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Abstract: The aim of this study is to joint assimilate the ozone product from the satellite Atmospheric
Infrared Sounder (AIRS) and bogus data using the four-dimensional ensemble-variational (4DEnVar)
method, and demonstrate the potential benefits of this initialization technique in improving hurricane
forecasting through a case study. Firstly, the quality control scheme is employed to enhance the
ozone product quality from the satellite AIRS; a bogus sea level pressure (SLP) at the hurricane center
is constructed simultaneously based on Fujita’s mathematical model for subsequent assimilation.
Secondly, a 4DEnVar satellite ozone and bogus data assimilation (SOBDA) model is established,
incorporating an observation operator of satellite ozone that utilizes the relationship between satellite
ozone and potential vorticity (PV) from the lower level of 400 hPa to the upper level of 50 hPa. Finally,
several comparative experiments are performed to assess the influence of assimilating satellite ozone
and/or bogus data, the 4DEnVAR method and four-dimensional variational (4D-Var) method, and
ensemble size on hurricane prediction. It is found that assimilating satellite ozone and bogus data with
the 4DEnVar method concurrently brings about significant alterations to the initial conditions (ICs) of
the hurricane vortex, resulting in a more homogeneous and deeper vortex with a larger, warmer, and
more humid core as opposed to assimilating only one type of data. As the duration of integration
increases, the initial perturbations in the upper levels gradually propagate downwards, giving rise to
significant disparities in the hurricane prediction when satellite ozone and/or bogus information is
incorporated. The results demonstrate that utilizing the 4DEnVar approach to assimilate both satellite
ozone and bogus data leads to the maximum enhancement in reducing track error and central SLP
error of hurricane simulation throughout the entire 72 h forecasting period, compared to assimilating
a single dataset. Furthermore, comparative experiments have indicated that the performance of
4DEnVar SOBDA in hurricane forecasting is influenced by the ensemble size. Generally, selecting an
appropriate number of ensemble members can not only effectively improve the accuracy of hurricane
prediction but can also significantly reduce the demand for computational resources relative to the
4D-Var method. This study can also serve as an advantageous technical reference for numerical
applications of ozone products from other satellites and hurricane initialization.

Keywords: 4DEnVar; hurricane initialization; satellite ozone; data assimilation

1. Introduction

Ozone is a kind of atmospheric trace gas. It not only has an important impact on the
survival of human and surface organisms but also affects the process of atmospheric dy-
namic, thermodynamic, and radiation across the lower and upper layers of the atmosphere.
Since variations in ozone concentration at different heights and latitudes result from the
atmospheric flow, ozone is, thus, the passive tracer at the synoptic scale. At early stages,
the changes over time in the height of the atmosphere, north–south wind component,
and temperature at a pressure level of approximately 300 millibars were discovered to be
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closely linked to variations in ozone data from the stations [1,2]. It was found that ozone
distributions in the tropopause could be treated as the surrogate for potential vorticity
(PV) in the stratospheric and contained the information of meso-scale flow regimes [3,4].
Using Total Ozone Mapping Spectrometer (TOMS) ozone data from 1979–1982, Stout and
Rodgers [5] concluded that the tropical cyclone changed the moving direction when its
distance from the ozone-rich upper tropospheric trough was approximately 15◦ latitude.
With a linear wave model, Riishøjgaard and Källén [6] found that the correlations between
PV and ozone column values were associated with Rossby waves, indicating the possibility
of ozone data assimilation in general circulation models. Moreover, the fluctuation of
vertically integrated ozone was significantly influenced by the motion of upper-level lows
and highs [7]. After analyzing satellite ozone data for many years, Jiang et al. [8] found
that the interannual variation of the mid-latitude total ozone column was closely related to
atmospheric circulation, which was obviously different from that in the tropics.

In recent years, efforts have been undertaken to utilize ozone information in the study
of hurricanes. The eyewall and eye regions of hurricanes exhibited the highest and lowest
ozone concentrations, respectively, during intensification, as measured by the National
Oceanic and Atmospheric Administration (NOAA) aircraft [9]. Conversely, reduced levels
of ozone were observed in both the eyewall and eye regions during weakening [9]. Subse-
quently, this discovery was further confirmed through a thorough analysis of TOMS data
from 1996 to 2003 [10]. Moreover, drawing from the robust association between mean poten-
tial vorticity (MPV) and upper level geopotential height within tropical cyclones, the TOMS
ozone data were successfully incorporated into a numerical weather prediction (NWP)
model to provide a more precise representation of the broader atmospheric conditions
surrounding Hurricane Erin (2001) [10–12]. Liu and Zou [13] recently conducted the initial
attempt to assimilate Atmospheric Infrared Sounder (AIRS) ozone observations in hurri-
cane prediction. In their study, an ozone assimilation scheme utilizing the four-dimensional
variational (4D-Var) was introduced and integrated into the non-hydrostatic mesoscale
model version 5 (MM5), considering the link between ozone and MPV for chosen model
levels. The aforementioned research indicated that the assimilation of ozone observations
had a considerable effect on the accuracy of hurricane track prediction.

