

not possible. 

Thus, it is crucial to include meteorological data in future analyses. Especially for 

temperature changes but also for air pollutant changes—in particular, O3—there remain 

open questions due to a dominating weather effect and the complexity of other meteoro-

logical and chemical factors, which must be revised in future work. 

5. Conclusions 

We investigated the changes and the relationships of air pollutants and LST with data 

describing the human activity in 43 European cities in the lockdown year of 2020 in com-

parison with the reference period 2015–2019. Our findings show that there are considera-

ble spatial and temporal differences between cities and spatial pa�erns regarding the mag-

nitude and even the direction of change. Coinciding with previous studies, the results 

depict reductions in anthropogenic activities such as visiting parks, transit stations, work-

places, or retail and recreation during the lockdown. Simultaneously, NO2 concentrations 

declined as much as −54% (in Luxemburg) compared with the reference period. In con-

trast, ozone levels increased, with the greatest relative changes also in Luxembourg 

(+41.1%). The O3 increase is a�ributed to a lower titration of O3 by NO due to the substan-

tial decline in local NOx emissions. LST and PM spatially and temporally varied. Within 

our analysis, we depicted that some variables are more closely linked to human activity 

than others; the most pronounced is NO2. Here, especially human activity can be seen in 
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the weekly cycle. The significant decreases in most cities are likely related to the lock-

down, but for more specific a�ribution, additional analysis on trends and weather influ-

ences is envisaged. However, we were not able to a�ribute the changes to specific changes 

in mobility behavior. Many previous studies suggested that restrictions have a significant 

impact on anthropogenic activities and, correspondingly, on urban temperatures and air 

pollutants. Owing to the complexity of meteorological factors, open questions remain, es-

pecially regarding the change in SUHII and LST. Future work should aim to accurately 

capture the influence of prevailing weather pa�erns on temperature changes. 
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Appendix A 

Figures A1–A5 allow more detailed insight into the development of the alterations to 

Google’s COVID-19 Community Mobility Reports categories. Regarding workplace 

change, Figure A1 underlines that much fewer people drove to their workplaces. Further, 

it clearly emphasizes a weekend pa�ern, when fewer people work, leading to lesser 

changes. Equally, Figure A2 shows that more time was spent at home during the week. 

The two pa�erns are very similar but inverse to each other. The cities that had the largest 

negative changes in the workplace have the largest increase (positive change) in time 

spent at home. German cities, especially Cologne and Munich, had a comparatively lower 

change. This suggests that fewer citizens were in a home office but have continued to drive 

to work. In Germany, schools have been closed, but the industrial sector has remained 

largely open [35]. In addition, the Scandinavian and Baltic cities also show smaller 

changes. The change in French, Italian, and Spanish cities is particularly striking. They 

had the greatest negative alteration on workplace changes and the greatest positive on 

time spent at home. This underlines the severity of the enacted lockdown measures, where 

citizens were not allowed to drive to work and had to work from home. The two other 

mobility classes also fit in the spatial pa�ern of alterations. However, the intensities of 

change slightly differ. Temporally, the weekend–weekday pa�ern is not as pronounced as 

in Figures A1 and A2. For the change of visitors to groceries and pharmacy (Figure A5), a 

weekly pa�ern is evident, caused by shops being closed on Sundays. In agreement with 

the above, German and North European cities showed minor declines. The strong de-

crease around days-of-year 102 and 103 coincides with the Eastern holidays when stores 

are closed. 
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Figure A1. Percentual workplace change compared from the reference period in 2015–2019 to the 

first lockdown in 2020. 

 

Figure A2. Percentual change of time spent at home compared from the reference period in 2015–

2019 to the first lockdown in 2020. 
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Figure A3. Percentual change of visitors at transit stations compared from the reference period in 

2015–2019 to the first lockdown in 2020. 

 

Figure A4. Percentual change of visitors to retail and recreation compared from the reference period 

in 2015–2019 to the first lockdown in 2020. 
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Figure A5. Percentual change of visitors to retail and recreation compared from the reference period 

in 2015–2019 to the first lockdown in 2020. 

References 

1. World Health Organization. Report of the WHO—China Joint Mission on Coronavirus Disease 2019 (COVID-19). Available 

online: h�ps://www.who.int/publications-detail-redirect/report-of-the-who-china-joint-mission-on-coronavirus-disease-2019-

(covid-19) (accessed on 18 August 2022). 

