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Abstract: The pioneering applications of the methods of theoretical physics to the turbulence sta-
tistical closure problem are summarised. These are: the direct-interaction approximation (DIA) of
Kraichnan, the self-consistent-field theory of Edwards, and the self-consistent-field theory of Herring.
Particular attention is given to the latter, in terms of its elegance and its pedagogical value. We then
concentrate on the assessment of these theories and take the historical route of Kraichnan’s diagnosis
of the failure of DIA, followed by Edwards’s analysis of the failure of his self-consistent theory, when
compared to the Kolmogorov spectrum. As all three theories are closely related, these analyses also
shed light on Herring’s theory. The second-generation theories that grew out of this assessment
are then discussed. First, there were the Lagrangian theories, initially stemming from the work of
Kraichnan and Herring, and later the purely Eulerian local energy-transfer (LET) theory. The latter is
significant because its development exposes the underlying problems with the pioneering theories in
terms of the basic physics of the inertial energy transfer. In particular, later work allows us to assign
a unified explanation of the incompatibility of all three pioneering theories with the Kolmororov
spectrum, in that they are all Markovian approximations (in wavenumber) to the non-Markovian
phenomenon of fluid turbulence. In the interests of completeness, we briefly review the formalisms
of Wyld and Martin, Siggia, and Rose. More recent developments are also discussed, in order to bring
the subject up to the present day.
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1. Introductory Remarks

In the 1960s, Jack Herring was one of the giants of turbulence theory. The other two
were Bob Kraichnan and Sam Edwards. Their revolutionary contributions transformed the
study of turbulence, taking it into the realm of theoretical physics. In chronological order,
Kraichnan published his direct-interaction approximation (DIA) in 1959 [1] and followed
this in 1964 with a numerical computation of the DIA equations for the two-point, two-
time covariance and the renormalised response function, for freely decaying turbulence [2].
Edwards derived a form of the Liouville equation for the turbulence probability distribution
functional (pdf) and obtained a self-consistent-field solution for the stationary, single-time
convariance in 1964 [3] and followed this with some further remarks about his theory [4].
His approach was strongly influenced by a consideration of Brownian motion, but in
1965 Herring, using a much more abstract form of self-consistent-field theory, solved the
Edwards–Liouville equation for the probability distribution for the stationary case [5],
and extended this to the non-stationary case the following year [6].

When I began my postgraduate research, under the supervision of Sam Edwards in
October 1966, the initial excitement about the new theories was tending to die down. Im-
portant points had been established about the relationships between the three approaches,
but there were still some unanswered questions. It was clear that all three theories led to
the same energy-balance equation, but there were differences between their results for the
renormalized response function. Attempting to understand these differences was one of
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the active topics of the time. However, the dominant problem was to understand why none
of the three theories was compatible with the Kolmogorov–Obukhov’−5/3’ wavenumber
spectrum [7]. This aspect dominated the subject to such an extent that the 1964 computation
of the DIA, which suggested that these theories were capable of making good qualitative
and quantitative predictions about turbulence, tended to be overlooked. Indeed, my own
first project was to rectify the Edwards theory by choosing the renormalized response
such that the turbulent entropy was maximised. This did lead to a result which was
compatible with the Kolmogorov–Obukhov spectrum, but the qualitative aspects were
not satisfactory [8].

In the rest of this article, we shall review the subject in detail, discussing its failures
and successes, and indicate how it has developed up until the present day. However,
before finishing these preliminary remarks, I should point out two other contributions by
Jack Herring. First, he introduced the use of negative damping to force the turbulence,
rather than using stirring forces. Many years on, this is an important method of forcing
numerical simulations of the Navier–Stokes equations. Secondly, he invented a simplified
notation, combining wavenumber and tensor index labels, which has been used by others
working in this field. For instance, Leslie made extensive use of it in his book [9], Qian
used it in his work on closures [10] (see also the article by Shi [11]), and it is also used
in Section 5.3 of the present work.

2. A Concise Overview of Statistical Closures

The statistical closure problem was first formulated for turbulent shear flows by
Reynolds in the 1890s. He showed that the equation for the mean velocity Ū contains the
unknown covariance of two fluctuating velocities 〈uu〉: the Reynolds stress. It was later
formulated for isotropic turbulence by Taylor in the 1930s. In this case, the mean velocity
is taken to be zero and the equation for the correlation of two velocities 〈uu〉 is found to
contain the unknown correlation of three velocities 〈uuu〉. The equation for 〈uuu〉 contains
the unknown fourth-order moment 〈uuuu〉, and so on. The problem is therefore seen as an
open hierarchy of statistical equations (one-point for Reynolds, two-point for Taylor) which
requires some means of closure. Theories used in engineering applications, such as the
eddy-viscosity, mixing-length, and n-equation models, are all effectively statistical closure
approximations for the single-point problem. In contrast, the Heisenberg eddy-viscosity
and the quasi-normality theory were effectively closure approximations for the two-point
problem. Further reading on this topic can be found in the following books [9,12–14].

The first formal treatment of the closure problem was the quasi-normality hypothesis
(Proudman and Reid [15], Tatsumi [16]). The basic idea was to solve the next equation in the
hierarchy for 〈uuu〉 by factorizing 〈uuuu〉 in terms of 〈uu〉 × 〈uu〉. This then gives a closed
set of equations for the covariance. However, quasi-normality failed when computed nu-
merically in the 1960s, as it predicted negative spectra: it was not physically realizable [17,18].

The attempt at quasi-normality illustrates an important aspect of all statistical theories
of turbulence and indeed of all statistical field theories. In all theories, the averages are eval-
uated using the tractable properties of the Gaussian or normal distribution. In particular,
even-order moments can be factorised into products of pair-correlations while odd-order
moments cannot be evaluated that way, because they vanish identically by symmetry.
In quasi-normality the fourth-order moment is evaluated in terms of pair correlations,
whereas the triple moment is calculated from the resulting closed equation by inverting the
linear operator of the Navier–Stokes equation. Some such manoeuvre is needed in any theory
if it is to be successful, with the degree of success depending on the choice of manoeuvre.

2.1. The Pioneering Renormalized Perturbation Theories of Turbulence

The beginning of the modern age of turbulence theory was signalled by the publication
in 1959 of Kraichnan’s direct-interaction approximation (DIA) [1]. This was both a mean-
field theory and a new kind of perturbation theory (it is an example of a renormalized
perturbation theory, such as occurs in quantum field theory or many-body problems).
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At the time, its most important feature was seen as being its physical realizability. It did not
have the catastrophic behaviour of quasi-normality. Shortly afterwards, Wyld [19] showed
that the DIA could be recovered from a conventional renormalized perturbation theory,
thus establishing the validity of the mean-field assumption by Kraichnan. This work was
couched in the language (and used the techniques) of quantum field theory, including the
introduction of diagrams analogous to Feynmann diagrams. Although of considerable
pedagogical interest, it contained some procedural errors. A discussion of this aspect may
be found in Appendix A.

In 1964, Edwards published his self-consistent-field (SCF) theory [3], which he also
described as a random phase approximation, and which was based on the probability dis-
tribution functional (pdf) of the fluctuating velocities. He began by introducing a model
system with a Gaussian pdf and the same velocity covariance as the turbulence system.
Then, he introduced a perturbation expansion in terms of the difference between the model
system and the real system. The result was a set of equations for the single-time covariance
and a renormalized response function. This result was later shown by Kraichnan to be
cognate to the DIA theory and, like it, maintained the properties of the inertial term, such
as conservation of energy [20].

