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Abstract: The COVID-19 lockdown contributes to the improvement of air quality. Most previous
studies have attributed this to the reduction of human activity while ignoring the meteorological
changes, this may lead to an overestimation or underestimation of the impact of COVID-19 lockdown
measures on air pollution levels. To investigate this issue, we propose an XGBoost-based model
to predict the concentrations of PM2.5 and PM10 during the COVID-19 lockdown period in 2022,
Shanghai, and thus explore the limits of anthropogenic emission on air pollution levels by compre-
hensively employing the meteorological factors and the concentrations of other air pollutants. Results
demonstrate that actual observations of PM2.5 and PM10 during the COVID-19 lockdown period
were reduced by 60.81% and 43.12% compared with the predicted values (regarded as the period
without the lockdown measures). In addition, by comparing with the time series prediction results
without considering meteorological factors, the actual observations of PM2.5 and PM10 during the
lockdown period were reduced by 50.20% and 19.06%, respectively, against the predicted values
during the non-lockdown period. The analysis results indicate that ignoring meteorological factors
will underestimate the positive impact of COVID-19 lockdown measures on air quality.

Keywords: COVID-19 lockdown; air quality; meteorological factors; XGBoost; PM2.5; PM10

1. Introduction

The Yangtze River Delta, as one of the four source areas of heavy haze events in
China, has led to considerable air pollution problems over the past few decades due to
its rapid economic development and urbanization [1,2]. During the past three years from
2020 to 2022, some social distancing measures were adopted to control the COVID-19
epidemic in China, such as movement restrictions, the prohibition of public meetings, the
shutdown of schools and public places, isolation, and quarantine [3]. These restrictions
have significantly reduced anthropogenic emissions and prevented severe air pollution
incidents in the Yangtze River Delta [4], including the reduced emissions from public and
private vehicle transport [5]. Besides, some other major social events associated with the air
pollution control measures, such as the Asia-Pacific Economic Cooperation (APEC) meeting
in 2014 and the Victory Day parade of China in 2015, have demonstrated the positive effects
of air pollution control measures [6]. A case study also indicated that Guangzhou’s ambient
air quality was significantly improved in 2016 after the implementation of a series of air
pollution control measures in Guangzhou and the surrounding cities from 2014 to 2016 [7].

Many countries have adopted closure measures during the COVID-19 epidemic period
which control carbon emissions by sacrificing international shipping et al. and were mostly
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reported to have improved the local air quality [8–10]. As vehicle emissions and industrial
productions are the main sources of PM2.5 and PM10 air pollution, these pollution sources
were controlled by the safety measures adopted for the prevention of COVID-19. The
impact of restriction policies for the COVID-19 pandemic on air quality varies considerably
between countries depending on their different geographical, economic, industrial, and
social characteristics [11]. By comparing the emission changes of the main pollutants in
different regions of the world during the first six months of 2020, the eastern regions
of China have the largest decrease in total emissions in February [4,12]. Research has
shown that the concentrations of PM10 decreased by 75% during the lockdown in Salé City
(Morocco) compared to PM10 in the normal period [13], and the same value decreased by
18% for PM10 in Portugal [14]. As for the reduction of PM2.5, the reports showed that the
concentrations of PM2.5 decreased 76.5% in Malaysia, 58% in Spain, 53.1% in Delhi, and
53.1% in Tehran [9]. In addition, a reduction of 29.8% in PM2.5 was found during the partial
lockdown period in São Paulo state, Brazil [15]. In the United States, PM2.5 declined in
urban counties with early closed businesses [16]. In Wuhan, China, the concentrations
of PM2.5 and PM10 in the lockdown period declined by 41.2% and 33.1%, respectively,
compared to the pre-COVID-19 period [17]. Besides, reductions in surface PM2.5 and PM10
were reported in six mega-cities in India during the lockdown period [18,19]. In 2020, PM
concentrations at the traffic and background stations are on average 15% and 13.4% lower
than in the reference period in Wrocław, Poland [20]. In contrast, in Italy, no decrease in
particulate matter (PM10 or PM2.5) was observed during the first phase of the COVID-19
epidemic [21] and Few sites (2–3 out of 16) experienced statistically significant drops in
PM2.5 in Ontario, Canada [22].