2. World Health Organization. Coronavirus. Available online: h�ps://www.who.int/health-topics/coronavirus (accessed on 10 No-

vember 2022). 

3. World Health Organization. WHO Coronavirus (COVID-19) Dashboard. Available online: h�ps://covid19.who.int (accessed on 

18 August 2022). 

4. Le Quéré, C.; Jackson, R.B.; Jones, M.W.; Smith, A.J.P.; Abernethy, S.; Andrew, R.M.; De-Gol, A.J.; Willis, D.R.; Shan, Y.; Canadell, 

J.G.; et al. Temporary Reduction in Daily Global CO2 Emissions during the COVID-19 Forced Confinement. Nat. Clim. Change 

2020, 10, 647–653. h�ps://doi.org/10.1038/s41558-020-0797-x. 

5. Anania, J.; Mello, B.A.; de Angrist, N.; Barnes, R.; Boby, T.; Cavalieri, A.; Edwards, B.; Webster, S.; Ellen, L.; Furst, R.; et al. 

Variation in Government Responses to COVID-19; Blavatnik School Government Work Paper; University of Oxford: Oxford, UK, 

2022. 

6. Metya, A.; Dagupta, P.; Halder, S.; Chakraborty, S.; Tiwari, Y.K. COVID-19 Lockdowns Improve Air Quality in the South-East 

Asian Regions, as Seen by the Remote Sensing Satellites. Aerosol Air Qual. Res. 2020, 20, 1772–1782. 

h�ps://doi.org/10.4209/aaqr.2020.05.0240. 

7. Jin, M.; Dickinson, R.E. Land Surface Skin Temperature Climatology: Benefi�ing from the Strengths of Satellite Observations. 

Environ. Res. Le�. 2010, 5, 044004. h�ps://doi.org/10.1088/1748-9326/5/4/044004. 

8. Oke, T.R.; Mills, G.; Christen, A.; Voogt, J.A. Urban Climates; Oke, T.R., Ed.; Cambridge University Press: Cambridge, UK, 2017; 

ISBN 978-0-521-84950-0. 

9. Liu, Z.; Lai, J.; Zhan, W.; Bechtel, B.; Voogt, J.; Quan, J.; Hu, L.; Fu, P.; Huang, F.; Li, L.; et al. Urban Heat Islands Significantly 

Reduced by COVID-19 Lockdown. Geophys. Res. Le�. 2022, 49, e2021GL096842. h�ps://doi.org/10.1029/2021gl096842. 

10. Hadibasyir, H.Z.; Rijal, S.S.; Sari, D.R. Comparison of Land Surface Temperature during and before the Emergence of COVID-

19 Using Modis Imagery in Wuhan City, China. Forum Geogr. 2020, 34, 1–15. h�ps://doi.org/10.23917/forgeo.v34i1.10862. 

11. Parida, B.R.; Bar, S.; Kaskaoutis, D.; Pandey, A.C.; Polade, S.D.; Goswami, S. Impact of COVID-19 Induced Lockdown on Land 

Surface Temperature, Aerosol, and Urban Heat in Europe and North America. Sustain. Cities Soc. 2021, 75, 103336. 

h�ps://doi.org/10.1016/j.scs.2021.103336. 

12. Taoufik, M.; Laghlimi, M.; Fekri, A. Comparison of Land Surface Temperature Before, During and After the COVID-19 Lock-

down Using Landsat Imagery: A Case Study of Casablanca City, Morocco. Geomat. Environ. Eng. 2021, 15, 105–120. 

h�ps://doi.org/10.7494/geom.2021.15.2.105. 



Atmosphere 2023, 14, 1025 19 of 20 
 

 

13. García, D.H.; Díaz, J.A. Impacts of the COVID-19 Confinement on Air Quality, the Land Surface Temperature and the Urban 

Heat Island in Eight Cities of Andalusia (Spain). Remote Sens. Appl. Soc. Environ. 2022, 25, 100667. 

h�ps://doi.org/10.1016/j.rsase.2021.100667. 