Another attempt at a self-consistent-field theory was made by Herring [5] in 1965.
This was a more abstract approach than that of Edwards, although it also started from
the Edwards form of the Liouville equation. In strategy it lay somewhere between the
Edwards SCF and the Kraichnan DIA, in that it formally renormalized a ‘bare’ operator.
Herring’s basic approach involved the introduction of single-mode projectors and single-
mode distributions. Then, the perturbation expansion was in terms of the difference
between the approximate single-mode forms and the exact coupled forms. There are
similarities and differences between the two variants of SCF, and they both lead to the
same form of covariance equation. However, the response function in Herring’s theory
was the same as the time-independent DIA form, and hence differed from that of Edwards.
In the following year, Herring was able to extend his SCF theory to the two-time case [6],
the result being a theory which was closely related to Kraichnan’s DIA, rather than the
Edwards theory.

2.2. The Later Renormalized Perturbation Theories of Turbulence

As early as 1961, Kraichnan realized that the experimental results for turbulence
spectra (later published as [21]) supported the Obhukov–Kolmogorov prediction of k−5/3,
rather than his DIA prediction of k−3/2. He began work on this and ultimately concluded
that the DIA type of theory could not predict the time dependence of two-time correlations
due to a violation of what he called random Galilean invariance. This led Kraichnan to
formulate his theories in a mixed Eulerian–Lagrangian coordinate system [22]. This was
not entirely satisfactory, and Herring and Kraichnan extended it to a theory based on the
rate of strain, rather than on the velocity field [23]. This inspired a variety of Lagrangian
renormalized perturbation theories, continuing up to the present time: [24–26]. We discuss
these theories further in Section 6.1.

This was not seen as a problem for single-time correlations by Kraichnan, as such
theories were invariant under the postulated random Galilean transformation. However, it
should be recalled that single-time theories, such as those of Edwards [3] and Herring [5],
are also incompatible with the Kolmogorov spectrum, as indeed also is the cognate single-
time form of the DIA. The resolution of this problem was found in 1974, in the form of the
local energy-transfer (LET) theory, and this is something that we discuss in greater detail
in Section 6.2.

General background reading can be found in the books by Beran [12], Leslie [9],
Monin and Yaglom [13], McComb [14], Sagaut and Cambon [27], McComb [28], Verma [29],
and the review by McComb [30].
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3. Basic Equations and Notation

In this review we follow a modern unified scheme of notation and employ the letter C
for correlations and covariances, along with the letter R for response functions.

We consider the solenoidal Navier–Stokes equation (NSE) for the velocity field uα(k, t)
in wavenumber (k) space (see either [14] or [28]) as:(

∂

∂t
+ νk2

)
uα(k, t) = Mαβγ(k)

∫
d3 juβ(j, t) ug(k− j, t) + fα(k, t), (1)

where ν is the fluid kinematic viscosity, fα(k, t) is an arbitrarily chosen stirring force which we
have to specify. Note that we follow Edwards [3] (and indeed Kolmogorov before him [31])
and use Greek letters to denote the usual Cartesian tensor indices, where these take the values
1, 2, or 3, as appropriate for a three-dimensional space. There should be no confusion with
the conventional use of Greek indices in Minkowski four-space. The inertial transfer operator
Mαβγ(k) is given by

Mαβγ(k) = (2i)−1[kβPαγ(k) + kγPαβ(k)
]
, (2)

where i =
√
−1, while the projector Pαβ(k) is expressed in terms of the Kronecker delta as

Pαβ(k) = δαβ −
kαkβ

k2 . (3)

Note that the use of the projector ensures that the velocity field remains solenoidal.
The covariance of the fluctuating velocity field may be introduced as

Cαβ(k, k′; t, t′) = 〈uα(k, t)uβ(k′, t′)〉, (4)

and for isotropic, homogeneous turbulence we may write this as

〈uα(k, t)uβ(−k, t′)〉 = Pαβ(k)δ(k + k′)C(k; t, t′), (5)

where we anticipate the effects of homogeneity in writing the left-hand side. As is usual,
the angle brackets 〈. . .〉 denote the operation of taking an average. We shall discuss this
further in the next sub-section, in connection with the introduction of the probability
distribution functional.

If we consider the case t = t′, then we may introduce the spectral density function:

C(k, t) ≡ C(k; t, t), (6)

and the energy spectrum:
E(k, t) = 4πk2C(k, t). (7)

We will also find it convenient to introduce the contracted notation:

Ck ≡ C(k), (8)

for use with later time-independent theories.

4. The Statistical Formulation
4.1. The Stirring Forces

Edwards [3] introduced stirring forces in order to define the ensemble (and, when
required, to study stationary turbulence). These are denoted by fα(k, t) and can be added to
the right-hand side of the equation of motion, as we have done here in Equation (1). These
forces are chosen to be isotropic, homogeneous and (in order to maintain incompressibility)
solenoidal. He considered random forces with a multivariate normal probability distribu-
tion, such that the associated functional integrals were analytically tractable.
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He assumed that the autocorrelation of the forces was instantaneous in time and
we represent this by choosing the time autocorrelation to be a delta function. A form of
correlation which satisfies all these requirements is:〈

fα(k, t) fβ(k′, t′)
〉
= Pαβ(k)F(k)δ(k + k′)δ(t− t′). (9)

Here, F(k) is a spectral energy density which is related to the rate at which the force
does work on the fluid. The rate at which the stirring forces do work on the fluid can be
shown to take the form [3,32]:〈

fα(k, t)uσ(k′, t)
〉
= Pασ(k)F(k)δ(k + k′). (10)

We may also introduce the energy-injection spectrum of the stirring forces W(k) as:

W(k) = 4πk2F(k), (11)

with associated rate of doing work εW , where:

εW =
∫ ∞

0
W(k)dk. (12)

For stationary flows εW must be equal to the dissipation rate ε.

4.2. The Closure Problem

An equation for the covariance C(k; t, t′) may be obtained in the usual way. Multiply
each term in Equation (1) by uα(−k, t′) and take the average, to obtain:(

∂

∂t
+ νk2

)
C
(
k; t, t′

)
= 1

2 Mαβγ(k)
∫

d3 j〈uβ(j, t)uγ(k− j, t)uα(−k, t′)〉, (13)

where we have used Equations (3) and (5), cancelled the factor δ(k + k′) across, and in-
voked isotropy, along with the property Tr Pαβ(k) = 2. We can also write this in the
compact form: (

∂

∂t
+ νk2

)
C
(
k; t, t′

)
= P(k; t, t′), (14)

where P(k; t, t′) is just the right-hand side of Equation (13). The problem of expressing this
in terms of the covariance is the well-known statistical closure problem.

Further, using Equation (1), we can obtain an equation describing the energy balance.
On the time diagonal, the covariance equation takes the form for isotropic turbulence:(

∂

∂t
+ 2νk2

)
C(k, t) = Re

[
Mαβγ(k)

∫
d3 j
〈
uβ(j, t)uγ(k− j, t)uα(−k, t)

〉]
+ F(k), (15)

where F(k) is the energy-injection spectral density, as defined in terms of the stirring forces
by Equation (10). Again, we can write this in a more compact form as:(

∂

∂t
+ 2νk2

)
C(k; t, t) = Q(k; t, t) + F(k), (16)

where Q(k; t, t) can be determined by comparison with the right-hand side of Equation (15).
The energy spectrum is related to the spectral density by Equation (7). Accordingly,

if we multiply Equation (15) across by 4πk2, and rearrange terms, the governing equation
of the energy spectrum takes the form:

∂E(k, t)
∂t

= W(k) + T(k, t)− 2νk2E(k, t), (17)
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where the energy-transfer spectrum is T(k, t) = 4πk2Q(k; t, t) ≡ 4πk2Q(k, t). This equation
for the energy spectrum is well known, and is nowadays sometimes referred to as the Lin
equation [27,28]. More detailed discussions of these equations can be found in Chapter 3 of
the book [28].