However, most of the available studies on outbreak control measures and environ-
mental pollutant levels have yet to quantify the effects of meteorological changes on air
pollutant levels during the COVID-19 pandemic around the world, which would lead
to an overestimation or underestimation of the impact of COVID-19 lockdown measures
on air pollution levels. In general, meteorological factors are of special importance in
affecting the regional air quality in China [1,23–26]. Meteorological conditions may be a
determining factor in the occurrence of air pollution if the emissions of air pollutants in a
region are essentially stable over a certain period [25]. Many meteorological factors, such as
wind speed, wind force, temperature, precipitation, and humidity, also significantly affect
air pollution levels [27–29]. The meteorological contribution to PM2.5 levels ranged from
−4.8% to 4.3% in the Yangtze River Delta region [30]. The PM10 concentration is negatively
correlated with the relative humidity and temperature [31]. The correlations between PM
and NO2 and between PM and SO2 were moderate, while the correlations between PM and
CO and between PM and O3 were weak and unstable, respectively [32]. Unfavorable meteo-
rological conditions can offset the positive environmental impacts of closure measures; one
report stated that control measures reduced PM2.5 in Beijing by 12 µg/m3. In comparison,
meteorological forcing increased PM2.5 by 30 µg/m3, resulting in an increase in PM2.5 levels
during the closure period [28]. In Hubei Province, China, which had the highest number
of confirmed pneumonia cases in February 2020, the impact of total emissions reductions
(72%) significantly outweighed the proportion of meteorologically driven PM2.5 increases
(13%) [21]. The average PM2.5 concentration in the Singapore region decreased by 19%
when the effect of meteorological parameters was taken into account; this decrease was
lower than the decrease observed when the effect of meteorological parameters was not
taken into account (29%) [33].

Although individual studies have incorporated meteorological parameters’ effects
when assessing the impacts of COVID-19 on NO2 and PM2.5 pollutant levels [33], the
machine-learning methods applied in those studies are inferior to XGBoost models in terms
of their predictive accuracy [34,35]. XGBoost, as a typically integrated algorithm, can be
executed efficiently using fewer resources [36]. Moreover, the XGBoost model combines
hourly predictions with near-surface measurements of air pollutants and meteorological
conditions to estimate daily PM2.5 concentrations in Shanghai, China, with improved
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model correlation coefficients of 50–100% and reduced standard deviations of 14–24 µg/m3

compared to the WRF-Chem model [37]. In addition to using meteorological data, air
quality standard data such as SO2, NOX, and O3 data are utilized in the XGBoost algorithm
to model the atmospheric PM10 concentrations [38].

Environmental factors play an important role in the spread of coronavirus disease
2019 (COVID-19) [39]. A comprehensive crisis management strategy for pandemic threats
must also be based on environmental and socioeconomic factors and new technologies, not
just on medically relevant parameters [40]. To gain experience that can be used to prevent
future pandemic threats and to avoid overestimating or underestimating the impact of the
COVID-19 outbreak on air pollution, this study used meteorological parameters (the mean
temperature, dew point, visibility, and wind speed) and the concentrations of the remaining
air pollutants to estimate the level of PM in the air during the COVID-19 outbreak. In
addition, to account for the unpredictability of the lockdown measurements and increase
the comparability of the results, this study examined trends of air pollutant concentrations
from 2020 to 2022 (i.e., following the COVID-19 epidemic), as opposed to limiting the
analysis to a predetermined lockdown period. We also compare the changes in air pollution
levels in Shanghai during the lockout period (31 March to 1 June) in each year between
2015 and 2022 to provide a more comprehensive understanding of the effects of the novel
coronavirus on air pollution.

2. Materials and Methods
2.1. Sample and Data

Shanghai, China’s worldwide economic, financial, trading, shipping, science, and
technology innovation center, is located between 120◦52′ and 122◦12′ east and between
30◦40′ and 31◦53′ north. In late February 2022, a mutated strain of the Omicron virus
triggered a significant public health disaster in Shanghai. The Shanghai City Government
initiated a series of containment and control measures on 31 March 2022, and by 1 June
2022, the epidemic situation in Shanghai had been effectively contained. This study takes
the COVID-19 lockdown period in Shanghai, in 2022, as the case study, to investigate
the impact of the COVID-19 lockdown on the air quality changes. The different periods
employed in this study for the prevalence of COVID-19 in Shanghai are shown in Table 1.
The spatial distribution of Shanghai and monitoring stations is shown in Figure 1.

Table 1. The different periods employed in this study for the prevalence of COVID-19 in Shanghai.

Periods Prevalence Control of COVID-19 in Shanghai

1 January 2015–31 December 2019 Period before COVID-19
1 January 2020–1 June 2022 Period during COVID-19
31 March 2022–1 June 2022 COVID-19 lockdown period

The daily Air Quality Index (AQI), which is used by government agencies to report
daily air quality [41] and daily concentrations of six related air pollutants, PM2.5, PM10,
NO2, CO, SO2, and O3, in Shanghai from 1 January 2015 to 30 September 2022 were
obtained from the national real-time urban air quality release platform of the China National
Environmental Monitoring Centre at http://106.37.208.233:20035, accessed on 24 October
2022. Table 2 shows the descriptive statistics of these air quality data. CO is given in
mg/m3, the other gaseous pollutants are given in µg/m3 and AQI is a dimensionless
relative value that collectively indicates the level of air pollution or the air quality rating.

http://106.37.208.233:20035
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Figure 1. Spatial distribution of the Shanghai and monitoring stations (period under study: 1 January
2015 to 1 June 2022).