Additionally, it was discovered that bogus data assimilation (BDA) with 4D-Var
method was a productive technique for initializing the hurricane structure to be in agree-
ment with NWP models and with observations [14–17]. In the first place, the sea level
pressure (SLP) bogus is calculated by measured variables obtained from the Tropical Predic-
tion Center (TPC). Subsequently, the initial conditions (ICs) for the numerical model which
comply with the equation of atmospheric motion are obtained after the assimilation of SLP
bogus [18]. With the advancement of assimilation theory and the utilization of advanced
computing systems, it had yielded remarkable outcomes in the combined assimilation of
bogus and a wide variety of satellite observations to enhance hurricane forecasting [19–24].
In the past few years, Liu and Zhang [25] upgraded the technique proposed by Liu and
Zou [13] to develop a bogus and ozone data assimilation (BODA) scheme using the 4D-Var
method. Significant enhancements were observed in the accuracy of hurricane prediction,
particularly in the simulation of initial configuration, trajectory, and strength.

However, the 4D-Var method also has some drawbacks. In the first place, the back-
ground forecast’s fixed covariance matrix is not as efficient in capturing the flow-dependent
errors compared to the ensemble Kalman filter techniques [26]. In the second place, the 4D-
Var method is extremely time-consuming and labor-intensive, requiring multiple iterations
of the tangent linear adjoint model to be operated on the powerful parallel computer, as
well as the maintenance and development of these models [27]. The same disadvantages
can be observed in the study of Liu and Zhang [25]. To tackle the aforementioned challenges
associated with 4D-Var, the notion of ensemble is introduced. Firstly, ensemble utiliza-
tion enables the 4D-Var process to generate a background error covariance matrix that
varies with the flow conditions, which is more effective than the static background error
covariance matrix [28,29]. Secondly, ensemble members can be used to calculate the gradi-
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ent, thus avoiding the need for an adjoint model [30,31]. In comparison to the ensemble
four-dimensional variational (En4DVar) technique, which utilizes the adjoint model during
the assimilation execution process, the four-dimensional ensemble-variational (4DEnVar)
technique has lower precision but higher assimilation efficiency [32,33]. If the accuracy
loss is negligible, 4DEnVar could be a very appealing option [34]. Thus, this paper seeks a
proper way to joint assimilate the ozone product from the satellite AIRS and bogus data
using the 4DEnVar method, in order to further enhance hurricane forecasting.

The structure of this paper is as follows: Section 2 provides a concise overview of the
data and methodology employed in this study. In Section 3, we present an outline of the
hurricane case that was analyzed in this investigation, as well as the experiment design. In
Section 4, we scrutinize the numerical outcomes obtained from the assimilation experiments
and forecast experiments. Lastly, Section 5 offers a recapitulation of the discoveries made
in this study.

2. Data and Methodology
2.1. AIRS Ozone Data and Bogus Data

At the present, AIRS is the most cutting-edge hyperspectral infrared atmospheric
sensing device, encompassing 2378 radiometric bands across wavelengths spanning from
3.74 µm to 15.4 µm. The ozone information can be accessed from level II and level III
products of AIRS. Among them, the level II datasets featuring a nadir ground sample
distance of 45 km in its captured imagery include the ozone mixing ratio and total ozone
column which are generated twice a day. Numerous studies have demonstrated that ozone
data retrieved from AIRS are reliable and can be used for further purposes [35–40]. This
study utilizes the level II total ozone column product of the AIRS.

As illustrated in Figure 1, the AIRS ozone distribution of Hurricane Earl is strongly
linked to the Geostationary Operational Environmental Satellite (GOES)-13 picture of
visible clouds. Previous studies have demonstrated that AIRS ozone product can be a
useful tool for understanding the hurricane structure in the vicinity of the tropopause, with
higher concentrations in areas of downward air movement and lower concentrations in
areas of upward air movement [41–44]. The AIRS data were accessible by 1800 UTC on
1 September 2010, and this time was designated as the model’s starting point.
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Figure 1. (a) Total ozone column distribution of Hurricane Earl from AIRS at 1800 UTC on 1 September
2010; (b) The picture of visible clouds of Hurricane Earl from GOES-13 at 1325 UTC on 1 September
2010 (http://www.nrlmry.navy.mil/ (accessed on 20 December 2014)).

It is well known that any data must undergo appropriate quality control before being
assimilated into the model, and AIRS data are no exception. However, Liu and Zou [45]

http://www.nrlmry.navy.mil/
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discovered that the majority of AIRS ozone data around the hurricane center were marked
as invalid by the official quality control procedure, despite the fact that the observation
could be useful. Subsequently, they created a two-step quality control procedure to fulfill
the assimilation requirements of satellite ozone, which retained more observations close to
the eye of the hurricane than the official quality control procedure. This research employed
the quality control scheme developed by Liu and Zou [45] to enhance the data quality of
satellite ozone. As Table 1 indicates, the quality control process has significantly enhanced
the relationship between ozone data obtained from the AIRS and MPV, and reduced mean
error and standard deviation, which facilitates the incorporation of AIRS ozone observation
into assimilation processes.

Table 1. Data attributes prior to and following quality control.