5. The Pioneering Theories of Kraichnan, Edwards, and Herring

These theories are presented in chronological order of their first publication.

5.1. The Direct-Interaction Approximation of Kraichnan

The starting point for Kraichnan was the introduction of the infinitesimal response func-
tion R̂αβ(k, t), which arises when one assumes that a fluctuation in the stirring forces. thus:

fα(k, t)→ fα(k, t) + δ fα(k, t), (18)

leads to a corresponding fluctuation in the velocity field, thus:

uα(k, t)→ uα(k, t) + δuα(k, t). (19)

The infinitesimal response function is then defined by the relationship:

δuα(k, t) =
∫ t

−∞
R̂αβ(k; t, t′)δ fβ(k, t′)dt′, (20)

and its governing equation is obtained by functional differentiation of the Navier–Stokes equation.
Kraichnan obtained his theory by solving this governing equation simultaneously with

the NSE, using perturbation theory. It was pointed out by Leslie (see page 56 of [9]) that
the DIA was obtained by assuming that R̂ and u are uncorrelated, hence taking the step:

〈R̂(t, t′)u(t)u(t′)〉 = 〈R̂(t, t′)〉〈u(t)u(t′)〉 = R(t, t′)〈u(t)u(t′)〉, (21)

thus, introducing the ensemble-averaged response function R(t, t′) = 〈R̂(t, t′)〉.
This makes the DIA a form of mean-field theory, in that we replace the instanta-

neous response function by its average value. In fact, Kraichnan’s result can be de-
rived directly from conventional renormalized perturbation theory, as given by Wyld [19]
(also see page 228 of [14]), thus validating the mean-field assumption. Applying these
methods to the equations for the response function and the velocity covariance, leads to
the DIA theory.

The governing equation for the response function is found to be,[
∂

∂t
+ νk2

]
R(k; t, t′)

+
∫

d3 jL(k, j)
∫ t

t′
dt′′R(k; t′′, t′)R(j; t, t′′)C(|k− j|; t, t′′)

= δ(t− t′). (22)

The second-order equation for the velocity covariance is:[
∂

∂t
+ νk2

]
C(k; t, t′)

=
∫

d3 jL(k, j)
[∫ t′

0
dsR(k; t′, s)C(j; t, s)C(|k− j|; t, s)

−
∫ t

0
dsR(j; t, s)C(k; s, t′)C(|k− j|; t, s)

]
; (23)
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and on the time diagonal:(
∂

∂t
+ 2νk2

)
C(k, t)

= 2
∫

d3 jL(k, j)
∫ t

0
dsR(k; t, s)R(j; t, s)R(|k− j|; t, s)×

[C(j, s)C(|k− j|, s)− C(k, s)C(|k− j|, s)]. (24)

The coefficient L(k, j) is defined as:

L(k, j) = −2Mαβγ(k)Mβαδ(j)Pγδ(k− j), (25)

and can be evaluated as:

L(k, j) = −
[
µ
(
k2 + j2

)
− kj

(
1 + 2µ2)](1− µ2)kj

k2 + j2 − 2kjµ
, (26)

where µ is the cosine of the angle between the vectors k and j. It should be noted that
these equations have been rendered in the formalism due to Edwards, rather than that of
Kraichnan. For a discussion of this point, see the book [28].

These equations are an exact second-order truncation of the renormalized perturba-
tion theory. Their derivation can rely on either the topology of Feynmann-type diagrams
or reversion of power series. They satisfy all the required symmetries and in particu-
lar the closure conserves energy, displaying the correct antisymmetric behaviour of the
transfer spectrum.

They can predict the free decay of isotropic turbulence, without invoking arbitrary
constants, in quite good agreement with experiment and numerical simulation.

5.2. The Self-Consistent-Field (SCF) Theory of Edwards

Edwards used the prescription of the stirring forces to define a turbulence ensemble
and made this the basis of a statistical mechanics approach. Taking these forces to have a
multivariate normal distribution, and the properties shown in Equation (9), he obtained
the mean distribution of the velocities, P, by averaging against the distribution of the forces
and in this way obtained a generalization of the Liouville equation to the turbulent case, as:

∂P
∂t

= −∑
k

∂

∂uα(k)

{
− νk2uα(k)+

+∑
j

Mαβγ(k)uβ(j)uγ)(k− j)− F(k)
∂

∂uα(−k)

}
P, (27)

where F(k) is the force spectrum given by Equation (10). Although the non-linearity of the
velocity field is incorporated, it is worth bearing in mind the fact that this equation is a
linear equation for P and therefore its perturbation treatment is quite a different matter
from that of the Navier–Stokes equation as discussed in the preceding section.

Edwards considered the stationary case, so we drop the time derivative in Equation (27)
and, for later convenience, rearrange it as:

∑
k

∂

∂uα(k)

{
νk2uα(k) + F(k)

∂

∂uα(−k)

}
P =

−∑
k

∑
j

Mαβγ(k)uβ(j)uγ)(k− j)
∂P

∂uα(k)
. (28)

In order to explain the perturbation approach, we introduce a more symbolic notation
and write Equation (28) as:

LP−VP = 0, (29)
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where the detailed forms of the operators L and V can be deduced from comparison with
the above equation. In doing this, we are introducing the more symbolic notation of
Herring [5], and this will also be useful when we discuss Herring’s actual theory in the
next section.

Edwards then sought a solution of Equation (29) in the form of an expansion in a
bookkeeping parameter λ, which is put equal to one at the end of the calculation, and is
used to order terms in an iterative procedure. For this purpose it is taken to be superficially
of the same order as the non-linear terms in the NSE. Thus, expanding the probability
distribution P as follows:

P = P0 + λP1 + λ2P2 + . . . , (30)

where the zero-order coefficient satisfies

L0P0, (31)

while the basis operator L0 remains to be determined.
This is the key step in the Edwards theory and we will consider it presently. First,

we introduce the general procedure, which begins by adding and subtracting L0P from
Equation (29) to obtain

L0P−VP− (L0 − L)P = 0. (32)

Further, we can associate the first order in λ with the term VP, as it contains the
non-linearity of the NSE, second order in λ with (L0− L)P, as it represents the correction to
the perturbation procedure. Hence, we can base the perturbation theory on Equation (32),
rewritten as

L0P− λVP− λ2(L0 − L)P = 0, (33)

where these assignments can later be shown to be self-consistent.
Now, we substitute the expansion Equation (30) into Equation (33) and equate coef-

ficients of powers of λ. The result at zero order is just Equation (31), while at first order
we have

L0P1 = VP0, (34)

and at second order
L0P2 = VP1 + (L0 − L)P0; (35)

and so on, to any order.
Logically, the next step is to decide on a form for the zero-order operator L0, but in fact

it is more intuitive to decide on the zero-order distribution first, and to choose this to be

P0 = N exp

{
−∑

k

uα(k)uα(−k)
C(k)

}
, (36)

where N is the normalization and C(k) is the time-independent covariance of the velocity
field. This form of P0 is chosen to be Gaussian, because we need it to be mathematically
tractable. It also means that the zero-order distribution is required to give the exact covari-
ance. As formally the exact distribution leads to the exact covariance, we note that P1 gives
zero by symmetry and hence P2 is required to give zero for self-consistency.