14. Adam, M.G.; Tran, P.T.; Balasubramanian, R. Air Quality Changes in Cities during the COVID-19 Lockdown: A Critical Review. 

Atmos. Res. 2021, 264, 105823. h�ps://doi.org/10.1016/j.atmosres.2021.105823. 

15. Barré, J.; Petetin, H.; Cole�e, A.; Guevara, M.; Peuch, V.-H.; Rouil, L.; Engelen, R.; Inness, A.; Flemming, J.; García-Pando, C.P.; 

et al. Estimating Lockdown-Induced European NO2 Changes Using Satellite and Surface Observations and Air Quality Models. 

Atmos. Chem. Phys. 2021, 21, 7373–7394. h�ps://doi.org/10.5194/acp-21-7373-2021. 

16. Sicard, P.; De Marco, A.; Agathokleous, E.; Feng, Z.; Xu, X.; Paole�i, E.; Rodriguez, J.J.D.; Calatayud, V. Amplified Ozone Pollu-

tion in Cities during the COVID-19 Lockdown. Sci. Total Environ. 2020, 735, 139542. h�ps://doi.org/10.1016/j.sci-

totenv.2020.139542. 

17. NASA. Earth Science Data Systems Health and Air Quality Data Pathfinder. Available online: 

h�p://www.earthdata.nasa.gov/learn/pathfinders/health-and-air-quality-data-pathfinder (accessed on 18 August 2022). 

18. Wijnands, J.S.; Nice, K.A.; Seneviratne, S.; Thompson, J.; Stevenson, M. The Impact of the COVID-19 Pandemic on Air Pollution: 

A Global Assessment Using Machine Learning Techniques. Atmos. Pollut. Res. 2022, 13, 101438. 

h�ps://doi.org/10.1016/j.apr.2022.101438. 

19. Zhang, Z.; Arshad, A.; Zhang, C.; Hussain, S.; Li, W. Unprecedented Temporary Reduction in Global Air Pollution Associated 

with COVID-19 Forced Confinement: A Continental and City Scale Analysis. Remote Sens. 2020, 12, 2420. 

h�ps://doi.org/10.3390/rs12152420. 

20. European Space Agency. Air Pollution Remains Low as Europeans Stay at Home. Available online: h�ps://www.esa.int/Appli-

cations/Observing_the_Earth/Copernicus/Sentinel-5P/Air_pollution_remains_low_as_Europeans_stay_at_home (accessed on 

18 August 2022). 

21. Tobías, A.; Carnerero, C.; Reche, C.; Massagué, J.; Via, M.; Minguillón, M.C.; Alastuey, A.; Querol, X. Changes in Air Quality 

during the Lockdown in Barcelona (Spain) One Month into the SARS-CoV-2 Epidemic. Sci. Total Environ. 2020, 726, 138540. 

h�ps://doi.org/10.1016/j.scitotenv.2020.138540. 

22. He, G.; Pan, Y.; Tanaka, T. The Short-Term Impacts of COVID-19 Lockdown on Urban Air Pollution in China. Nat. Sustain. 2020, 

3, 1005–1011. h�ps://doi.org/10.1038/s41893-020-0581-y. 

23. Nichol, J.E.; Bilal, M.; Ali, A.; Qiu, Z. Air Pollution Scenario over China during COVID-19. Remote Sens. 2020, 12, 2100. 

h�ps://doi.org/10.3390/rs12132100. 

24. Alqasemi, A.S.; Hereher, M.E.; Kaplan, G.; Al-Quraishi, A.M.F.; Saibi, H. Impact of COVID-19 Lockdown upon the Air Quality 

and Surface Urban Heat Island Intensity over the United Arab Emirates. Sci. Total Environ. 2021, 767, 144330. 

h�ps://doi.org/10.1016/j.scitotenv.2020.144330. 

25. Venter, Z.S.; Aunan, K.; Chowdhury, S.; Lelieveld, J. COVID-19 Lockdowns Cause Global Air Pollution Declines. Proc. Natl. 

Acad. Sci. USA 2020, 117, 18984–18990. h�ps://doi.org/10.1073/pnas.2006853117. 

26. Beirle, S.; Boersma, K.F.; Pla�, U.; Lawrence, M.G.; Wagner, T. Megacity Emissions and Lifetimes of Nitrogen Oxides Probed 

from Space. Science 2011, 333, 1737–1739. h�ps://doi.org/10.1126/science.1207824. 