Mean Error
(DU)

Standard
Deviation (DU)

Correlation Coefficient
(AIRS Ozone and MPV)

Prior to quality control −2.3243 23.3862 0.5428
Following quality control 1.2473 14.2231 0.8801

In addition, a bogus is assimilated to produce a more believable starting vortex at the
lower level, while assimilating satellite ozone improves the ICs at the higher level. In this
study, a bogus SLP is constructed based on Fujita’s formula for subsequent assimilation [46],
and the construction function is shown as follows:

Pbogus(d) = P∞ −
(P∞ − Pe)

[1 + (d/
√

2D0)
2
]
1/2 , d ≤ D f ar, (1)

P∞ =
Pfar(Dfar)[1 + (Dfar/

√
2D0)

2
]
1/2
− Pe

[1 + (Dfar/
√

2D0)
2
]
1/2
− 1

(2)

where d represents the distance from the eye of the hurricane, P∞ denotes the estimated
SLP at an extremely distant location, Pe represents the SLP at the eye of the hurricane, Pfar is
the farthest closed isobar, D0 refers to the distance at which the SLP gradient is the steepest,
and Dfar denotes the radius of Pfar. It is worth noting that the parameters Pe, Pfar, and Dfar
can be determined from the observational report of the National Hurricane Center (NHC),
while D0 is derived using the range of wind speeds reaching 34 knots from the center.
Figure 2 displays the spatial pattern of SLP bogus for Hurricane Earl, with Pe = 940.6 hPa,
Pfar = 1008.5 hPa, Dfar = 374.1 km, and D0 = 162.9 km at 1800 UTC on 1 September 2010.
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Atmosphere 2023, 14, 866 5 of 23

2.2. Numerical Model and Observation Operator

Based on the Penn State/National Center for Atmospheric Research (NCAR) non-
hydrostatic MM5 [47] and the 4D-Var BODA scheme developed by Liu and Zhang [25], a
4DEnVar SOBDA model is established in this study. The experiments utilized two model
grids (as shown in Figure 3), where the larger grid (D01) consisted of 105 × 105 points
and simulated the broader atmospheric conditions with a horizontal spacing of 45 km,
while the smaller grid (D02) consisted of 101 × 101 points and moved with the hurricane
to simulate the more localized atmospheric conditions with a horizontal spacing of 15 km.
The vertical direction of model has 27 levels, and the model extends up to a pressure of
50 hPa. Physical parameterizations employed in the model include the Dudhia moisture
scheme, the Grell cumulus scheme, and the Blackadar planetary boundary layer scheme.
The initial boundary conditions are sourced from NCEP/GFS FNL data at a resolution of
1 degree in both latitude and longitude.
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Figure 3. The path of Hurricane Earl, spanning from 0000UTC on 30 August 2010 to 1800UTC on
5 September 2010. The path is indicated by unfilled circles for storms or depressions, as well as cross
symbols for hurricanes, with the corresponding dates labeled along its trajectory. Additionally, the
image shows the outermost forecast domain D01, which had a resolution of 45 km, along with the
inner domains D02, with a resolution of 15 km, that moved along with the hurricane during the 3-day
forecast period. One of these domains was positioned at the start of the forecast period, at 1800UTC
on 1 September 2010, while the other was located at the end of the forecast period, at 1800UTC on
4 September 2010. (Liu and Zhang [25]).

Assimilating ozone data in NWP models is challenging, as it is not a model variable.
In the early days, Jang et al. [11] observed that there was a strong link between ozone
measurements from TOMS and MPV in zones between the equator and the poles, which
could be expressed as a linear regression model. Then, taking the linear regression model
as an observation operator, a procedure for assimilating TOMS total ozone data was
developed to enhance hurricane track prediction, following the separation of storm-scale
and synoptic-scale features [10,12]. In recent years, the first attempt had been made to
assimilate AIRS ozone observations into meso- and micro-scale fields, which had higher
spatial and temporal resolutions than TOMS ozone data [13,25]. The following procedures
were conducted in their experiments: (1) To confirm the strong correlation, the researchers
estimated the relationship between ozone measured by AIRS and MPV within the study
area; (2) The correlation coefficient between the ozone observation and PV was computed
at each layer of the model ranging from 400 hPa to 50 hPa; (3) Based on the strongest
correlation values obtained from step (2), n (n = 1, 2, 3, . . . , 11) layers of the model
were selected, and an observation operator was created for each layer to be used in the
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subsequent assimilation process. One possible formulation for the observation operator is
a linear regression model given by

TO = a× PV + b. (3)

where a and b are constants that are calculated by analyzing the statistical information
on total ozone (TO) and PV (PV). Thus, the total ozone is linked to the model variables
through Equation (3). This study adopted the same observation operator and processing
steps as Liu and Zhang [25]. Based on the previous conclusion, this study sets n to 5 as
the most appropriate value. Table 2 presents the figures of a and b associated with the five
layers that were selected.

Table 2. The figures of a and b associated with the five layers that were selected.

Model Layer a b

193 hPa (σ = 0.15) −1.98 275.54
231 hPa (σ = 0.19) −3.62 276.21
269 hPa (σ = 0.23) −3.38 276.31
307 hPa (σ = 0.27) −3.21 276.47
345 hPa (σ = 0.31) −3.33 276.70

2.3. 4DEnVar Method

The 4D-Var method utilizes dynamic equations to construct the cost function, and
then the optimal analysis value is achieved by searching for the cost function’s minimum
value with respect to the control variable. The following expression represents the cost
function that needs to be minimized [13]:

J(x0) =
1
2
(x0 − xb)