Edwards was guided by the statistical theory of Brownian motion. For instance, he
saw the stirring forces as being analogous to the force due to random molecular impacts
on the colloidal particles. Accordingly, he assumed that the force spectrum F(k) and the
modal decay rate νk2 could be renormalized by writing:

d(k) = F(k) + s(k); and ω(k) = νk2 + r(k), (37)

where the functions s(k) and r(k) remain to be determined; but must satisfy the condition:

2ω(k)C(k) = d(k), (38)
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for the form Equation (36) for P0 to hold. Correspondingly, the basis operator must take the
Fokker–Planck form:

L0 = ∑
k

∂

∂uα(k)

{
ω(k)uα(k) + d(k)

∂

∂uα(−k)

}
P, (39)

where the renormalized quantities ω(k) and d(k) are the dynamical friction and generalized
diffusivity, respectively.

In order to invert the basis operator, Edwards used an eigenfunction expansion, but we
will not pursue that here. Details may be found in the original reference [3], and in the
books [9,12,14]. The resulting equation for the stationary spectral density function C(k) is

F(k)− 2νk2 = −2
∫

dj3L(k, j)
C(k− j){C(j)− C(k)}
ω(k) + ω(j) + ω(k− j)

. (40)

The response equation is:

ω(k) = νk2 +
∫

dj3L(k, j)
C(k− j)

ω(k) + ω(j) + ω(k− j)
, (41)

and these two equations are analogous to Equations (24) and (23) of Kraichnan’s DIA,
in that order.

In order to complete this presentation of the Edwards theory, we specify the general-
ized diffusivity s(k) from the constraint (38), thus:

s(k) = 2
∫

dj3L(k, j)
C(k− j)C(j)

ω(k) + ω(j) + ω(k− j)
. (42)

Equivalence of the Edwards Theory and Kraichnan’s DIA

As we have noted, Edwards derived his closure approximation by inverting the
Fokker–Planck form of L0 in terms of an eigenfunction expansion, with the inverse modal
lifetimes appearing as eigenvalues. However, instead of doing this, it is a simple matter to
recover the Edwards SCF equation for C(k) directly from the DIA Equation (24).

Our starting point is the recognition by Kraichnan in 1964 [20] that the DIA and
Edwards covariance equations were equivalent if one assumed the same exponential time
dependence for the covariance and the response function. That is,

C(k; t− t′) = C(k) exp[ω(k)|t− t′|], (43)

and

R(k; t− t′) = exp[ω(k)(t− t′)], for t′ < t;

= 0, for t′ > t, (44)

where ω(k) is the inverse lifetime for correlation and response of mode k. Its prescription
is the second part of the Edwards closure approximation. Later, Kraichnan showed that the
Edwards theory could be extended to statistically non-stationary states [33], while Herring
and Kraichnan [34] demonstrated that the generalized Edwards covariance equation could
be obtained from Equation (24), with C(k, t) ≡ C(k; t, t), as:(

∂

∂t
+ 2νk2

)
C(k, t) = 2

∫
d3 j L(k, j)D(k, j, |k− j|; t)×

×[C(j, t)C(|k− j|, t)− C(k, t)C(|k− j|, t)], (45)
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where they introduced a memory function D, given by

D(k, j, |k− j|; t) =
∫ t

0
ds R(k; t, s)R(j; t, s)R(|k− j|; t, s). (46)

For the stationary case, this could be written [20]:

D(k, j, |k− j|) = 1
ω(k) + ω(j) + ω(|k− j|) . (47)

However, when this procedure is applied to the DIA response Equation (22), the
result is:

ω(k) = νk2 +
∫

dj3L(k, j)
C(k− j)

ω(j) + ω(k− j)
. (48)

We see that the DIA form differs from the Edwards form, in that only two lifetimes
appear in the denominator. That is, the labelling wavenumber is absent.

5.3. The Self-Consistent-Field (SCF) Theory of Herring

In 1965, Herring introduced a more abstract form of self-consistent-field theory. He
took as his starting point the Liouville equation derived by Edwards. In order to dis-
cuss this self-consistent-field theory, we shall change our notation to that of Herring and
rewrite Equation (29) as

L(0)P−VP = 0, (49)

where the change from L to L(0) is significant and reflects the fact that we shall be looking
at a formal renormalization programme in which L(0) is the bare or viscous operator.
In this sense, Herring’s SCF will be seen to resemble DIA rather than the Edwards SCF,
although there are in fact many procedural similarities between the theories of Herring and
Edwards. Herring began by assuming that the basis operator for his expansion method
was the sum of single-mode operators. The effect of mode coupling was then taken into
account through an expansion in single-mode interactions. In this respect, it can be seen as
less phenomenological than the Edwards form, in which the renormalized single-mode
(i.e., quasi-particle) form is assumed from the outset.

We begin with some definitions relating to single-mode forms. First, we can generalize
the concept of reduced distributions from particle statistical mechanics (e.g., see Section 4.1
of the book [14] or the relevant section of [35]) to single-mode distributions in the turbulent
case. Let us write the the distribution of velocities for turbulence in k -space as

P[u(k)] = lim
n→∞

Pn[u(k1), u(k2), . . . , u(kn)], (50)

where the limit of infinite space volume (corresponding to n→ ∞) will not be taken until
the end of the calculation. Here, the notation kn is shorthand for the usual definition of a
wavevector in a finite system. A particular value of n then corresponds to a particular set,
e.g., n1, n2, n3. In order to obtain a single-mode distribution, we integrate out all variables
except (say) u(kn); thus

Pn[u(kn)] =
∫

P[u(k)]du(k1)du(k2) . . . du(kn−1)du(kn+1) . . . , (51)

which defines the single-mode distribution Pn[u(kn)]. Now, define the single-mode projec-
tion of an operator A by

〈A〉 = ∑
n
〈A〉n, (52)

where
〈A〉n =

∫
A ∏

m 6=n
P[u(km)]du(k1)du(k2) . . . du(kn−1)du(kn+1) . . . . (53)
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Note that the notation 〈. . . 〉 can be used here for this specialized purpose, as in this
section there should be no confusion with its more usual meaning of ensemble average.
Then, a single-mode operator can be defined as one which is invariant under the above
averaging process, or one which satisfies the relation

〈A〉 = A. (54)

Now, consider Equation (49). If V = 0, then it is clear that there will be no non-linear
mixing and the solution P will be a product of single-mode distributions. However, if V is
not zero, then non-linear mixing must result in some mode coupling and we should write
the general solution as

P = ∏
n

Pn + R, (55)

where Pn is the exact single-mode distributions and R is a remainder term to take account
of the mode couplings induced by V. It follows that R must satisfy the condition

〈R〉n = 0, (56)

where the operation 〈. . . 〉n is defined by Equation (53) and the general perturbation method
then consists of expanding R about V = 0. In order to do this, it is convenient to introduce
a new operator L, which should satisfy two requirements. First, it should be of single-mode
form, or

〈L〉 = ∑
n

Ln = L, (57)

and second, in order to conserve probability, it should satisfy∫
LnF[u(kn)]du(kn) = 0 (58)

for any well-behaved test function F[u(kn)]. We also introduce the associated function P′,
which is the solution of

LP′ = 0, (59)

such that
P′ = ∏

n
P′n. (60)

In other words, P′ is the product of single-mode operators. Lastly, as V tends to zero,
consistency requires that L→ L0 and P′ → P. We now add the operator L to both sides of
Equation (49), thereby leaving it unchanged, to obtain

LP = (L− L0 + V)P. (61)

The formal solution of this equation can be written as

P = P′ + R′, (62)

and then we must solve Equation (61) perturbatively for R′ in terms of L, L0, V, and Pn.
Our aim is now to find an operator L which (a) satisfies Equations (57)–(59) and (b) is such
that P′n = Pn: this is the self-consistency criterion. Our procedure is as follows. Noting
Equation (59), we rewrite Equation (61) as