27. Elshorbany, Y.F.; Kleffmann, J.; Kurtenbach, R.; Rubio, M.; Lissi, E.; Villena, G.; Gramsch, E.; Rickard, R.; Pilling, M.J.; Wiesen, 

P. Summertime Photochemical Ozone Formation in Santiago, Chile. Atmos. Environ. 2009, 43, 6398–6407. 

h�ps://doi.org/10.1016/j.atmosenv.2009.08.047. 

28. European Environment Agency. European Union Emission Inventory Report 1990–2018 under the UNECE Convention on Long-Range 

Transboundary Air Pollution (LRTAP); European Environment Agency Publications Office: Copenhagen, Denmark, 2020. 

29. Sismanidis, P.; Bechtel, B.; Perry, M.; Ghent, D. The Seasonality of Surface Urban Heat Islands across Climates. Remote Sens. 

2022, 14, 2318. h�ps://doi.org/10.3390/rs14102318. 

30. Stewart, I.D.; Oke, T.R. Local Climate Zones for Urban Temperature Studies. Bull. Am. Meteorol. Soc. 2012, 93, 1879–1900. 

h�ps://doi.org/10.1175/bams-d-11-00019.1. 

31. CAMS. European Air Quality Information in Support of the COVID-19 Crisis|Copernicus. Available online: h�ps://atmos-

phere.copernicus.eu/european-air-quality-information-support-covid-19-crisis (accessed on 18 August 2022). 

32. Google LLC. COVID-19 Community Mobility Report. Available online: h�ps://www.google.com/covid19/mobility?hl=en-GB 

(accessed on 18 August 2022). 

33. Gao, X. Nonparametric Statistics. In Encyclopedia of Research Design; Salkind, N.J., Ed.; SAGE Publications Ltd.: Thousand Oaks, 

CA, USA, 2010; pp. 915–920. 

34. Codagnone, C.; Bogliacino, F.; Gómez, C.; Folkvord, F.; Liva, G.; Charris, R.; Montealegre, F.; Villanueva, F.L.; Veltri, G.A. Re-

starting “Normal” Life after COVID-19 and the Lockdown: Evidence from Spain, the United Kingdom, and Italy. Soc. Indic. Res. 

2021, 158, 241–265. h�ps://doi.org/10.1007/s11205-021-02697-5. 

35. Fairless, T. How Germany Kept Its Factories Open during the Pandemic. The Wall Street Journal, 6 May 2020. Available online: 

h�ps://br.advfn.com/noticias/DJN/2020/artigo/82392711 (accessed on 27 April 2023). 

36. Menut, L.; Bessagnet, B.; Siour, G.; Mailler, S.; Pennel, R.; Cholakian, A. Impact of Lockdown Measures to Combat COVID-19 

on Air Quality over Western Europe. Sci. Total Environ. 2020, 741, 140426. h�ps://doi.org/10.1016/j.scitotenv.2020.140426. 

37. Rossi, R.; Ceccato, R.; Gastaldi, M. Effect of Road Traffic on Air Pollution. Experimental Evidence from COVID-19 Lockdown. 

Sustainability 2020, 12, 8984. h�ps://doi.org/10.3390/su12218984. 



Atmosphere 2023, 14, 1025 20 of 20 
 

 

38. Masiol, M.; Squizzato, S.; Formenton, G.; Harrison, R.M.; Agostinelli, C. Air Quality Across a European Hotspot: Spatial Gradi-

ents, Seasonality, Diurnal Cycles and Trends in the Veneto Region, NE Italy. Sci. Total Environ. 2017, 576, 210–224. 

h�ps://doi.org/10.1016/j.scitotenv.2016.10.042. 

39. Jesemann, A.-S.; Ma�hias, V.; Böhner, J.; Bechtel, B. Using Neural Network NO2-Predictions to Understand Air Quality Changes 

in Urban Areas—A Case Study in Hamburg. Atmosphere 2022, 13, 1929. h�ps://doi.org/10.3390/atmos13111929. 

