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Abstract: The decline of sea ice in the Arctic region is a critical indicator of rapid global warming
and can also influence the feedback processes in the Arctic, so the prediction of sea ice extent and
thickness plays an important role in climate modeling and prediction. This paper uses machine
learning methods to predict the sea ice extent, and by adjusting the methods and factors, which
include the climate variables, the past sea ice extent, and the simple linear-regression-simulated
sea ice extent, then we found the best combination to give the result with the highest R2 score. We
noticed that with longer periods of past sea ice extent data and shorter periods of climate data, the
results appeared to be better. This might be related to the difference in climate and ocean memory.
The sub-region sea ice extent prediction shows that the regions with whole-year ice cover are easier
to predict and that those regions with sudden weather changes and significant seasonal variability
appear to have lower R2 scores in the sea ice extent prediction.
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1. Introduction

The decline of sea ice in the Arctic region has garnered significant attention in recent
years, as it serves as an indicator of the broader environmental shifts associated with climate
change. The Arctic region, being a key part of the global ecosystem, experiences many
repercussions due to the receding polar ice cap. For instance, the stability of marine ecosys-
tems, the global carbon cycle, and the survival of marine life are all closely intertwined
with the state of Arctic Sea ice. Moreover, the melting of the ice cap also influences human
society, from coastal city floods triggered by rising sea levels to changes in weather patterns
that impact global food production [1]. All these examples signal the importance of Arctic
Sea ice.

The Arctic region is warming at a rate twice as fast as the global average, a phe-
nomenon known as Arctic Amplification, which is leading to substantial ice loss [2]. The
reduction in sea ice extent is a critical indicator of this rapid warming, as it profoundly
affects energy balance and feedback processes in the Arctic [3]. Over the past several
decades, sea ice has been decreasing in the Arctic most significantly in melting seasons,
which has aroused a lot of attention on climate change, especially the warming in high
latitudes. These patterns and their implications have sparked extensive scientific research
into understanding the accelerated ice loss, the effects on local and global ecosystems, and
strategies for mitigating the impacts of this significant environmental change. Climate
models project that this trend is likely to continue, making the study of Arctic Sea ice an
urgent global priority.
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The consequences of melting sea ice extend beyond environmental concerns and
have significant implications for local communities, wildlife, and ecosystems. Indigenous
communities relying on sea ice for transportation and hunting are facing threats to their
traditional ways of life [4]. Additionally, the loss of sea ice habitats pose a risk to the survival
of various Arctic species, including polar bears and seals [5]. From a global perspective,
the decline in Arctic Sea ice contributes to rising sea levels and has the potential to alter
weather patterns, potentially intensifying extreme weather events in certain regions [6].
Moreover, the reduction in the reflective ice surface amplifies the absorption of solar energy
by the ocean, leading to a positive feedback mechanism that further accelerates global
warming [7].

Predicting sea ice extent and thickness plays a crucial role in understanding climate
change. Apart from academic research, it is also essential in day-to-day marine activities
such as shipping and resource extraction [8]. Various approaches have been employed
to understand and predict sea ice change, including in-suit observations, remote sensing,
physical models, and more recently, machine learning methods. Having advantages on
the spatial and temporal scales and the ability to predict and analyze different scenarios,
physical models have become a primary method to predict sea ice change and analyze
the role of sea ice in climate change. Physical models rely on our understanding of the
physics of the climate system, utilizing complex numerical methods to solve the equations
of motion, thermodynamics, and radiation to simulate the change in sea ice [9,10]. Many
climate models have coupled with sea ice models to improve climate modeling. Global
Climate Models (GCMs) are the most comprehensive among these, simulating the Earth’s
oceans, atmosphere, and sea ice based on physical laws [11]. GCMs have been extensively
used to project future sea ice loss under different greenhouse gas emission scenarios [12].
However, these models have limitations, particularly in representing small-scale processes
and parameter uncertainty. To enhance the reliability of sea ice forecasts, data assimilation
techniques have been widely employed, using observations of the actual system state to
correct model forecasts [13].