TB−1
c (x0 − xb) +

1
2

i=0

∑
i=k

[Hi M0→i(x0)− yi]
TR−1

i [Hi M0→i(x0)− yi]. (4)

where x0 is the state variable at time t0, xb denotes the initial background value at t0,
B−1

c represents the inverse matrix of the static covariance matrix of background error B,
Ri is the covariance matrix of observation error at time ti, yi denotes the observations at
ti, M represents the state transition operator, and Hi denotes the observation operator
transforming the model domain into the observation domain at ti. Thus, the cost function’s
gradient in relation to x0 is [26]

∇J(x0) = B−1
c (x0 − xb) +

i=0

∑
i=k

MT
0→iH

T
i R−1

i [Hi M0→i(x0)− yi] (5)

where M represents the linearized dynamical system and MT denotes the adjoint system.
The primary goal of 4DEnVar is to employ the ensemble to precisely calculate MT. The

state variable’s accumulation from t0 to ti is represented by

xi = M0→i(x0). (6)

The reference state at t0 is named x∗0 . Subsequently, x∗0 is perturbed by adding x̃0:

x∗i + x̃i = M0→i(x∗0 + x̃0). (7)

The first-order Taylor expansion of Equation (7) at x∗0 is expressed as [28]

x∗i + x̃i = M0→i(x∗0) + M0→i x̃0 + o(x̃0). (8)
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If o(x̃0) is not taken into account, the perturbation at ti caused by the perturbation at
t0 can be denoted by

x̃i ≈ M0→i x̃0. (9)

Then, the initial perturbation ensemble X̃0 is denoted by [29]

X̃0 =
(

x̃1
0, x̃2

0, · · · , x̃j
0

)
, (10)

where j denotes the ensemble size. At ti, the perturbation ensemble X̃i can be represented
by

X̃i ≈ M0→iX̃0. (11)

A matrix that describes the covariance of errors across different time periods is defined
as [27]

Bij =
1

N − 1
X̃iX̃

T
j . (12)

Therefore, Equation (11) can be converted to

Bi0 ≈ M0→iB00, (13)

while MT
0→i satisfies

B0i ≈ B00MT
0→i, (14)

where B00 is the B matrix with flow-dependent characteristics. Moreover, a reduction
coefficient µ is incorporated to decrease the perturbation at the initial time by a factor of√

µ, with the aim of taking into account the accuracy of the adjoint system estimation. Then,
the Be matrix with flow-dependent characteristics is expressed as [30]

Be =
B00

µ
. (15)

Incorporating Be results in a new expression for the cost function, as follows [31]:

J(x̃0) =
1
2 (x∗0 + x̃0 − xb)

TB−1
e (x∗0 + x̃0 − xb) +

1
2

i=0
∑

i=k
[Hi M0→i(x∗0) + HiM0→i x̃0 − yi]

T

×R−1
i [Hi M0→i(x∗0) + HiM0→i x̃0 − yi]

(16)

The following expression represents the cost function’s gradient in terms of x̃0 [34]:

∇J(x̃0) = B−1
e (x∗0 + x̃0 − xb) +

i=0

∑
i=k

MT
0→iH

T
i R−1

i × [Hi M0→i(x∗0) + HiM0→i x̃0 − yi] (17)

3. Case Description and Experiment Design
3.1. Case Description

For the convenience of comparison, Hurricane Earl (2010) used in Liu and Zhang [25]
is chosen for numerical experiments in the present investigation. On 25 August 2010,
Earl formed as a tropical depression and was classified as a tropical storm two days
later. At 0000 UTC on 3 August, it underwent intensification and was upgraded to a
category 3 hurricane. After 48 h, it continued to strengthen and was reclassified as a
category 4 hurricane. According to NOAA data, Earl maintained this level of intensity
until 1800 UTC on 1 September, with maximum sustained winds over 225 km/h and a
minimum SLP below 930 hPa. At 0000 UTC on 4 September, Earl weakened to a tropical
storm before it hit Nova Scotia as a category 1 hurricane later that day. At 0600 UTC on
6 September, it had joined forces with an additional low pressure center situated in the
Labrador Sea (Figure 3). This study concentrates on the time frame between 1800 UTC on
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1 September 2010 and 1800 UTC on 4 September 2010 when Earl was at its strongest before
it made landfall.

3.2. Experiment Design

The impact of assimilating satellite ozone and bogus data regarding the forecast of
Hurricane Earl over a period of 72 h is assessed through three 4DEnVar experiments.
“SOBDA” obtains its ICs by assimilating both satellite ozone and bogus data, “BDA”
includes only the assimilation of bogus data, and “SODA” includes only the assimilation
of satellite ozone observations. Predictions that are initialized with xb and do not involve
data assimilation are denoted as “CTRL”. In three 4DEnVar experiments, satellite ozone
and/or bogus data from 1800 UTC on 1 September 2010 are incorporated into a 4DEnVar
assimilation window of 30 min, with 3 min intervals between assimilations. Furthermore,
a set of experiments is carried out to thoroughly compare the disparities between the
outcomes of 4DEnVAR and 4D-Var, and to explore the influence of the number of ensemble
members on 4DEnVAR experiments.