Table 2. Descriptive statistics of air quality data.

Parameter Unit Range Average St. Dev.

AQI [10, 270] 61.96 32.19
PM2.5 µg/m3 [2, 219] 37.39 26.12
PM10 µg/m3 [6, 308] 52.07 31.47
NO2 µg/m3 [4, 142] 39.56 18.81
CO mg/m3 [0.31, 2.21] 0.71 0.24
SO2 µg/m3 [3, 74] 9.31 6.20
O3 µg/m3 [8, 178] 70.57 28.73

The daily mean temperature (TEMP), dew point temperature (DEWP), visibility
(VISIB), and wind speed (WDSP) data for Shanghai from 1 January 2015 to 30 September
2022 were obtained from the National Climatic Data Center (NCDC), which is part of
the National Oceanic and Atmospheric Administration (NOAA) at Daily Observational
Data (noaa.gov, accessed on 24 October 2022). The daily mean temperatures (TEMP) and
dew point temperatures (DEWP) are given in degrees Fahrenheit; the daily mean visibility
(VISIB) is given in feet; and the daily mean wind speed (WDSP) is given in knots.

2.2. Measures of Variables
2.2.1. Influence of Meteorological and Other Pollution Parameters on PM2.5 and PM10

The important factors that affect the migration and transformation of PM2.5 and PM10
include weather conditions and the concentrations of other pollutants [42]; moreover,
numerous parameters influence the PM2.5 and PM10 concentrations and these processes
are quite complex. Before estimating the PM2.5 and PM10 concentrations, it is crucial to
study the essential parameters to improve the predictions and determine the change in
these components’ potential to influence these concentrations. As not all distributions of
the analyzed variables show normal distributions, the Spearman correlation coefficient [43]
was chosen as the measuring indicator to evaluate the meteorological parameters and other
pollution characteristics associated with PM2.5 and PM10 concentrations. The Spearman
correlation coefficient was calculated using Equation (1), where x represents the rank

noaa.gov


Atmosphere 2023, 14, 898 5 of 17

variables of PM2.5 or PM10, y represents the rank variables of other data, and n represents
the number of each type of data.

ρx,y =
n ∑n

i=1 xiyi −∑n
i=1 xi ∑n

i=1 yi√
n ∑n

i=1 x2
i − (∑n

i=1 xi)
2
√

n ∑n
i=1 y2

i − (∑n
i=1 yi)

2
. (1)

2.2.2. XGBoost-Based Prediction Model

XGBoost (extreme gradient boosting) is a model that was initially proposed by Tianqi
Chen and Carlos Guestrin in 2011 [36], which has been continuously optimized and en-
hanced by the follow-up researchers. The model is a learning framework built on boosting
tree models. In view of this, we proposed an XGBoost-based prediction model to forecast
the air quality changes during the COVID-19 lockdown period in Shanghai, 2022. The
specific calculation steps of XGBoost-based prediction model are shown in Figure 2.

Atmosphere 2023, 14, x FOR PEER REVIEW 5 of 17 
 

 

2.2. Measures of Variables 
2.2.1. Influence of Meteorological and Other Pollution Parameters on PM2.5 and PM10 

The important factors that affect the migration and transformation of PM2.5 and PM10 
include weather conditions and the concentrations of other pollutants [42]; moreover, nu-
merous parameters influence the PM2.5 and PM10 concentrations and these processes are 
quite complex. Before estimating the PM2.5 and PM10 concentrations, it is crucial to study 
the essential parameters to improve the predictions and determine the change in these 
components’ potential to influence these concentrations. As not all distributions of the 
analyzed variables show normal distributions, the Spearman correlation coefficient [43] 
was chosen as the measuring indicator to evaluate the meteorological parameters and 
other pollution characteristics associated with PM2.5 and PM10 concentrations. The Spear-
man correlation coefficient was calculated using Equation (1), where x represents the rank 
variables of PM2.5 or PM10, y represents the rank variables of other data, and n represents 
the number of each type of data. 𝜌 , = ∑   ∑   ∑  ∑   ∑   ∑   ∑   . (1)

2.2.2. XGBoost-Based Prediction Model 
XGBoost (extreme gradient boosting) is a model that was initially proposed by Tianqi 

Chen and Carlos Guestrin in 2011 [36], which has been continuously optimized and en-
hanced by the follow-up researchers. The model is a learning framework built on boosting 
tree models. In view of this, we proposed an XGBoost-based prediction model to forecast 
the air quality changes during the COVID-19 lockdown period in Shanghai, 2022. The 
specific calculation steps of XGBoost-based prediction model are shown in Figure 2. 

 
Figure 2. Flow chart of the proposed XGBoost-based prediction model. 