Sea ice in the Arctic is influenced by a complex interplay of atmospheric and oceanic
variables. Sea surface temperature (SST) directly affects sea ice dynamics, as higher SSTs
can promote ice melting and delay freezing [14]. Total precipitation, in the form of snowfall,
can insulate ice from atmospheric heat and increase surface albedo to solar radiation,
slowing down melting, while rainfall might possibly accelerate ice melt [15]. Latent heat
and sensible heat fluxes at the air–sea interface impact the energy balance of the ice, thereby
affecting freezing and melting rates [16]. Wind speed and direction can drive ice motion and
deformation, influencing ice extent and thickness [17]. Surface pressure can modulate wind
patterns and indirectly affect sea ice dynamics [18]. Finally, specific humidity influences
the energy exchange between the atmosphere and the ice. Higher humidity can reduce the
cooling of the ice surface by increasing downwelling longwave radiation [19].

This study utilizes machine learning techniques to predict sea ice extent in the Arc-
tic region, using an array of atmospheric and oceanic variables. By understanding the
performance and limitations of different machine learning methods, we aim to enhance
the prediction accuracy and reliability of sea ice forecasts. The data of these variables are
extracted from the atmospheric reanalysis dataset (ERA5). To improve the accuracy of
our models, a simple linear simulated monthly sea ice extent was taken into account as
an influencing factor. We quantitively compared the performance of different machine
learning methods in our models, including support vector regression, random forest regres-
sion, and multiple linear regression. The model that produced the results with the highest
R2 score was further tested in the sub-regions of the Arctic to investigate its performance
in a smaller domain. Factors that could potentially affect the performance of the model
were also discussed. This work, therefore, not only deepens our understanding of sea
ice dynamics but also equips us with an essential tool for more effective policy decisions
and mitigation strategies, underlining the study’s significance in our collective pursuit to
preserve and protect the Earth’s delicate environmental balance.
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2. Materials and Methods
2.1. Machine Learning Methods

In this section, we introduce four machine learning methods that are used in our
models. Simple linear regression is suitable for analyzing a straightforward relationship
between a predictor variable and a dependent variable. In the case of sea ice extent, which
has a dependence on its previous year’s values, our model incorporates simple linear
regression using data from the previous 40 years. This time period helps to smooth out
short-term variability and improves the accuracy of our models.

The relationships between sea ice extent and atmospheric and oceanic forcing are
complex, requiring machine learning algorithms that can capture contributions from differ-
ent factors. We tested multiple linear regression (MLR), support vector regression (SVR),
and random forest regression (RFR). MLR extends the simple linear regression by using
multiple variables for prediction. It efficiently handles linear data and provides information
on the importance of each variable, but it can be sensitive to outliers. As the atmospheric
variables and sea ice extent may have nonlinear relationships, the other two algorithms
tested, SVR and RFR, can handle nonlinear data effectively.

SVR, based on the same principle as Support Vector Machine (SVM) for regression,
finds the best-fit line or hyperplane that maximizes the number of data points. Unlike
Linear Regression, SVR is not biased by outliers. On the other hand, RFR uses a “forest” of
decision trees. Each decision tree is constructed from a bootstrap sample that includes the
atmospheric forcing variables mentioned earlier. The prediction is then made by averaging
the predictions from each decision tree in the forest. This algorithm is particularly powerful
when dealing with datasets that have many variables and can provide insights into the
importance of each variable.

In this study, for the purpose of comparison, we conducted feature scaling on the data
used by each algorithm, although it is not a requirement for some of the regression algorithms.

2.2. Experiments

In this analysis, we utilized monthly ERA5 reanalysis data obtained from the European
Centre for Medium-Range Weather Forecasts (ECMWF). The data cover the period from
1991 to 2020 and include variables such as sea surface temperature, total precipitation,
latent and sensible heat, wind speed, surface pressure, and specific humidity. The monthly
sea ice extent data from 1981 to 2020 were sourced from The National Snow and Ice Data
Center (NSIDC).