LP = LP′ + (∆ + V)P, (63)

where
∆ = L− L0. (64)
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Then, inverting the operator on the left-hand side, we obtain

P = P′ + L−1(∆ + V)P. (65)

At this stage, there are two points worth mentioning. First, there is a technical point
here which we are glossing over, in that we should invert the non-singular part of L: see Her-
ring (1965) for a discussion. Second, comparison of Equations (65) and (62) indicates that

R′ = L−1(∆ + V)P. (66)

Our next step is to solve Equation (65) iteratively. As this is of pedagogic interest, we
do this in detail in the next section. The result is:

P = P′ + L−1TP′, (67)

where T is given by

T = (L− L0 + V)) + (L− L0 + V)L−1T. (68)

Now, the probability distribution given by Equation (67) is in the following form:
’guessed probability + corrections’. For self-consistency we require that the effect of cor-
rections will vanish, such that P′n = Pn. This implies—along with Equation (55)—that we
must have

〈P〉n = 〈∏
n

Pn〉+ 〈R〉n = ΠnPn (69)

where we have used Equations (54) and (56). In addition, from Equations (54) and (60), we
note that

〈P′〉n = ∏
n

P′n. (70)

Hence, if we operate on both sides of Equation 67 with the single-mode expectation
value, we have

∏
n

Pn = ∏
n

P′n + 〈L−1TP′〉n (71)

and, from the self-consistency condition,

〈L−1TP′〉n = 0 (72)

or
〈L−1T〉nP′ = 0 (73)

as P′ is the product of single-mode distributions and therefore is unaffected by the operation
〈. . . 〉n. This result can also be written as

[Ln − L0,n + 〈VL−1T〉]P′ = 0, (74)

where we have used Equation (68) and L0,n is defined by

L0 = ∑
n

L0,n. (75)

Herring has shown that the self-consistency condition can be satisfied, along with
Equations (55) and (58), by choosing Ln such that

Ln = L0,n − 〈VL−1T〉n, (76)

and Equation (59) is retained as a separate constraint;

LnPn = 0 (77)
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where we have put P′n = Pn in Equation (59), in accordance with our self-consistency
requirement. We can obtain the perturbation expansion for ∆ = L− L0 by substituting for
T from Equations (68) into (76) and then iterating about ∆ = 0. The result is

L = L0 − 〈VL−1V〉+ O(V4). (78)

Similarly, we can obtain the perturbation expansion for P by substituting Equation (78)
into (67) and expanding T:

P = P′ + L−1VP′ + L−1[VL−1V − 〈VL−1V〉]P′ + . . . (79)

It should be noted that truncation of the perturbation series at any order actually
retains infinite powers of V. This is because of the non-linearity of Equation (63). It is at
this point that we see the underlying resemblance to the renormalized perturbation theory
of the DIA. On the other hand, Herring uses the same eigenfunction expansion as Edwards
in order to invert the basis operator, and certainly Equation (65) is very similar (notational
changes apart) to the Edwards form. The differences essentially lie in the requirement in
Herring’s SCF that a particular operator should vanish:{

Ln − L(0)
n + 〈VL−1T〉n

}
= 0, (80)

where the Edwards version would require that the product of the same operator with the
Pn should vanish. Furthermore, it involves a weaker assumption, that the basis operator
should be the product of single-mode operators, without specifying the form these opera-
tors should take. In contrast, Edwards imposes the additional requirement that the basis
operator should have the Fokker–Planck form. It should be noted that the basis operator in
Herring’s SCF is found not to be of this form, and leads to coupled equations for C(k) and
ω(k). The energy equation is identical to Equation (40), which is itself the same as the DIA
equation when exponential time dependences are substituted. The equation for ω(k) is the
same as the time-independent DIA response equation, as given by Equation (48).

5.3.1. Solution of Equation (65)

Equation (65) has to be solved by iteration. We write it in the form

P = P′ + XP,

where
X = L−1(∆ + V).

Then, we proceed as follows:

• zero-order approximation
P0 = P′ + XP′,

• first-order approximation

P1 = P′ + XP0 = P′ + X(P′ + XP′) = P′ + XP′ + X2P′

• second-order approximation

P2 = P′ + XP′ = P′ + X(P′ + XP′ + X2P′) = P′ + XP′ + X2P′ + X3P′,

and so on.

The exact distribution P is given by

P = P′ + X(1 + X + X2 + . . . )P′ = P′ + X
1

1− X
P′
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provided that 1/(1− X)P′ is non-singular. Then, substituting for X, we find

P = P′ + L−1TP′,

which is just Equation (67), and the operator T is given by

T =
(∆ + V)

1− L−1(∆ + V)
,

which can be shown to reduce to (68).

5.3.2. Time-Dependent SCF

The first step in extending SCF to non-stationary turbulence (Herring 1966) is to restore
the time dependence to the Liouville equation. That is, we rewrite Equation (49) as

∂P
∂t

+ L0P = VP. (81)

Then, we generalize Equation (68) to the form

∂P
∂t

+
∫ ∞

0
L(t, t′)P(t′)dt′ =

∫ ∞

0
Ω(t, t′)P(t′)dt′ (82)

where
Ω(t, t′) = L(t, t′)− δ(t− t′)(V − L0) (83)

such that
L(t, t′) = 0 for t′ > t. (84)

It should be noted that this is all fully analogous to the procedure which led to
Equation (61) for the stationary case and was based on the introduction of the operator L,
as defined by Equation (57). Now, in order to obtain an iterative solution of Equation (82),
Herring introduced a new operator, U(k; t, t′. The interested reader will find the details
of these procedures in the original papers (Herring 1965, 1966); we shall only quote the
defining relationship here for completeness, as we shall need it in order to write down the
final governing equations. Accordingly, we have

U(k; t, t′) = 1−
∫ t

t′ ds
∫ ∞

0 ds′L(s, s′)U(k; s′, t′) for t > t′

= 0 for t < t′. (85)

Then, the equation for the single-time correlation C(k, t) is found to be(
d
dt

+ 2νk2
)

C(k, t) = 2
∫

d3 jL(k, j)
∫ t

0
g(k; t, s)M(|k− j|; t, s)ds;

−
∫ t

0
g(j; t, s)M(k; t, s)M(|k− j|; t, s)ds, (86)

where g(k; t, t′) can be interpreted as the response function for mode k, and M(k; t, t′) plays
the part of a two-time velocity covariance function. The two quantities arise, in fact, as non-
trivial functional integrals, and can be written in a rather stylized notation in the form

g(k; t, t′) = −
∫

δu(k, t)u(k, t)U(k; t, t′)
∂P[u(k, t′)]

∂u(k, t)
(87)

and
M(k; t, t′) =

∫
δu(k, t)u(k, t)U(k; t, t′)u(k, t)P[u(k, t)], (88)

and satisfy the conditions:
g(k; t, t) = 1; (89)
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M(k; t, t) = C(k, t). (90)

Herring found governing equations for g(k; t, t′) and M(k; t, t′) which took the follow-
ing forms:(

d
dt

+ νk2
)

g(k; t, t′) = −
∫

d3 jL(k, j)×

×
∫ t

t′
ds g(j; t, s)M(| k− j |; t, s)g(k; s, t), (91)

(
d
dt

+ νk2
)

M(k; t, t′) = −
∫

d3 jL(k, j)×

×
∫ t

t′
ds g(j; t, s)M(| k− j |; t, s)M(k; s, t′), (92)

where, as in Equation (86), the coefficient L(k, j) is as defined by Equation (25) and its analyti-
cal form is given by Equation (26). It can be deduced by inspection of Equations (91) and (92),
that the following relationship holds

M(k; t, t′) = g(k; t, t′)C(k, t′). (93)

This allows us to make contact with the DIA equations for R(k; t, t′) and C(k; t, t′),
and C(k; t, t) = C(k, t). It is readily verified that, if we replace the DIA Equation (23) for the
two-time correlations C(k; t, t′) by Equation (93), then Equations (22) and (24) for R(k; t, t′)
and C(k, t) become identical with the SCF Equations, Equations (91) and (86) for g(k; t, t′)
and C(k, t).