4. Numerical Results
4.1. Initial Structure

Based on NCEP/GFS FNL data, CTRL generates a weak vortex with the center SLP of
984 hPa at the starting point (Figure 4a). As anticipated, the center SLP of BDA or SOBDA
fills up quickly in the core area and gradually in the exterior area (Figure 4b,d), exhibiting
a horizontal spread that is comparable to that of the SLP bogus (Figure 2). Nevertheless,
it is clear that assimilating satellite ozone data alone has a negligible effect on the initial
SLP (Figure 4c). Figure 5 displays the cross-sectional view of pressure perturbation across
the west–east axis prior to assimilation (CTRL) and pressure perturbation increments
after assimilation (BDA, SODA, and SOBDA) through the hurricane center. Similarly,
a slight modification is made to the initial pressure perturbation of SODA (Figure 5c),
compared with CTRL (Figure 5a). Figure 5b illustrates that BDA induces negative pressure
perturbation increments that reach the mid-levels of the troposphere, with magnitudes of
approximately−2 to−1 hPa. In contrast to BDA, negative pressure perturbation increments
caused by SOBDA are observed across the lower to upper levels, with a maximum value of
−18 hPa (Figure 5d). The findings indicate that SOBDA has created a more comprehensive
and consistent initial vortex compared to BDA and SODA.

To achieve equilibrium between pressures and wind modifications within the NWP
model limit, the temperature fields as well as the humidity fields are also altered during the
minimization process of the cost function. The cross-sectional view of the temperature and
humidity fields across the west–east axis prior to assimilation (CTRL) and after assimilation
(BDA, SODA, and SOBDA) through the hurricane center are shown in Figures 6 and 7.
The results indicate that the CTRL simulation (as shown in Figures 6a and 7a) is unable
to replicate the deviations in temperature and humidity that are typically observed dur-
ing the mature phase of a hurricane, due to the lack of observations in the hurricane
circulation over the open ocean. Notably, considerable adjustments are made to the temper-
ature fields as well as the humidity fields of a hurricane in BDA and SOBDA. Moreover,
Figures 6 and 7 show the temperature increments and specific humidity increments in BDA
(Figures 6b and 7b), SODA (Figures 6c and 7c), and SOBDA (Figures 6d and 7d) which are
represented by the shaded areas. The temperature elevation above the hurricane center in
BDA is limited to 3 K between 600 hPa and 200 hPa (Figure 6b), which reveals a lack of
strength in the warm core. Within the lower levels of the atmosphere in the BDA simulation,
the most significant increase in specific humidity is observed at 750 hPa, with a rise of
6 g kg−1 as depicted in Figure 7b. The warm core of BODA is more pronounced than that
of BDA, as shown by the temperature above the hurricane center which increases up to 9 K
around 250 hPa and 400 hPa (Figure 6d). It is noteworthy that the robust warm core is in
agreement with the strong perturbation pressure that is presented in Figure 5d. Meanwhile,
the BODA simulation exhibits a substantial increase in specific humidity between 900 hPa
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and 550 hPa, with the most significant rise of 10 g kg−1 occurring in the vicinity of 750 hPa
(Figure 7d). It is also noticed that the initial vortex of SODA does not exhibit the warm and
moist core that is present in the initial vortex of BDA and SOBDA (Figures 6c and 7c). The
temperature fields as well as the humidity fields in SODA are similar to CTRL.
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As satellite ozone and PV are closely related, this study integrates AIRS ozone data into
the hurricane simulation, which necessitates an evaluation of PV increments subsequent to
data assimilation. Figure 8 illustrates the cross-sectional view of PV across the west–east
axis prior to assimilation (CTRL) and PV increments after assimilation (BDA, SODA, and
SOBDA) through the hurricane center. The application of the BDA procedure leads to an
elevation in PV above the hurricane center, as indicated by the data presented in Figure 8b.
Specifically, this increase occurs within the range of 950 hPa to 300 hPa, with the highest
observed increase being 3 PVU at approximately 600 hPa. In contrast, SODA mainly alters
the ICs of PV in the upper troposphere, leading to a 5 PVU increase near 250 hPa as shown
in Figure 8c. As expected, the height range of the PV increment in SODA is basically
consistent with the height range of assimilating AIRS ozone data. In SOBDA, the combined
assimilation of both satellite ozone and bogus data makes significant changes in the entire
PV field (Figure 8d). One notable characteristic is the significant increase in PV at both the
lower and upper levels, with an increase of up to approximately 10 PVU. However, a slight
decrease in PV is observed near 450 hPa.
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Figure 7. The cross-sectional view of the specific humidity (solid line) across the west–east axis
prior to assimilation ((a) CTRL) and after assimilation ((b) BDA; (c) SODA; (d) SOBDA) through the
hurricane center, with its increments (shading). The specific humidity contour lines are spaced at
intervals of 1 g kg−1.

The aforementioned results demonstrate that the mature hurricane structure generated
by SOBDA is more realistic than the ones generated by BDA and SODA. It is worth noting
that the increment of SOBDA is not a simple sum of the increment of BDA and the increment
of SODA. The main reason is that the 4DEnVar method seeks the optimal ICs under the
constraint of the NWP model, so the initial model fields are dynamically and physically
consistent. These modifications of the upper levels using AIRS ozone data, as well as the
lower levels with bogus data, result in a stronger intensity prediction of a hurricane.
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4.2. Track and Intensity