As an additional factor, we incorporated a simple linear regression simulated sea ice
extent. This factor was calculated using a simple linear regression model with the previous
10 years’ sea ice extent data for the corresponding month. By including this factor, the
model considered seasonal variations, which can potentially enhance accuracy.

The model setup can be represented by the following equation:

SIE (1991–2020) = A1 × monthly reanalysis variables (1991–2020) + A2 × past
SIE + A3 × simple linear regression calculated SIE (1981–2020)

(1)

Here, SIE represents the sea ice extent, and A1, A2, and A3 denote the coefficients for
each respective factor.

To determine the combination with the best performance, we conducted experiments
by varying the leading time, time length of the reanalysis variable data, the past SIE
data, and the inclusion of the simple linear regression SIE factor. We aimed to identify
the combination that yielded the highest R2 score, indicating the strongest predictive
performance. The experiments are structured according to the configurations presented in
Table 1.
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Table 1. The setting of the experiments for predicting sea ice extent in the Arctic.

Stage Tested Parameter Tested Value

1 Simple linear regression SIE Add this factor or not

2 Machine learning methods Support vector regression, random forecast
regression, and multiple linear regression methods

3 Reanalysis variables 3, 4, 5, 6 months of the length of these variables
4 Past SIE 6 or 12 months of past SIE
5 Leading time 1, 2, or 3 months of leading time
6 Region Total Arctic or subregions

2.3. Subregions of the Arctic

In addition to predicting sea ice extent for the entire Arctic region, we also conducted
simulations for various subregions. This research focuses on the following subregions
in Figure 1: the seas of Okhotsk and Japan, the Bering Sea, Hudson Bay, Baffin Bay, the
Greenland Sea, Kara and Barents Sea, Canadian Archipelago, Gulf of St. Lawrence, and the
remaining areas of the Arctic Ocean. By analyzing sea ice extent in these specific subregions,
we can gain insights into the localized variations and trends within the Arctic.
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3. Results
3.1. Whole-Arctic Experiments

Figure 2 presents a comparison of the R2 scores for a sea ice concentration simulation
using the support vector model, random forest model, and multiple linear models with
and without the simple linear regression factor. It is evident that the inclusion of the simple
linear regression factor led to improved results. This can be attributed to the nature of
the linear regression factor, which represents part of the seasonal variation in sea ice. By
incorporating this factor, the R2 scores for the three models increased by 0.29%, 0.62%, and
0.49%, respectively. These increases were significant given the initially high values of the
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R2 scores. As a result, the simple linear regression factor was considered an important
component in further experiments.

Atmosphere 2023, 14, x FOR PEER REVIEW 5 of 11 
 

 

3. Results 
3.1. Whole-Arctic Experiments 

Figure 2 presents a comparison of the R2 scores for a sea ice concentration simulation 
using the support vector model, random forest model, and multiple linear models with 
and without the simple linear regression factor. It is evident that the inclusion of the sim-
ple linear regression factor led to improved results. This can be attributed to the nature of 
the linear regression factor, which represents part of the seasonal variation in sea ice. By 
incorporating this factor, the R2 scores for the three models increased by 0.29%, 0.62%, and 
0.49%, respectively. These increases were significant given the initially high values of the 
R2 scores. As a result, the simple linear regression factor was considered an important 
component in further experiments. 

 
Figure 2. R2 score of different models including or excluding the simple linear regression factor of 
monthly sea ice. 

Additionally, among the three machine learning methods, the multiple linear regres-
sion method demonstrated a noticeably better performance compared with the other two. 
Particularly when the simple linear regression factor was included, the R2 score reached 
nearly 99%. Nevertheless, the support vector regression and random forest regression 
models still exhibited strong performances, with R2 scores of 97.3% and 98.6%, respec-
tively. The superior performance of multiple linear regression, compared to other meth-
ods, typically suggests that the underlying relationships between the sea ice extent and 
the predictor variables incorporate climate variables and previous sea ice extents. This 
also implies that the simulation of sea ice extent through a simple linear model is princi-
pally linear in nature. 