The model’s core concept is to combine the weak classifier CART tree with an addi-
tive model to create a strong classifier. Assuming that having a total of K trees, the tree 
model is integrated by using the addition method, with F representing the fundamental 
tree model: 𝑦 = ∑   𝑓 (𝑥 ), 𝑓 ∈ 𝐹, (2)

where 𝑦  represents the predicted PM concentration, 𝑥  represents the predictors, and 𝑓 (𝑥) is the k-th CART (Classification and Regression Trees) loss function. 

Figure 2. Flow chart of the proposed XGBoost-based prediction model.

The model’s core concept is to combine the weak classifier CART tree with an additive
model to create a strong classifier. Assuming that having a total of K trees, the tree model is
integrated by using the addition method, with F representing the fundamental tree model:

ŷi = ∑K
k=1 fk(xi), fk ∈ F, (2)

where ŷi represents the predicted PM concentration, xi represents the predictors, and fk(x)
is the k-th CART (Classification and Regression Trees) loss function.

L = ∑i l(ŷi, yi) + ∑k Ω( fk), (3)

where l is the loss function, representing the error between the predictive value and the
actual value; Ω is the function used for regularization to prevent overfitting. The term Ω is
calculated as follows:

Ω( f ) = γT +
1
2

λ ‖ w ‖2, (4)

where T represents the number of leaves per tree and w represents the weight of the leaves
of each tree.
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This function can be simplified by using the Taylor expansion. A CART node formula
for loss reduction following a tree split from a particular node can be derived as follows:

Gain =
1
2

[ (
∑i∈IL

gi
)2

∑i∈IL
hi + λ

+

(
∑i∈IR

gi
)2

∑i∈IR
hi + λ

+
(∑i∈I gi)

2

∑i∈I hi + λ

]
− γ, (5)

where I is a subset of the available observations in the current node, IL and IR are subsets
of the available observations in the left and right nodes, respectively, following the split.
The predictors are daily concentrations of four air pollutants (SO2, NO2, CO, and O3) and
daily meteorological data (temperature, dew point, visibility, and wind speed) observations.
In this way, an XGBoost-based prediction model was proposed and used to predict the
ambient PM concentrations from 2020 to 2022, which was regarded as the air quality
without the impact of COVID-19 lockdown measures.

2.2.3. Accuracy Evaluation Measure

In this study, three indicators were chosen to evaluate the accuracy of the PM value
predictions, that is, the mean absolute error (MAE), root mean square error (RMSE), and
mean percentage error (MPE). The formulas of these three evaluation indicators are shown
in Equations (6)–(8):

RMSE =

√
1
n ∑n

i=1(ŷi − yi)
2, (6)

MAE =
1
n ∑n

i=1|(ŷi − yi)|, (7)

MPE =
100%

n

n

∑
i=1

ŷi − yi
yi

(8)

where yi and ŷi represent the observed and predicted PM concentrations, respectively, and
n refers to the total logarithm of data in the test set.

2.3. Model Flowchart and Data Analysis Procedure

Figure 3 shows the proposed model flowchart and data analysis procedure, which
include the following three steps:

Step 1. For air quality data and meteorological data collected in Shanghai from
1 January 2015 to 30 September 2022, during the data preprocessing phase, if air quality
data were missing for a particular day, all data for that day were deleted; for missing
individual visibility (VISIB) data, the average of all remaining valid visibility (VISIB) data
was used to fill in the missing values. After that, all data were divided into two parts
according to time: before the COVID-19 outbreak (Time 2015–2019) and during COVID-19
epidemic (Time 2020–2022).

Step 2. In order to investigate the impact of COVID-19 lockdown on air quality, the
AQI data for a total of 63 days, from the 31 March to the 1 June (the time period of the
lockdown in Shanghai), were independently analyzed for each of the years from 2015–2022.
In addition, the difference between observed and predicted PM values during the lockdown
in Shanghai were calculated to show the impact of COVID-19 lockdown on air quality.

Step 3. To avoid overestimating or underestimating the impact of the COVID-19
outbreak on air pollution, meteorological parameters (the mean temperature, dew point,
visibility, and wind speed) and the concentrations of the remaining air pollutants (NO2,
CO, O3, and SO2) were chosen as predictors to estimate the level of PM in the air during the
COVID-19 epidemic. The XGBoost-based prediction model was selected as the prediction
model: the training set was the data before the COVID-19 outbreak (Time 2015–2019) and
the test set was the data during the COVID-19 epidemic (Time 2020–2022). In order to in-
vestigate whether predictors without meteorological factors overestimate or underestimate
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the impact of the COVID-19 lockdown, the two prediction results using different predictors
were compared.
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3. Discussion and Results
3.1. Air Quality Investigation before and during COVID-19 in Shanghai

In order to investigate the air quality changes during the COVID-19 lockdown period
in Shanghai from 31 March 2022 to 1 June 2022, we collected the AQI data with a total of
63 days from 31 March to 1 June from the year 2015 to 2022, the daily AQI tendency was
presented for each year. To facilitate the data comparisons, we, respectively compared the
AQI data for the period before COVID-19 and the period during COVID-19, as shown in
Figures 4 and 5. As is shown, three different AQI classification levels are employed to
evaluate the daily air quality for each year in the same period, the specific classification
levels are shown in Table 3. It is obvious that the AQI in Shanghai are fluctuated during the
study period of each year, and the AQI during the COVID-19 epidemic period (31 March
to 1 June, 2020–2022) is notably lower than that during the period before COVID-19
(2015–2019).