5.4. Other Self-Consistent Methods

The Liouville equation was also been taken as a starting point by Balescu and Sen-
atorski [36], who attempted to combine methods applied to two different fields of non-
equilibrium statistical mechanics (i.e., statistical electrodynamics and Heisenberg spins
on a lattice), arguing that in this way they could take account of the main features of the
turbulence problem, i.e., an infinite number of degrees of freedom and strong coupling.
The equations of motion are transformed by the introduction of action-angle variables and
the basic statistical problem is reformulated in terms of a master equation. This is treated
perturbatively and the summation of certain classes of diagrams leads to the recovery
of Herring’s SCF theory. Self-consistent methods have also been applied directly to the
equation of motion (rather than the Liouville equation) by Phythian [37]. Strictly speaking,
Phythian worked with the one-dimensional Burgers model equation, but his analysis also
goes through for the Navier–Stokes equation. Although the methods used rather resemble
those of Edwards and Herring, Phythian did formally introduce an infinitesimal response
function which is identical in its basic definition with the corresponding DIA quantity as
defined by Equation (20). It is perhaps not altogether surprising, therefore, that Phythian
ended up with the DIA equations.

However, the importance of this work turned out to be more than just another way of
deriving the DIA theory. Kraichnan found that Phythian’s theory leads to a new model
representation for the DIA equations and this in turn leads on to the development of ’almost
Markovian’ theories. It should be noted that the term ’Markovian’ here refers to the time
dependence, not to energy transfers in wavenumber.
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6. Second-Generation Renormalized Perturbation Theories
6.1. The Lagrangian Theories

The Lagrangian theories arose out of Kraichnan’s study of the failure of DIA to be
compatible with the Kolmogorov k−5/3 energy spectrum, which he ultimately interpreted as
being due to the lack of invariance under random Galilean transformations. The resulting
theories are very complicated and we shall only sketch out some general points here.
The key element in Kraichnan’s approach was the introduction of a generalized velocity
field u(x, t|s), with both Eulerian and Lagrangian characteristics. This is defined as the
velocity measured at time s of a fluid particle which was at position x at time t. The two
times are known as:

t = labelling time; and s = measuring time.

We may consider two limiting cases:

• Case 1: Set s = t then u(x, t|t) = u(x, t);
• Case 2: Fix x = x0 and t = t0 then u(x0, t0|s) = V(x0, s),

where V(x0, s) is the Lagrangian velocity field.

Kraichnan reworked the DIA in terms of this picture and called the result the Lagrangian-
history direct-interaction approximation (or LHDI for short) [22]. This turned out to be very
complicated and Kraichnan introduced a systematic way of reducing the number of time
convolution integrals. This abridged set of equations was referred to, naturally enough, as the
abridged LHDI, or ALHDI for short. In 1966, Kraichnan [38] reported the first theoretical value
of the Kolmogrov spectral constant, which at α = 1.77 lies within the range of experimental
values, but nowadays would be regarded as rather large, as the consensus is that it should be
about 1.62.

Kraichnan [39] later used the method of reversion (or inversion) of power series and
rederived both LHDI and ALHDI. However, from a quantitative point of view, ALHDI did
not prove altogether satisfactory, as it tended to overestimate the rate of inertial transfer of
energy to higher wavenumbers. That is of interest, as the opposite tendency has been asso-
ciated with the failure of DIA. This provided a motivation for Kraichnan and Herring [23]
to use the same methods with the rate of strain tensor, rather than the velocity field. This
led to strain-based ALHDI, or SBALHDI.

In 1981, Kaneda [24] introduced the Lagrangian position function and worked with
measuring-time derivatives rather than labelling-time derivatives and derived the La-
grangian renormalized approximation (LRA), which predicted a spectral constant of
α = 1.72. Later, Kida and Goto [25] applied the sparse direct-interaction pertubation
method, as originally used to derive Eulerian DIA, in the Lagrangian framework, to obtain
the same result as Kaneda’s LRA. More recently, Okumaru [26] has derived yet another
Lagrangian theory, which he refers to as a ‘Closure model’, in a paper which gives a good
overview of the theoretical work in this area.

We will return to Lagrangian theories in the section on computations, but their diver-
sity does rather give added emphasis to the 1993 comment of Bazdenkov and Kukharin [40]
to the effect that the results of Lagrangian theories depend on whether the velocity, the vor-
ticity, or the rate of strain is taken as the basic field. See also the comments by Frederiksen
and Davies [41].

Lastly, as we have diagnosed the problem with the historic Eulerian theories to be
that they are Markovian with respect to energy transfer through wavenumber, the obvious
question arises: what about the Lagrangian theories? Are they non-Markovian in this
respect? In fact it is probably fairly obvious, merely be inspection, that they are in fact
non-Markovian. However, perhaps the easiest way to answer this question is to consider
the additional question: what steps would be needed to make them Markovian? In fact
Kraichnan has answered this question for his Lagrangian-history direct-interaction theory.
He has shown that LHDI can be reduced to an eddy-viscosity (i.e., Markovian) form if
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the dummy wavenumber j is very much larger than the labelling wavenumber k [38].
For further discussion of this point, see Section 10.3.2 of the book [14].

6.2. The Local Energy-Transfer (LET) Theory in Two-Time Form

The LET theory was derived in 1974, in single-time form; and then heuristically in two-
time form in 1978. More recently, the two-time LET theory was given a formal derivation
in 2017. Here, we will make some brief remarks about this formal derivation [42].

We use the Edwards method, as described in Section 5.2, but we start from the Liouville
equation with time-dependence included. The salient point is that we use the simplest
possible basis operator that is compatible with a Gaussian distribution. There is still some
element of arbitrariness involved in our choice of operator, but we do not follow Edwards
and use the Fokker–Planck form as given by (39). It is this choice by Edwards which forces
his theory to be Markovian with respect to energy transfers in wavenumber. Our approach
is explained in Section 4.3 of [42], where we use Herring’s reduced notation for the sake
of simplicity. The subsequent perturbation theory is explained in Section 4.4 of [42], and
the evaluation of the triple moment in Section 4.5 involves a functional differentiation that
leads to the introduction of the response function.

LET Response Function

Kraichnan introduced his infinitesimal response tensor, which related an infinitesimal
fluctuation in the velocity field to a corresponding fluctuation in the stirring forces (20).
Instead of doing this, the LET introduces an infinitesimal velocity field propagator as
determining the system response. In its most general form, this is defined by the relationship
between two infinitesimal fluctuations of the velocity field, as:

δuα(k, t) = R̂αβ(k, k′; t, t′)δuβ(k′, t′) for t′ ≤ t, (94)

where the hat symbol indicates that the propagator R̂αβ is a random variable. Further,
we rewrite Equation (94) in terms of the functional derivative, in order to introduce the
ensemble-averaged response function, thus:

Rαβ(k; t, t′) =

〈
δuα(k, t)
δuβ(k, t′)

〉
=
〈

R̂αβ(k; t, t′)
〉
= Pαβ(k)R(k; t, t′) , t′ ≤ t , (95)

where we have in turn invoked homogeneity and then isotropy.
This analysis leads to a general fluctuation-response relation [42], relating the response

function to the two-time and single-time covariances, thus:

C(k; t, t′) = R(k; t, t′)C(k; t′, t′). (96)

The quantity R(k; t, t′) is called the response function. We discuss some of the implica-
tions of this result in the next section.