Furthermore, Figure 3 illustrates the impact of the length of the sea ice data time pe-
riod on the R2 score, while controlling all other factors. Generally, using 12-month sea ice 
data yields superior results compared with using 6-month data. This is particularly true 
for the support vector model, which saw a 1.64% increase in R2 score when the time period 
was extended to 12 months. 

0.96

0.97

0.98

0.99

1

support vector random forest multiple linear

R2
sc

or
e

with slr factor without slr factor

Figure 2. R2 score of different models including or excluding the simple linear regression factor of
monthly sea ice.

Additionally, among the three machine learning methods, the multiple linear regres-
sion method demonstrated a noticeably better performance compared with the other two.
Particularly when the simple linear regression factor was included, the R2 score reached
nearly 99%. Nevertheless, the support vector regression and random forest regression mod-
els still exhibited strong performances, with R2 scores of 97.3% and 98.6%, respectively. The
superior performance of multiple linear regression, compared to other methods, typically
suggests that the underlying relationships between the sea ice extent and the predictor
variables incorporate climate variables and previous sea ice extents. This also implies that
the simulation of sea ice extent through a simple linear model is principally linear in nature.

Furthermore, Figure 3 illustrates the impact of the length of the sea ice data time
period on the R2 score, while controlling all other factors. Generally, using 12-month sea
ice data yields superior results compared with using 6-month data. This is particularly true
for the support vector model, which saw a 1.64% increase in R2 score when the time period
was extended to 12 months.
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It is not surprising to observe that using 12-month sea ice data resulted in better
simulations, as it included data from the same month or season of the previous year. This
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inclusion enhanced the relationship between the factors and the simulation object, leading
to improved model performance.

Next, the length of past sea ice extent (SIE) data was set to 12 months. Figure 4
demonstrates that shorter time lengths of the reanalysis climate data correspond to higher
R2 scores in the simulation. This contrasts with the findings in Figure 3, where longer past
SIE data was shown to improve performance. The disparity in the results may be attributed
to the characteristics of the atmosphere, ocean, and sea ice, which can vary and influence
the relationship between the factors and the simulation.
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Figure 4. R2 score of different models with different time lengths of reanalysis climate data.

The atmosphere, characterized by its low heat capacity, is highly responsive to changes
in energy inputs, such as variations in solar radiation or greenhouse gas concentrations [20].
Consequently, atmospheric conditions can exhibit rapid variations. However, this quick
response time also implies a short memory for the atmosphere: it quickly adjusts to changes
in energy input. On the other hand, the ocean, with its higher heat capacity, responds more
slowly to energy input changes. This enables the ocean to store a larger amount of heat
over longer periods compared with the atmosphere [21]. As a result, the ocean exhibits a
longer memory, retaining the influence of past conditions and impacting long-term climate
trends [22]. Sea ice, being a component of the ocean system, exhibits characteristics of
both the atmosphere and the ocean. It shares similarities with the atmosphere in terms
of its ability to respond relatively quickly to changes in atmospheric conditions, such as
air temperature and wind [23]. Like the ocean, sea ice also has a longer memory due to
its interaction with the underlying ocean, which allows it to retain the influence of past
conditions and impact long-term climate trends [24]. The interaction between sea ice and
the underlying ocean introduces a longer memory characteristic. The ocean, with its higher
heat capacity, responds more slowly to changes in energy input. This means that the ocean
can store a larger amount of heat over longer periods compared with the atmosphere.
Consequently, the presence of sea ice can have a feedback effect on the ocean, affecting its
circulation patterns, heat distribution, and nutrient cycles. These interactions can persist
over time and influence long-lasting ocean and climate patterns.

In addition to these factors, the leading time of the climate variables may also influence
the simulation results. Figure 5 presents the outcomes obtained by varying the leading
time in the three models.
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According to Figure 5, it is evident that shorter leading times tended to yield better
results, although this variation is not as pronounced in the support vector regression
method. This outcome can be attributed to the shorter memory of the atmosphere, which
indicates that climate variables have a rapid influence on the representation of sea ice extent.
In other words, the atmospheric conditions and climate variables play a crucial role in
shaping the behavior of sea ice extent, and their impact is more immediate and significant
in the short term.