In Figure 9a, the simulated hurricane tracks from CTRL, BDA, SODA, and SOBDA
beginning at 1800 UTC on 1 September 2010 are depicted, with the observed best track of
Unisys (OBS) presented for reference. More details can be found in Appendix A Table A1.
It has been noted that Earl initially proceeded in a northwesterly direction, after which
it made a sudden change in course and moved towards the northeast 24 h later. As no
data was assimilated into the initial model fields with a cold start, CTRL’s prediction of
the hurricane track is seen to be on the east side of OBS, resulting in a rapid increase in
track error after the initial time and a postponement in the hurricane’s arrival on land with
an approximate positional discrepancy of 255 km (Figure 9b). In comparison to CTRL,
other experiments assimilating satellite ozone and/or bogus data yield varying levels of
improvement in the hurricane’s track simulation. In addition, SOBDA demonstrates a
more substantial enhancement in the hurricane’s track prediction compared to BDA and
SODA throughout the entire 72 h prediction timeframe, with the track deviation staying
under 130 km and the hurricane’s landfall location being nearer to OBS. It is evident that
the disparities between the four prediction tracks are minimal during the initial 9 h, but
become much more pronounced afterwards.

Figure 10 illustrates the time-varying center SLP and its error from CTRL, BDA, SODA,
and SOBDA, with the observation of Unisys (OBS) provided for comparison. If bogus data
are not assimilated, the predicted center SLP variations of Hurricane Earl by CTRL and
SODA exhibit a comparable pattern that is not able to accurately reflect the hurricane’s
intensity. On the other hand, BDA and SOBDA not only produce an initial center SLP
of approximately 940 hPa, which is nearly identical to OBS, but also generate powerful
hurricanes with a center SLP lower than 930 hPa. Furthermore, the center SLP error from
SOBDA initialized with assimilating satellite ozone and bogus data is significantly smaller
compared to BDA, except for the first 6 h. It is probable that the spinup issue, observed
during the integration of SOBDA, as shown by the sudden jump in center SLP within
the first 6 h in Figure 10a, is caused by the implementation of a solitary domain for data
assimilation and two nested domains for hurricane prediction.
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Figure 9. (a) The simulated hurricane tracks from CTRL, BDA, SODA, SOBDA, and the observed
best track of Unisys (OBS) beginning at 1800 UTC on 1 September 2010, with the forecast hours
marked along the tracks. The hurricane centers at 0 h, 24 h, and 48 h are marked with dots, and the
hurricane centers at 72 h are marked with arrows. (b) Track error of CTRL, BDA, SODA, and SOBDA
throughout the entire 72 h prediction timeframe.
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Figure 10. The time-varying center SLP (a) and the center SLP error (b) of CTRL, BDA, SODA, and
SOBDA throughout the entire 72 h prediction timeframe, with the observation of Unisys (OBS).

The results presented above suggest that incorporating both satellite ozone and bogus
data can lead to a notable enhancement in the simulation of Hurricane Earl’s track and
intensity. What leads to the differences while simulating Hurricane Earl? Section 4.3
provides a detailed analysis of the influence of satellite ozone and bogus data on the
simulated structures.

4.3. Causes of Simulated Differences

It is noteworthy to look into the hurricane structures after 9 h of integration as the
alterations in track and intensity predictions from CTRL, BDA, SODA, and SOBDA become
apparent at that moment (Figures 9 and 10). The spatial distribution of SLP from CTRL,
BDA, SODA, and SOBDA after 9 h of integration is illustrated in Appendix A Figure A2. It is
found that the spatial distribution of SLP in SOBDA is comparable to that of BDA, featuring
a reduced central SLP in comparison to CTRL. Nonetheless, the hurricane intensity in the
SODA simulation is marginally lower compared to that in CTRL. Appendix A Figure A3
displays the cross-sectional view of pressure perturbation across the west–east axis from
CTRL and pressure perturbation increments from BDA, SODA, and SOBDA through the
hurricane center. It is noteworthy that, despite the initial pressure perturbation being weak
in BDA (Figure 5b), the simulated intensity of pressure perturbation after 9 h of adjustment
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is considerably stronger than that in SOBDA. After 9 h of integration, a comparable trend
can be observed in the vertical temperature distribution from both BDA and SOBDA
simulations, passing through the hurricane center, as illustrated in Figure 11b,d. Moreover,
the increase in specific humidity in SOBDA is still larger than that in BDA, especially in
the lower troposphere (Figure 12b,d). It is also worth noticing that the SODA simulation
exhibits a weaker vortex, as depicted in Appendix A Figure A2, which is consistent with
the weaker positive increments of pressure perturbation (Appendix A Figure A3).
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Figure 13 displays the cross-sectional view of PV from CTRL and PV increments from
BDA, SODA, and SOBDA through the hurricane center, after 9 h of integration. Despite
the fact that assimilating satellite ozone observations at the initial time appears to have
a greater influence on the distribution of PV in the vicinity of the tropopause (Figure 8c),
the PV differences between SODA and CTRL extend to the lower levels at the 9 h mark
of integration (Figure 13c). This is mainly attributed to the increased visibility of diabatic
effects and the tropopause dropping to lower levels after a period of model integration.
Contrary to the decrease in PV in SODA, BDA experiences a significant increase of PV from
the lower to the upper layers (Figure 13b). In contrast to BDA, the addition of AIRS ozone
data in SOBDA generates an adjustment after 9 h integration that affects the PV anomaly
between 900 hPa and 200 hPa (Figure 13d). As such, the intensified PV anomaly in the
lower levels may be one of the causes for the model’s propensity to overpredict the strength
of the hurricane during the subsequent simulation of BDA.
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Hurricane motion can be approximated by a mass-weighted deep layer-mean flow
field, which is generally better than single-level steering [48,49]. The environmental steering
flows can be approximated by the mean flows near the hurricane center [50,51]. Therefore,
the steering flows in this study are calculated between 850 and 300 hPa in the hurricane
center area with a radius of 500 km. Figure 14 shows the zonal and meridional components
of the steering flows from CTRL, BDA, SODA, and SOBDA throughout the entire 72 h
prediction timeframe. It is found that the zonal component of the steering flows from
CTRL, BDA, SODA, and SOBDA first decreased, and then increased during the simulation
(Figure 14a), consistent with the simulated motion feature as shown in Figure 9a. Moreover,
the zonal component of the steering flows from SODA and SOBDA during 12–36 h is smaller
than that from CTRL, resulting in a westward track during the simulation. Figure 14b
indicates that the difference in the meridional component of the steering flows from CTRL,
BDA, SODA, and SOBDA is obvious after 36 h. In particular, the meridional component of
the steering flows from SOBDA is greater than that from CTRL, BDA, and SODA during
42–69 h, while less than that from CTRL and SODA after 69 h, resulting in the meridional
difference of the track.
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Figure 14. Zonal (a) and meridional (b) components of the steering flows from CTRL, BDA, SODA,
and SOBDA throughout the entire 72 h prediction timeframe.