6.3. Single-Time Models and Theories

Under this heading we begin with the eddy-damped quasi-normal Markovian (EDQNM)
theory. This arose from Orszag’s analysis of the failure of the original quasi-normality hypoth-
esis and reflects a later and better understanding of turbulence phenomenology. The EDQNM
theory is really a model (compare Kraichnan’s similar test-field model [43]), in that it makes
a particular assumption which requires the fitting of an adjustable constant. In stationary
form it reduces to the Edwards SCF theory. Because it is a single-time theory, it is relatively
easy to compute and has been widely applied to practical problems (e.g., [44–47]). For a
recent discussion see the book by Sagaut and Cambon [27].

In the interests of completeness we should also mention that McComb and Kiyani [48]
derived a Markovianised single-time closure from the LET theory, while Bos and Bertoglio [49]
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derived a single-time closure from a Lagrangian perspective. Neither of these closures involve
the fitting of adjustable constants, and so are classed as theories rather than models.

7. Application of Statistical Closure Theories

The statistical closure theories have been extensively computed for the case of freely
decaying turbulence, starting with Kraichnan’s pioneering work in 1964 [2]. A concise
overview of this activity may be found in [42]. Here, we will just consider their appli-
cation to passive scalar convection, along with some remarks on the possibility of more
general applications.

7.1. Passive Scalar Convection

This is a very big subject and we will restrict our attention to the use of closures in
the problem of passive scalar diffusion in isotropic turbulence. We note the pioneering
work of Newman and Herring, who applied the test-field model (TFM) to this problem [50];
and later work of Herring et al. [51], which compared the TFM to EDQNM. This work,
in particular, underlines the fact that this type of investigation is more about testing the
performance of the closures than about practical calculations.

In 1992, as well as introducing the fluctuation–response relationship as the defining
step of the LET theory, and providing a new simplified derivation (along with making
some minor corrections to the equations), the work was extended to the case of passive
scalar convection [52]. Results were obtained for free decay for 5 ≤ Rλ ≤ 1060 and for
Prandtl numbers of 0.1, 0.5, and 1.0. In both velocity and scalar spectra, Kolmogorov-type
power laws were found at the higher Reynolds numbers.

For those wishing to pursue this topic further, the recent paper by Kitamura [53]
tackles the more advanced problem of passive scalar diffusion in the presence of a mean
scalar gradient, and also provides a comprehensive review of spectral methods applied to
passive scalar convection.

7.2. Potential for Practical Applications

In view of the great importance of turbulent flow in engineering applications, it is
surprising that the two-point statistical closures have been so little exploited for practical
applications. To our knowledge, there have only been two exceptions to this. First, there
is the activity on climate and atmospheric modelling by Frederiksen and co-workers
(see [54] for a recent account), who have used DIA, Herring’s SCF, and the LET theory over
several decades for this purpose. This work also includes sub-grid modelling.

Secondly, there has been the widespread application of the EDQNM to many situations
and over many decades. Its development by Orszag [55] took account of the greater
understanding of turbulence phenomenology which had accrued during the 1960s and this
is reflected in its success with practical applications. Because of its single-time nature it
is easy to compute, and its ability to fit an adjustable constant leads to good quantitative
results. As examples we may cite [44–47]; a more general account may be found in the book
by Sagaut and Cambon [27].

In contrast, the LET theory, consisting as it does of the covariance equations, (23) for
C(k; t, t′) and (24) for C(k; t, t) ≡ C(k, t), which are identical to the DIA forms, plus the
fluctuation–relaxation relation (96), is a fully two-time theory and has no adjustable param-
eters. Although rather more complicated than the EDQNM theory, and more demanding to
compute, it nevertheless could be applied to non-isotropic and even inhomogeneous prob-
lems. Even if presenting too formidable a computational challenge, it could provide a basis
for single-point modelling, which might offer a useful extension to existing approaches.

8. Conclusions
8.1. A Point-Wise Summary of the Main Conclusions

As most readers of this article are unlikely to be familiar with quantum field theory, I
think that it will be helpful if I try to summarise its application to turbulence in as concise a
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way as possible. Accordingly, I have set out a series of key points, which I have made as
simple as I can without misrepresenting anything. In general my remarks are limited to
isotropic turbulence (please note that homogeneity is a necessary condition for isotropy and
does not therefore have to be specified). Furthermore, for the most part, I have restricted
this summary to Eulerian theories. This is not to denigrate the Lagrangian approach,
which is an entirely valid method of seeking a closure approximation, but to recognise that
there is still the outstanding problem of converting results into an Eulerian form, which
is of course the natural system for experimental work. One thinks of Taylor’s theory of
turbulent diffusion by continuous movements, which in the past has led to pragmatic
attempts to convert it to Eulerian coordinates. In time, perhaps those who espouse the
Lagrangian approach will address the problem of applying their results in an Eulerian
coordinate system.

1. Every modern two-point closure approximation can be understood as a second-order
truncation of a renormalized perturbation theory. The renormalization is achieved in
terms of an approximate renormalized response function. All theories lead to the same
equation for the energy spectrum, but the form of renormalized response function
(and the method of obtaining it) varies from theory to theory.

2. The historic two-time closures (the DIA of Kraichnan and Herring’s SCF) perform
quite well, both quantitatively and qualitatively, on the test problem posed by freely
decaying turbulence from an arbitrary initial state. However, they are not compatible
with the Kolmogorov spectrum.

3. There has always been some uncertainty about this failure. Kraichnan argued that it
arose because a two-time theory was unable to distinguish between sweeping effects
and inertial transfer through wavenumber. In contrast, Edwards interpreted the
failure of his single-time theory to be due to an infrared divergence at infinite Reynolds
numbers. At the time, there seemed to be some degree of agreement between the two
diagnoses, in that they both pointed to a problem at low wavenumbers, but this still
left a feeling of uncertainty.

4. A corollary of Kraichnan’s argument about the DIA is that no two-time Eulerian
theory can be compatible with the Kolmogorov spectrum. However, the LET theory
is both a two-time Eulerian theory and is compatible with the Kolmogorov spectrum.

5. A corollary of the Edwards diagnosis, in terms of an infrared divergence, is that there
may be more to the failure of DIA than Kraichnan’s diagnosis would suggest. This is
because DIA reduces to a similar form to the Edwards SCF in time-independent form,
and hence must also have an infrared divergence.

6. A corollary of the original derivation of the LET theory is that the relation of the DIA’s
response function to the energy balance is inconsistent with the experimental picture.

7. A corollary of the formal derivation of the LET theory in two-time form [42] is that
the unifying explanation of why the historic closures fail to yield the Kolmogorov
spectrum is that they are all Markovian with respect to energy transfer through
wavenumber, when turbulence is non-Markovian.

8. A conjecture arising from this formal derivation [42] is that the underlying prob-
lem with the DIA may be its reliance on the random stirring forces to define the
renormalized response function. While it is natural to study a dynamical system by
applying a force, in the case of fluid motion it is the turbulent state which is the system.
Hence, the applied force first has to create the dynamical system and then maintain
it, while also determining its renormalized response. In contrast, the two-time LET
determines its response in terms of a random, quasi-entropic force, which is related to
the probability distribution of velocities.