As the leading time decreased, the prediction models had access to more up-to-date
and relevant climate variables, allowing them to capture the current atmospheric condi-
tions and their effects on sea ice extent more accurately. This led to improved prediction
performance, as the models could adapt to the rapidly changing atmospheric conditions
that directly influence the sea ice extent. For the entire Arctic region, the optimal combina-
tion for the multiple linear regression model involved a leading time of 1 month, a time
length of the climate data of 3 months, and a past SIE data length of 12 months. With this
configuration, the R2 score for the prediction reached 99.1%.

It is important to note that while shorter leading times generally yielded better results,
the support vector regression method exhibited less variability in performance across
different leading times. This may be due to the inherent characteristics of the support
vector regression algorithm, which can effectively extract patterns and relationships from
the available data, even when considering longer leading times.

3.2. Arctic Subregion Experiments

In the subregion research, we maintained the combination that yielded the best re-
sults in the total-Arctic simulation. Figure 6 presents the varying performances of the
different subregions.

The results indicate that the central Arctic region generally exhibited good performance
with the multiple linear regression method. This can be attributed to the relatively small
variation in sea ice throughout the year in this region. The stability of sea ice in the central
Arctic allowed for more accurate predictions using the multiple linear regression approach.
The limited fluctuations in sea ice extent made it easier to establish meaningful relationships
between predictor variables and sea ice extent.

On the other hand, the Bering Sea region showed the poorest prediction results,
highlighting the challenges posed by its significant sea ice variability. The Bering Sea
experienced substantial fluctuations in sea ice extent due to freezing and melting processes,
which have a profound impact on various physical and biological parameters of the sea.
The prediction accuracy in this region was adversely affected by its dependence on multiple
factors, such as air temperature, wind patterns, and ocean currents.
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Additionally, it is interesting to note that Hudson Bay and Baffin Bay exhibited the 
highest R2 scores for sea ice extent prediction using machine learning methods. These re-
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Figure 6. R2 score of the subregions with multiple linear regression model; the leading time equals
1 month, and the time length of the climate data and the past SIE data are, respectively, 3 months and
12 months.

In our analysis, we utilized fixed past sea ice extent and climate data to simulate sea
ice extent in a specific location. However, we did not consider the influence of surrounding
regions and climate variabilities, which is a notable limitation. The omission of these
factors can result in larger errors, particularly in regions characterized by substantial sea
ice variability and rapidly changing and harsh weather conditions. By neglecting the
interconnectedness between different regions and climate fluctuations, our predictions
may not fully capture the intricate dynamics that affect sea ice extent. Future research
should aim to incorporate a more comprehensive and holistic approach that considers the
broader climate context and the interactions between different regions in order to improve
the accuracy of sea ice extent predictions.

Additionally, it is interesting to note that Hudson Bay and Baffin Bay exhibited the
highest R2 scores for sea ice extent prediction using machine learning methods. These
regions, characterized by their high predictability, offer valuable insights into the factors
influencing ice cover. One of the contributing factors to the higher R2 scores in Hudson Bay
and Baffin Bay is their relatively reduced susceptibility to the influence of complex ocean
currents and topography, especially when compared with regions such as the Bering Sea.
Unlike the Bering Sea, which experiences intricate interactions between oceanic currents
and varying topographic features, Hudson Bay and Baffin Bay are relatively enclosed bodies
of water. This relative isolation from global oceanic currents simplifies the predictability
of ice cover in these regions. Furthermore, the presence of predictable seasonal patterns
closely tied to shifts in temperature also contribute to the higher R2 scores observed in
Hudson Bay and Baffin Bay. The annual cycle of ice growth and melt in these regions
follows a more regular pattern due to the predictable seasonal shifts in temperature. These
temperature variations play a significant role in determining the freeze and thaw patterns
of the ice cover. The consistent and predictable nature of these temperature shifts makes
the annual cycle of ice growth and melt more predictable, particularly when captured by
machine learning models. Despite experiencing significant variation in ice cover, the freeze
and thaw patterns in Hudson Bay and Baffin Bay exhibited a strong correlation with the
predictable seasonal shifts in temperature. This relationship enhanced the predictability
of the ice conditions, allowing machine learning models to capture and accurately predict
the behavior of ice extent in these regions. In contrast, the Bering Sea is well-known for its
unpredictable and severe storms, which can rapidly alter sea ice conditions. The Bering Sea
is prone to sudden and extreme weather events that can cause significant fluctuations in
ice cover. These unpredictable and severe storms introduced a high degree of variability,
making it more challenging to accurately predict sea ice extent in this region using machine
learning methods. While severe weather conditions can also occur in Hudson Bay and
Baffin Bay, such events are generally less frequent compared with those in the Bering Sea.
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As a result, the ice conditions in Hudson Bay and Baffin Bay tended to be more stable and
predictable. This increased stability and predictability contributed to the higher R2 scores
observed in these regions.