40. Shi, Z.; Song, C.; Liu, B.; Lu, G.; Xu, J.; Van Vu, T.; Ellio�, R.J.R.; Li, W.; Bloss, W.J.; Harrison, R.M. Abrupt But Smaller Than 

Expected Changes in Surface Air Quality A�ributable to COVID-19 Lockdowns. Sci. Adv. 2021, 7, eabd6696. 

h�ps://doi.org/10.1126/sciadv.abd6696. 

41. Zou, Y.; Charlesworth, E.; Yin, C.; Yan, X.; Deng, X.; Li, F. The Weekday/Weekend Ozone Differences Induced by the Emissions 

Change during Summer and Autumn in Guangzhou, China. Atmos. Environ. 2019, 199, 114–126. h�ps://doi.org/10.1016/j.at-

mosenv.2018.11.019. 

42. Adame, J.A.; Hernández-Ceballos, M.; Sorribas, M.; Lozano, A.; De la Morena, B.A. Weekend-Weekday Effect Assessment for 

O3, NOx, CO and PM10 in Andalusia, Spain (2003–2008). Aerosol Air Qual. Res. 2014, 14, 1862–1874. 

h�ps://doi.org/10.4209/aaqr.2014.02.0026. 

43. Hörmann, S.; Jammoul, F.; Kuenzer, T.; Stadlober, E. Separating the Impact of Gradual Lockdown Measures on Air Pollutants 

from Seasonal Variability. Atmos. Pollut. Res. 2021, 12, 84–92. h�ps://doi.org/10.1016/j.apr.2020.10.011. 

44. Munir, S.; Coskuner, G.; Jassim, M.S.; Aina, Y.A.; Ali, A.; Mayfield, M. Changes in Air Quality Associated with Mobility Trends 

and Meteorological Conditions during COVID-19 Lockdown in Northern England, UK. Atmosphere 2021, 12, 504. 

h�ps://doi.org/10.3390/atmos12040504. 

45. Shanableh, A.; Al-Ruzouq, R.; Khalil, M.A.; Gibril, M.B.A.; Hamad, K.; Alhosani, M.; Stietiya, M.H.; Bardan, M.; Mansoori, S.A.; 

Hammouri, N.A. COVID-19 Lockdown and the Impact on Mobility, Air Quality, and Utility Consumption: A Case Study from 

Sharjah, United Arab Emirates. Sustainability 2022, 14, 1767. h�ps://doi.org/10.3390/su14031767. 

46. Hale, T.; Angrist, N.; Goldszmidt, R.; Kira, B.; Petherick, A.; Phillips, T.; Webster, S.; Cameron-Blake, E.; Hallas, L.; Majumdar, 

S.; et al. A Global Panel Database of Pandemic Policies (Oxford COVID-19 Government Response Tracker). Nat. Hum. Behav. 

2021, 5, 529–538. h�ps://doi.org/10.1038/s41562-021-01079-8. 

47. Ropkins, K.; Tate, J.E. Early Observations on the Impact of the COVID-19 Lockdown on Air Quality Trends Across the UK. Sci. 

Total Environ. 2020, 754, 142374. h�ps://doi.org/10.1016/j.scitotenv.2020.142374. 

48. Efe, B. Air quality Improvement and Its Relation to Mobility during COVID-19 Lockdown in Marmara Region, Turkey. Environ. 

Monit. Assess. 2022, 194, 255. h�ps://doi.org/10.1007/s10661-022-09889-7. 

49. Gorrochategui, E.; Hernandez, I.; Pérez-Gabucio, E.; Lacorte, S.; Tauler, R. Temporal Air Quality (NO2, O3, and PM10) Changes 

in Urban and Rural Stations in Catalonia during COVID-19 Lockdown: An Association with Human Mobility and Satellite Data. 

Environ. Sci. Pollut. Res. 2022, 29, 18905–18922. h�ps://doi.org/10.1007/s11356-021-17137-7. 

50. Munir, S.; Mayfield, M.; Coca, D.; Mihaylova, L.; Osammor, O. Analysis of Air Pollution in Urban Areas with Airviro Dispersion 

Model—A Case Study in the City of Sheffield, United Kingdom. Atmosphere 2020, 11, 285. h�ps://doi.org/10.3390/at-

mos11030285. 

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual au-

thor(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to 

people or property resulting from any ideas, methods, instructions or products referred to in the content. 