Table 3. Air Quality Index Scale and Color Legend.

Levels of Concern Values of Index

Good 0~50
Moderate 51~100

Unhealthy for Sensitive Groups 101~150
Unhealthy 151~200
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To further compare the air quality quantitatively before and during COVID-19 in
Shanghai, we statistically analyzed the numbers and percentages of days with different
air quality levels in the lockdown period (31 March to 1 June) in Shanghai from 2015
to 2022. As it is presented in the Table 4, the proportions of days with good air quality
during the COVID-19 period in the year 2020, 2021, and 2022 are higher than 40%, which is
significantly better than that (with the AQI lower than 16%) before the COVID-19 period
(2015–2019). Furthermore, the number of days with good air quality during the COVID-19
period kept increasing every year, with 41.27%, 65.08%, and 71.43% in the years 2020, 2021,
and 2022, respectively. It is noted that the epidemic lockdown period in 2022 are all with
good or moderate air qualities in Shanghai. This can be attributed to the fact that the
lockdown measures had a positive impact on the air quality since the COVID-19 broke out
in December 2019.

Table 4. Numbers and percentages of days with different air quality levels in the lockdown period
(31 March to 1 June) in Shanghai from 2015 to 2022.

Year Good/day Proportion Moderate/day Proportion
Unhealthy

for Sensitive
Groups/day

Proportion Unhealthy/day Proportion

2022 45 71.43% 18 28.57% 0 0.00% 0 0.00%
2021 41 65.08% 18 28.57% 4 6.35% 0 0.00%
2020 26 41.27% 35 55.56% 2 3.17% 0 0.00%
2019 10 15.87% 48 76.19% 5 7.94% 0 0.00%
2018 10 15.87% 41 65.08% 12 19.05% 0 0.00%
2017 8 12.70% 48 76.19% 7 11.11% 0 0.00%
2016 8 12.70% 40 63.49% 12 19.05% 3 4.76%
2015 6 9.52% 49 77.78% 7 11.11% 1 1.59%
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3.2. Impacts of Prediction Factors on PM2.5 and PM10

To determine the prediction factors that influence the concentration of PM2.5 and PM10
during the COVID-19 epidemic period, we first classified the factors into two categories,
that is, the meteorological parameters, including the temperature, dew point, visibility,
wind speed, and other environmental pollutants, including the concentrations of SO2, NO2,
CO, and O3. To select the prediction factors with significant influence on the concentrations
PM2.5 and PM10, the correlation coefficients between these factors and the concentrations of
PM2.5 and PM10 are calculated and analyzed before and during the COVID-19 outbroken.
The correlation coefficients are shown in Table A1 and indicated with the confusion matrix
in Figures 6 and 7, respectively.
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As is shown in Figures 6 and 7, the selected prediction factors are significantly related
with the concentrations of PM2.5 and PM10, with the p-values for the seven factors (tem-
perature, dew point, visibility, wind speed, the concentrations of SO2, NO2, and CO) are
lower than 0.01. It is noted that there exist substantial connections between O3 and PM2.5
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according to Lin Huang’s research [44], although the correlation coefficient for O3 was
relatively low compared to those of SO2, NO2, and CO. Public researches indicated that
high temperatures and high humidity would lead to the dust to be more active to disperse
into the air, and, therefore, increase the concentrations of PM2.5 and PM10 [45]. Furthermore,
weak wind is not conducive to the diffusion of air pollutants and usually results in higher
concentrations of PM2.5 and PM10 [46]. Therefore, the combination of all these factors will
comprehensively influence the concentrations of PM2.5 and PM10. In addition, our study
also demonstrated that the correlation coefficients between the concentrations of PM2.5 and
PM10 and other air pollutants and various meteorological factors did not change notably
during the two different time periods (before the COVID-19 outbroken and during the
COVID-19 epidemic), as compared by Figures 6 and 7. Therefore, all factors were selected
to predict the concentrations of PM2.5 and PM10 during the COVID-19 epidemic period.