In summary, the higher R2 scores in Hudson Bay and Baffin Bay can be attributed to
the reduced influence of complex ocean currents and topography, as well as the presence
of predictable seasonal patterns closely tied to shifts in temperature. In contrast, the
Bering Sea’s susceptibility to unpredictable and severe storms leads to less stable and less
predictable ice conditions, resulting in lower R2 scores in that region.

4. Conclusions

In this research, we explored the potential of using machine learning methodologies
for the prediction of sea ice extent in the Arctic region. This is of profound importance due
to the rapid decline of Arctic Sea ice in recent years, a key indicator of global warming
that can affect various feedback processes in the Arctic ecosystem. Therefore, accurate
and timely predictions of sea ice extent and thickness can significantly contribute to the
efficacy of climate modeling and subsequent climate predictions. The addition of a simple
linear-regression-simulated sea ice extent factor improved the model’s performance by
incorporating seasonal variations. Additionally, a shorter leading time and time length of
climate variables were found to enhance the modeling results. Conversely, a longer time
length of past sea ice extent data positively influenced the R2 score, likely due to the longer
memory of the ocean and sea ice compared with the atmosphere.

For the whole Arctic region, the optimal combination was a multiple linear regression
model with a leading time of 1 month, a time length of climate data of 3 months, and a time
length of past sea ice extent data of 12 months. This combination yielded an impressive R2

score of 99.1% for sea ice extent prediction.
Regarding subregions, the same combination that performed well in the total-Arctic

simulation was used. The central Arctic region, characterized by minimal sea ice variation
throughout the year, showed good simulation results with the multiple linear regression
model. On the other hand, the Bering Sea region exhibited relatively poorer performance,
potentially due to the limitations of the experimental setup. The influence of sudden
weather changes and significant seasonal variability in the Bering Sea region could have
also contributed to the lower R2 score. To improve accuracy, expanding the spatial range of
the subregional factor data specific to each subregion could be considered. Furthermore,
regions such as Hudson Bay and Baffin Bay, which experience less influence from sudden
weather changes and have predictable seasonal patterns, demonstrated very high R2 scores
in the simulation.

Despite the promising results, it is important to note the limitations of the current
study. Machine learning methods, particularly multiple linear regression, proved effective
in predicting sea ice extent in the Arctic region, but performance varied considerably across
different subregions due to differences in local weather patterns and sea ice conditions.
This indicates that the model may not account for all complexities and regional specifics of
sea ice dynamics. Additionally, the sudden and significant seasonal changes in regions such
as the Bering Sea underline the need for models that can handle rapid environmental shifts.

In the future, the potential applications of this work are expansive. Improved sea
ice predictions can inform policy decisions, climate mitigation strategies, and marine
navigation safety measures. Moreover, as our understanding and ability to model Arctic
Sea ice dynamics continues to grow, these predictions can provide critical insights into
global climate patterns and their links to sea ice extent. Future research should therefore
focus on refining and enhancing the model’s performance in more challenging regions,
incorporating more dynamic factors to increase accuracy, and extending its application to
other climate prediction tasks.
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