It is reasonable to conclude that assimilating satellite ozone data or/and bogus data
will alter the initial structure of the hurricane, then the simulated structure of hurricane
and large-scale environmental fields (such as steering flows) will gradually be adjusted as
the model is integrated, ultimately leading to differences in the forecast of the hurricane’s
track and intensity. Assimilating satellite ozone observations and assimilating bogus data
are mutually beneficial and the joint implementation of the two assimilation schemes can
bring about a structure of a simulated hurricane that is more accurate and true-to-life
as the numerical integration continues. Following the assimilation with a single type of
data, the simulation is likely to overestimate the hurricane intensity from BDA as well as
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underestimate the hurricane intensity from SODA. The combination of satellite ozone and
bogus data in SOBDA allows for all model fields to be adjusted reasonably, leading to a
substantial enhancement in forecasting the path and strength of a hurricane. Furthermore,
this study also indicates the vital importance of an accurate initial structure in hurricane
numerical prediction.

4.4. Impacts of Ensemble Size

In general, increasing the size of the ensemble leads to a decrease in sampling error.
Nevertheless, the ensemble size is usually restricted due to computational cost constraints.
Therefore, it is essential to scrutinize the effect of the ensemble size on the assimilation
and simulation. The same model parameters as those in Section 2.2 are adopted in this
section, and experiments are conducted with five different ensemble sizes of 10, 100,
200, 300, and 500. Since the same hurricane case as Liu and Zhang [25] is employed in
this study, the experimental results of the 4DEnVAR and 4D-Var methods can also be
compared comprehensively. Figure 15 depicts mean track error, mean center SLP error, and
computational expense of initialization of the five 4DEnVAR experiments with ensemble
sizes of 10, 100, 200, 300 and 500, as well as the 4D-Var experiment from Liu and Zhang [25].
It is observed that as the number of ensemble members increases, the mean track error of
each 4DEnVAR experiment for hurricane track forecasting decreases gradually; however,
when the number of ensemble members exceeds 200, the improvement of the hurricane
track forecast is minimal. In comparison to the 4D-Var experiment, the mean track error of
each 4DEnVAR experiment for hurricane track forecasting is decreased to varying extents.
In terms of the hurricane intensity forecast, the mean center SLP errors of 4DEnVAR
and 4D-Var experiments are similar, both of which present the issue of overestimation.
Compared to the others, the 4DEnVAR experiment with 300 ensemble members shows
the most significant improvement in the hurricane intensity forecast. It is worth noting
that the computation time for the hurricane initialization of each 4DEnVAR experiment
is much lower than that of the 4D-Var experiment, with a decrease of more than 50%,
especially for the 4DEnVAR experiment with 300 ensemble members which exhibits the
highest computing efficiency. Therefore, when utilizing the 4DEnVAR method to joint
assimilate satellite ozone and bogus data, an appropriate number of ensemble members
should be selected to significantly improve the hurricane prediction and spend a reasonable
amount of computing time.
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Figure 15. Mean track error, mean center SLP error, and computational expense of initialization of
the 5 4DEnVAR experiments with ensemble sizes of 10, 100, 200, 300, and 500, as well as the 4D-Var
experiment from Liu and Zhang [25].
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5. Summary

A major hurdle in forecasting the path and strength of a hurricane is establishing the
initial structure of a hurricane in the open ocean with limited observations. This study
endeavors to joint assimilate satellite ozone and bogus data based on the 4DEnVar method,
with a case study illustrating how this initialization scheme could enhance hurricane pre-
diction. To assess the results, four experiments are undertaken: three with the 4DEnVar
assimilation of satellite ozone and/or bogus data and one without. Furthermore, a com-
prehensive set of experiments have been performed to thoroughly compare the disparities
between the outcomes of 4DEnVAR and 4D-Var, and to investigate how the ensemble size
impacts 4DEnVAR experiments. To sum it up, the following can be noted:

(1) By assimilating bogus data, the ICs of SLP, pressure perturbation, specific humidity,
and PV primarily in the lower atmospheric layers are altered, resulting in a slight
intensification of Hurricane Earl’s warm core. Assimilating satellite ozone observa-
tions has minimal influence on the ICs, except for the PV pattern in the vicinity of
the tropopause. Nonetheless, the assimilation of both satellite ozone and bogus data
induces notable alterations in the ICs, extending from the lower to the upper layers.
This leads to a more extensive, warmer, and moister core of Hurricane Earl, resulting
in a more profound and evenly distributed initial vortex, compared to the scenario
where only one type of data is assimilated.