3.3. Analysis of the Predicted PM2.5 and PM10 Concentrations in Shanghai
3.3.1. Data Prediction and Accuracy Analysis

The XGBoost-based prediction model was used to predict concentrations of PM2.5 and
PM10 in Shanghai. As for the model with the dependent variable PM2.5, the predictors
are the daily concentration data of NO2, CO, SO2, and O3 and daily mean temperature,
dew point temperature, visibility, and wind speed data. In terms of the model with
the dependent variable is PM10, the predictors are the same as that of PM2.5 prediction.
Additionally, the data before the COVID-19 outbreak (2015 to 2019) was set as the training
set, which was used to predict the daily PM2.5 and PM10 concentrations during the period
of the COVID-19 epidemic (2020 to 2022), and the results of the predicted and observed
values were obtained as shown in Figures 8 and 9. Furthermore, the root mean square error
(RMSE) and mean absolute error (MAE) of the PM2.5 and PM10 predictions for each year
were calculated and are shown in Table 5.
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Table 5. Evaluation of the prediction results for each year during the COVID-19 epidemic.

Year RMSE MAE

PM2.5

2022 12.104 8.590
2021 11.843 8.419
2020 11.705 8.691

PM10

2022 17.390 12.545
2021 21.423 14.249
2020 17.448 11.935

As is shown in Table 5, the root mean square error (RMSE) of PM2.5 predictions for
each year are all distributed around 12, which is lower than other PM2.5 prediction accuracy
results from existing studies using the same model [39,47,48]. Moreover, the root mean
square error (RMSE) and the mean absolute error (MAE) of PM10 predictions for each
year are all under 21.4 and 14.3, respectively, which are lower than other PM10 prediction
accuracy results using different predicted models like MLR and ANN [49].

3.3.2. Comparison of Predicted and Observed Value during the Lockdown Period
in Shanghai

To investigate the effect of COVID-19 lockdown measures in Shanghai on the PM2.5
and PM10 concentrations, statistical comparisons of the differences between predicted and
observed concentrations of PM2.5 and PM10 were performed from 31 March to 1 June 2022.
The results are presented in Table 6. Furthermore, the difference between the observed
and predicted concentrations of PM2.5 and PM10 during the lockdown period are shown in
Figures 10 and 11.

Table 6. Statistical comparisons of the differences between predicted and observed concentrations
during the lockdown period, with * indicates that p-value is lower than 0.05.

Z p

PM2.5 −3.821 0.000 *
PM10 −3.000 0.003 *
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As is presented in Table 6, the predicted and observed values of PM2.5 and PM10 differ
significantly during the lockdown period, as the p-value were 0.000 and 0.003. From this, we
can speculate that lockdown measures have a significant impact on the daily concentration
of PM2.5 and PM10. In addition, as is shown in Figures 10 and 11, the majority of predicted
PM2.5 and PM10 values were higher than observed values during the lockdown period. It
is calculated that the mean value of the subtractive difference between the observed and
predicted PM2.5 concentrations is −8.49 µg/m3, and this value is −7.51 µg/m3 for PM10.
Moreover, the predicted concentrations of PM2.5 and PM10 in Shanghai were higher by
an average of 60.81% and 43.12% per day, respectively compared to the observed values
throughout the lockdown period from 31 March to 1 June 2022. Therefore, COVID-19
lockdown measures in Shanghai can be considered to have a positive impact on air quality,
which is similar to the findings of some public studies researching the changes in the levels
of PM2.5 and PM10 during the lockdown [9,15,17–20]. However, unlike other studies, our
study regarded predicted concentrations of PM2.5 and PM10 during the lockdown period
as the concentrations without lockdown measures.

3.3.3. Comparison of Prediction Results with and without Meteorological Predictors

To investigate whether predictors without meteorological factors overestimate or
underestimate the impact of the COVID-19 lockdown, Holt-Winters time series exponential
smoothing model [50] was used to predict the concentrations of PM2.5 and PM10 during the
lockdown period. In the model where the dependent variable is PM2.5, the predictors are
the concentrations of PM2.5 before COVID-19 broke out. In the model where the dependent
variable is PM10, the predictors are the concentrations of PM10 before COVID-19 broke out.
The results of PM2.5 and PM10 predicted values by using different prediction models are
shown in Figures 12 and 13. Furthermore, the mean percentage error (MPE) of PM2.5 and
PM10 predictions during the lockdown period in Shanghai using XGBoost-based prediction
model and Holt-Winters time series prediction model are shown in Table 7.

Table 7. The mean percentage error (MPE) of PM2.5 and PM10 predictions during the lockdown
period in Shanghai by two different prediction models.