9. Although the quantum-style formalisms set out to establish the general nature and exis-
tence of a statistical theory of turbulence, they both are dependent (in their different ways)
on the use of the stirring forces to formalise their renormalized response. Further, they
both reduce to the DIA when truncated at the lowest nontrivial order. Hence, to the extent
that the DIA is incorrect, they also are incorrect, at least when applied to fluid turbulence.
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10. The LET theory cannot claim to be the theory of turbulence, in that there are some
question marks hanging over it. In particular, its prediction of the Kolmogorov
spectral constant is almost certainly too large. However, a hybrid theory might be a
possibility, with some vertex renormalization included by means of a restriction on
wavenumber interaction ranges. In this way, it could, like EDQNM, benefit from the
introduction of an adjustable constant.

8.2. Some Personal Reflections

I first met Jack Herring at the NASA-ICASE workshop on turbulence theory at Virginia
Beach in October 1984. Taking part were physicists, mathematicians, and engineers, and
I, as very much a new boy, was glad to be welcomed into the physicists’ group with Jack,
Bob Kraichnan, and various others. They were all, particularly Jack, very friendly and I
immediately felt at home. In fact, his friendly open manner was the first impression one had
of Jack, and I know that others felt the same about him. He was above all a good-humoured,
relaxed man and, in view of his great abilities, remarkably unassuming. I shall return to
that particular aspect later.

This was a long time ago, and I only have a few memories of the social interactions,
but I do recall that there was a ‘no-host cocktail hour’ when the day’s programme finished.
I was quite amused by this phrase, which I had not met before, and which simply meant
that the organisers were not about to pay for the drinks! I only remember one dinner, where
we left the hotel and set off along the sea front to look for somewhere to eat. It turned out
that a group of turbulence theorists could not ignore a seafood restaurant called ‘Ocean
Eddies’. I think we were the only customers and one of us did not like the loud music
being played and either switched it off or asked someone to do so. After a few moments of
pleasant silence, a small angry-looking man appeared (perhaps Eddy himself?), switched
the music back on, glared at us, and then disappeared back behind the scenes. Despite
the loud music, it was a pleasant evening and on our way back to the hotel Jack suddenly
pounced and scooped something up from the road. It was a small crab that he had spotted
scuttling along in front of us. After holding it in his cupped palms for us all to admire, he
put it down again to resume its journey to the sea.

My first interaction with Jack was actually the previous year, when I submitted a
paper reporting the first computations of my LET theory to the Journal of Fluid Mechanics.
One morning I received a phone call from George Batchelor to say that Bob Kraichnan
and Jack Herring were refereeing my paper and that they would like to discuss it with me.
He added, ‘You seem to have stirred them up a bit’, and he sounded quite approving! In
those days, ‘discussion’ was by means of air-mail letter, and was a relatively slow business.
However, it was all very civil and constructive; I managed to satisfy both Jack and Bob,
and the paper was duly accepted by JFM.

In 1990, my first book The Physics of Fluid Turbulence was published. It was reviewed
by Jack for the Journal of the Atmospheric Sciences. He gave it a very favourable and quite
lengthy review, but I was amused by one of his comments. He pointed out that I had gone
into some detail in establishing the foundations of the many-body statistical approach,
and it was ‘very full, but not too tiresome’. Of course to someone like Jack, this would be
very elementary material, but that would not necessarily be the case for most readers. I
was glad that it had not been too tiresome!

I encountered Jack on a few other occasions over the years, and found that he was the
sort of person with whom you felt that each time you met, you started again from where
you last left off, as if it had been the previous day. Discussions were always amicable, even
if we did not entirely agree.

While I have no further anecdotes to tell, I do have a couple of points that I would like
to make. The first of these arises out of my earlier comment about Jack being unassuming.
In his collaboration with Bob Kraichnan from the late 1960s onwards, I felt that Jack to some
extent submerged his own interests in favour of Bob’s interests. Of course, I have no sense
of how the two men worked together on the derivation of the strain-based Lagrangian
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theory. Nevertheless, the author ordering of the paper reporting the theory [23], and of the
paper reporting its subsequent computation [56], rather suggests the minor role for Jack.
However, others may disagree, and indeed be better informed than I am. So, I just offer
this as an impression that I had at the time.

My second, and final, point is about the three pioneering theories and their authors. I
was reflecting on these around the end of the previous millenium, and my conclusion was
that these three remarkable theories would always be the foundation of any turbulence
theory to come. Each was an outstanding intellectual achievement and they all, in effect,
were in agreement. If they had led to a great wave of progress in turbulence, then they
would have been in contention for the Nobel prize. However, unfortunately the cultural
divide was too great. For instance, intelligent men like Phillip Saffman and John Lumley
dismissed them as ‘mathematically complicated’, and I have seen the anonymous comment
‘everyone knows that Kraichnan was wrong and this line of approach is finished.’ Well,
on the contrary, this line of approach is not finished and in my carefully considered view,
Kraichnan, Edwards, and Herring, in their pioneering work on turbulence, were in the
Nobel laureate class.
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Appendix A. Quantum-Style Formalisms

We will only touch briefly on this subject here, mainly for the sake of completeness.
The formalisms of interest are the diagrammatic method due to Wyld [19], and the func-
tional formalism of Martin et al. [57]. The latter is often referred to as MSR, after the names
of its three authors. The aim of a formalism is to establish the existence and nature of a
solution to the turbulence problem (this is in the sense of physics, rather than that of pure
mathematics), rather than to produce a specific theory. In fact, both of these formalisms re-
duce to the direct-interaction approximation (DIA) when truncated at the lowest nontrivial
order, and, by extension, also can be said to lead to the SCFs of Edwards and Herring.

The paper by Wyld in 1961 was the second publication (after Kraichnan’s DIA) to apply
the new renormalization methods of physics’ turbulence problem, but, unlike the DIA, was
presented very much using the terminology of quantum field theory. While this may be off-
putting to those who are not themselves theoretical physicists (i.e., most fluid dynamicists),
it is worth overcoming this feeling, because the diagrammatic expansion presents quite
an intuitive picture of how renormalization can be expected to work. The basic idea is
that, although the perturbation series is wildly divergent, some subclasses of terms in
the expansion may be summed to all orders. In particular, summing one subclass (with
its members determined on topological grounds) leads to an exact expression for the
covariance of random stirring forces and the velocity field (also see Section 5.3.1 of the
present work, which deals with an exact summation occurring in Herring’s SCF). Essentially,
the remaining terms lead to a renormalized perturbation series of unknown properties (at
least, as regards convergence and possible truncation).

In 1965, Lee pointed out that there was a problem with the double counting of diagrams
with Wyld’s method and this could be cured by changing the left-hand emergent propagator
from each diagram to the bare (i.e., viscous) form [58]. Later, McComb [59], in the course of
deriving a two-time version of the LET theory, pointed out that the need for Lee’s ad hoc
procedure was due to Wyld carrying out more renormalizations than were actually required.
A more detailed discussion of Wyld’s theory may be found in Section 5.5 of the book [14].

Lastly, Martin et al. [57] argued that even with the improvements introduced by Lee,
the Wyld theory was incorrect, due to the way in which it handled vertex corrections. As a
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result, many people dismissed the Wyld–Lee theory out of hand. This is never a very wise
thing to do. After all, the basic perturbation approach is the gold standard for this type of
theory. More recently, Berera et al. [60] made a detailed comparison of the two formalisms
and concluded that MSR had misinterpreted Wyld’s way of handling the vertex corrections.
They presented what they called the Improved Wyld–Lee renormalized perturbation theory
in which there is no conflict with the MSR functional formalism. However, the reader
should note the comment about both these formalisms which is made in the Conclusions
of this article.
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