(2) Changes to the lower levels have a greater effect on hurricane development than mod-
ifications to the upper levels. As the integration time passes, the perturbations in the
upper levels spread to the lower levels, leading to large discrepancies in the forecasts
when satellite ozone and/or bogus data are assimilated. The assimilation of both
satellite ozone and bogus data provides a more comprehensive and precise depiction
of the hurricane structure features, surpassing the accuracy achieved by assimilating
only one type of data or not performing any assimilation. Consequently, the imple-
mentation of the SOBDA scheme yields a significant improvement in the accuracy of
the hurricane track and intensity forecasts during subsequent numerical simulations.

(3) With the 4DEnVar method, hurricane prediction is found to be much more sensitive
to the ensemble size. By using the 4DEnVAR method to joint assimilate satellite
ozone and bogus data with an appropriate ensemble size, it is possible to significantly
enhance hurricane prediction while still consuming a manageable amount of computer
resources compared to the 4D-Var method.

This study can provide valuable references for hurricane initialization and numerical
applications of ozone data from other satellites. While acknowledging the potential of the
new scheme developed in this study, one case study is still insufficient. It is important
to gather more case studies in the future in order to arrive at a more comprehensive
understanding of its performance. Additionally, there is still room for further improvements
of the new scheme. For example, the assimilation of bogus, AIRS ozone, and other satellite
data (e.g., the Advanced TIROS Operational Vertical Sounder (ATOVS) microwave data
and satellite cloud-derived wind) may further improve the initialization and forecast
of hurricanes.
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Figure A1. The simulated hurricane tracks from CTRL, BDA, SODA, SOBDA, and the observed best
track of Unisys (OBS) beginning at 1800 UTC on 1 September 2010. The hurricane centers are marked
with dots at 3 h intervals.

Table A1. The hurricane center location at 3 h intervals from CTRL, BDA, SODA, SOBDA, and the
observed best track of Unisys (OBS) beginning at 1800 UTC on 1 September 2010 (LON denotes
longitude, the unit is ◦W; LAT represents latitude, the unit is ◦N).

Forecast
Hours

OBS CTRL BDA SODA SOBDA

LON LAT LON LAT LON LAT LON LAT LON LAT

0 72.70 25.70 72.71 25.79 72.72 25.92 72.71 25.79 72.72 25.92
3 73.30 26.30 72.91 26.44 73.06 26.43 72.91 26.44 73.06 26.43
6 73.50 27.20 73.54 26.80 73.27 27.22 73.54 26.80 73.42 27.21
9 73.80 27.80 73.76 27.72 73.61 27.73 73.63 27.86 73.63 27.86

12 74.40 28.60 74.25 28.09 73.84 28.52 73.81 28.25 74.00 28.64
15 74.70 29.30 74.32 28.75 74.06 29.31 74.66 29.13 74.22 29.30
18 74.80 30.10 74.55 29.55 74.30 30.11 74.59 29.95 74.44 29.96
21 74.80 30.90 74.78 30.21 74.53 30.90 75.13 30.58 74.52 30.77
24 75.20 31.70 74.83 30.74 74.43 31.46 75.05 31.27 74.60 31.58
27 75.20 32.50 74.59 31.44 74.34 32.14 74.95 31.83 74.51 32.27
30 74.70 33.00 74.33 32.01 74.09 32.85 74.86 32.52 74.42 32.96
33 74.40 33.80 74.06 32.57 73.81 33.41 74.76 33.07 74.33 33.65
36 74.30 34.60 73.64 33.29 73.54 33.98 74.32 33.52 74.22 34.21
39 74.00 35.30 73.52 33.84 72.93 34.70 74.06 34.22 73.79 34.93
42 73.60 36.20 72.92 34.57 72.32 35.42 73.83 35.34 73.18 35.65
45 73.10 36.80 72.65 35.41 71.86 36.14 73.40 36.19 72.56 36.38
48 72.50 37.50 72.35 35.84 71.21 36.85 72.57 36.52 71.93 37.24
51 71.80 38.20 71.54 36.56 70.55 37.43 72.12 37.51 71.29 38.10
54 70.80 39.10 71.06 37.13 69.70 38.14 71.82 38.21 70.62 38.81
57 69.70 40.00 70.04 37.86 68.84 38.85 70.81 39.08 69.76 39.67
60 68.30 40.60 69.72 38.56 67.95 39.55 70.14 40.08 68.69 40.66
63 67.10 41.70 68.13 39.69 66.86 40.66 69.64 41.48 67.41 41.78
66 65.80 42.90 67.59 40.94 65.91 41.77 68.54 42.61 66.26 43.17
69 64.50 44.30 66.65 42.34 64.73 43.00 67.99 44.01 65.23 44.97
72 63.20 45.80 65.84 44.28 63.68 44.51 66.60 45.97 64.13 46.76
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