XGBoost-Based
Prediction Model

Holt-Winters Time Series
Prediction Model

PM2.5 60.81% 50.20%
PM10 43.12% 19.06%
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As is indicated in Figures 12 and 13, the prediction results by using meteorological
factors as predictors (XGBoost-based prediction model) have a better presentation of the
volatility of daily PM2.5 and PM10 concentrations. It can be noted that most predictions
without meteorological predictors are lower than those with meteorological predictors. In
addition, as is shown in Table 7, it is calculated that the predicted concentrations of PM2.5
and PM10 without meteorological predictors (Holt-Winters time series prediction model)
were higher by an average of 50.20% and 19.06% per day, respectively compared to the
observed values throughout the lockdown period from 31 March to 1 June 2022 in Shanghai.
In contrast, the predicted concentrations of PM2.5 and PM10 using meteorological predictors
(XGBoost-based prediction model) were 60.81% and 43.12% higher on average per day
compared to the observed values. Therefore, if the pre-COVID-19 epidemic data were used
to predict PM2.5 and PM10 concentrations during the COVID-19 lockdown period without
the use of meteorological predictors, the positive impact of the lockdown measures on air
quality would be underestimated.

4. Conclusions

This study investigated the ambient air quality changes in Shanghai during the COVID-
19 lockdown period. Firstly, by analyzing the air quality during the study period, it was
found that the proportion of days with good air quality in the three years of COVID-19
were increased year by year, with 41.27%, 65.08%, and 71.43% in 2020, 2021, and 2022,
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respectively. Then, based on the proposed XGBoost-based time series prediction model, the
concentrations of PM2.5 and PM10 are predicted with the assumption that no COVID-19
lockdown measures were adopted. Thus, by comparing the actual observations during
the COVID-19 lockdown period with predicted values, the concentrations of PM2.5 and
PM10 were totally reduced by 60.81% and 43.12% in COVID-19 lockdown period (from 31
March to 1 June 2022). Furthermore, in terms of the predicted results without considering
meteorological factors, the concentrations of PM2.5 and PM10 during the lockdown period
were reduced by 50.20% and 19.06%, respectively, compared to the predicted values during
the non-lockdown period. These indicate that the epidemic containment measures have
had a positive impact on air quality.

To sum up, this study mainly provides three contributions: (1) quantified the continu-
ous air quality changes and compared air pollution levels before and during the COVID-19
lockdown period in Shanghai; (2) comprehensively utilized the meteorological factors
and air pollutant data to predict the concentration of PM in Shanghai during COVID-19
lockdown period in 2022, which has avoided the underestimation of the positive impact
of COVID-19 lockdown measures on air quality by considering the meteorological fac-
tors; (3) Under the most basic conditions of life, the impact of human activity restrictions
on PM provides data support for the future government to formulate environmental
governance measures.

However, this paper is limited in some respects. In our future studies, we will try
to use larger amounts of PM2.5 and PM10 data in more regions for better model perfor-
mance. In this work, we only studied the changes in air quality before and during the
COVID-19 lockdown period, except for this, our future studies will focus on the air quality
changes before, during, and after the lockdown period. Furthermore, we did not consider
the variations of PM2.5 or PM10 with specific human factors such as mobility, industry,
manufacturing, or residential activity due to the lack of data. Therefore, our future studies
will try to investigate correlations between the variations of PM2.5, PM10 and the specific
anthropogenic factors.
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Appendix A

Table A1. Correlation coefficients between meteorological factors and other pollutant concentrations
with PM2.5 and PM10 concentrations before and during the COVID-19 outbreak.

SO2 NO2 CO O3 Temperature Dew Point VISIB Weed Speed

2015–2019
PM2.5 0.636 ** 0.671 ** 0.825 ** −0.033 −0.265 ** −0.308 ** −0.442 ** −0.282 **
PM10 0.706 ** 0.592 ** 0.678 ** 0.058 * −0.202 ** −0.323 ** −0.216 ** −0.235 **

2020–2022
PM2.5 0.449 ** 0.638 ** 0.712 ** 0.003 −0.297 ** −0.337 ** −0.373 ** −0.247 **
PM10 0.603 ** 0.557 ** 0.461 ** 0.107 ** −0.23 ** −0.376 ** −0.053 −0.143 **

* p < 0.05 ** p < 0.01.
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Int. J. Environ. Sci. Technol. 2022, 20, 5349–5358. [CrossRef]

39. Coccia, M. Sources, Diffusion and Prediction in COVID-19 Pandemic: Lessons Learned to Face next Health Emergency. AIMSPH
2023, 10, 145–168. [CrossRef]

40. Coccia, M. Pandemic Prevention: Lessons from COVID-19. Encyclopedia 2021, 1, 433–444. [CrossRef]
41. US Department of Commerce, N. Air Quality Index. Available online: https://www.weather.gov/safety/airquality-aqindex

(accessed on 29 April 2023).
42. Pan, S.; Du, S.; Wang, X.; Zhang, X.; Xia, L.; Liu, J.; Pei, F.; Wei, Y. Analysis and Interpretation of the Particulate Matter (PM10 and

PM2.5) Concentrations at the Subway Stations in Beijing, China. Sustain. Cities Soc. 2019, 45, 366–377. [CrossRef]
43. Myers, J.L.; Well, A. Research Design and Statistical Analysis, 2nd ed.; Lawrence Erlbaum Associates: Mahwah, NJ, USA, 2003;

ISBN 978-0-8058-4037-7.
44. Huang, L.; Sun, J.; Jin, L.; Brown, N.J.; Hu, J. Strategies to Reduce PM2.5 and O3 Together during Late Summer and Early Fall in

San Joaquin Valley, California. Atmos. Res. 2021, 258, 105633. [CrossRef]
45. Le, T.; Wang, Y.; Liu, L.; Yang, J.; Yung, Y.L.; Li, G.; Seinfeld, J.H. Unexpected Air Pollution with Marked Emission Reductions

during the COVID-19 Outbreak in China. Science 2020, 369, 702–706. [CrossRef] [PubMed]
46. Su, Z.; Duan, Z.; Deng, B.; Liu, Y.; Chen, X. Impact of the COVID-19 Lockdown on Air Quality Trends in Guiyang, Southwestern

China. Atmosphere 2021, 12, 422. [CrossRef]
47. Gui, K.; Che, H.; Zeng, Z.; Wang, Y.; Zhai, S.; Wang, Z.; Luo, M.; Zhang, L.; Liao, T.; Zhao, H.; et al. Construction of a Virtual

PM2.5 Observation Network in China Based on High-Density Surface Meteorological Observations Using the Extreme Gradient
Boosting Model. Environ. Int. 2020, 141, 105801. [CrossRef]

https://doi.org/10.1371/journal.pone.0263265
https://www.ncbi.nlm.nih.gov/pubmed/35344546
https://doi.org/10.1016/j.jhazmat.2021.125445
https://doi.org/10.1038/s41598-017-15909-1
https://www.ncbi.nlm.nih.gov/pubmed/29150676
https://doi.org/10.1073/pnas.1900125116
https://www.ncbi.nlm.nih.gov/pubmed/30988177
https://doi.org/10.1016/j.envint.2011.03.003
https://www.ncbi.nlm.nih.gov/pubmed/21440303
https://doi.org/10.1016/j.scitotenv.2020.142227
https://doi.org/10.1016/j.atmosenv.2022.119015
https://doi.org/10.1016/j.jenvman.2021.112676
https://doi.org/10.34104/ajpab.020.15023
https://doi.org/10.5194/acp-21-9475-2021
https://doi.org/10.1007/s40201-020-00598-2
https://doi.org/10.1016/j.partic.2015.01.003
https://doi.org/10.1080/19475683.2022.2121855
https://doi.org/10.3390/atmos10070373
https://doi.org/10.1088/1755-1315/113/1/012127
https://doi.org/10.4209/aaqr.2019.08.0408
https://doi.org/10.1007/s13762-022-04511-2
https://doi.org/10.3934/publichealth.2023012
https://doi.org/10.3390/encyclopedia1020036
https://www.weather.gov/safety/airquality-aqindex
https://doi.org/10.1016/j.scs.2018.11.020
https://doi.org/10.1016/j.atmosres.2021.105633
https://doi.org/10.1126/science.abb7431
https://www.ncbi.nlm.nih.gov/pubmed/32554754
https://doi.org/10.3390/atmos12040422
https://doi.org/10.1016/j.envint.2020.105801


Atmosphere 2023, 14, 898 17 of 17

48. Fan, Z.; Zhan, Q.; Yang, C.; Liu, H.; Bilal, M. Estimating PM2.5 Concentrations Using Spatially Local Xgboost Based on Full-
Covered SARA AOD at the Urban Scale. Remote Sens. 2020, 12, 3368. [CrossRef]

49. Taheri Shahraiyni, H.; Sodoudi, S. Statistical Modeling Approaches for PM10 Prediction in Urban Areas; A Review of 21st-Century
Studies. Atmosphere 2016, 7, 15. [CrossRef]

50. Chatfield, C. The Holt-Winters Forecasting Procedure. Appl. Stat. 1978, 27, 264. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.3390/rs12203368
https://doi.org/10.3390/atmos7020015
https://doi.org/10.2307/2347162

	Introduction 
	Materials and Methods 
	Sample and Data 
	Measures of Variables 
	Influence of Meteorological and Other Pollution Parameters on PM2.5 and PM10 
	XGBoost-Based Prediction Model 
	Accuracy Evaluation Measure 

	Model Flowchart and Data Analysis Procedure 

	Discussion and Results 
	Air Quality Investigation before and during COVID-19 in Shanghai 
	Impacts of Prediction Factors on PM2.5 and PM10 
	Analysis of the Predicted PM2.5 and PM10 Concentrations in Shanghai 
	Data Prediction and Accuracy Analysis 
	Comparison of Predicted and Observed Value during the Lockdown Period in Shanghai 
	Comparison of Prediction Results with and without Meteorological Predictors 


	Conclusions 
	Appendix A
	References

