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Abstract: In our title, “chaos” means there is a positive Lyapunov exponent that causes the tornado
to move. We are asserting that a positive Lyapunov exponent is not always needed to have a butterfly
effect. Lorenz’s butterfly effect initially appeared in meteorology and has captured the imaginations
of people for applications to all kinds of fields. We feel it is important to understand simpler non-
meteorological models to understand the additional aspects of the butterfly effect. This paper presents
simple linear map models that lack “chaos” but exhibit a butterfly effect: our simplest model does
not have any positive Lyapunov exponents but still exhibits a butterfly effect, that is, temporary
exponential growth from a tiny perturbation such as one infected mosquito setting off an epidemic
outbreak. We focus on a 24-dimensional version of the map where a significant butterfly effect is
observed even though the only Lyapunov exponent is 0. We introduce a linear “infected mosquito”
model that shows how off-diagonal matrix entries can cause a finite-time growth rate. We argue
that the degree of instability in our systems can be better measured by its finite-time growth rate.
Our findings suggest that even in linear systems, off-diagonal matrix entries can significantly impact
the system’s behavior and be more important than the Lyapunov exponents in higher-dimensional
systems. A focus on finite-time growth rates can yield valuable insights into the system’s dynamics.

Keywords: butterfly effect; sensitive dependence on initial conditions; instability; Zika toy model

1. Introduction

The butterfly effect described by Edward Lorenz [1,2] has become a central concept in
the study of nonlinear systems. This effect is typically associated with “chaos” and charac-
terized by positive Lyapunov exponents. Of course, the Lyapunov exponents of a trajectory
are a partial description of what happens near the trajectory based on a linearization of
the dynamics near the trajectory. That analysis is greatly simplified if the system is linear
since the linearization of all trajectories is the same. By studying linear systems, we gain
clarity about the relationship between Lyapunov exponents and the butterfly effect, which
can be quantified by what we call the “butterfly number” in Section 2. By presenting a
butterfly effect in simple linear systems, we hope to contribute to a deeper understanding
of the role of dimensionality and off-diagonal terms in the linearization of the dynamics
of physical systems. We are not creating a new butterfly effect here, but we are simply
pointing out how it can occur in systems for which there is no positive exponent, and we
use only elementary mathematical techniques.

Sensitive dependence on initial conditions. There are several ways of characterizing
sensitive dependence on initial conditions [3–5]. Sensitive dependence on initial conditions
is defined by J. Guckenheimer [5] in any dimension as follows: there exists a positive ε such
that, for all x in the phase space and all δ > 0, there is some y that is within a distance δ of x
and there is some n such that d(Tnx, Tny) > ε. The phrase “sensitive dependence on initial
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conditions” was used by D. Ruelle [6] to indicate some exponential rate of divergence of
the orbits of nearby points, which has often been used to characterize chaos in the literature.
Guckenheimer’s definition does not require there to be a positive Lyapunov exponent, but
it is challenging to find a natural system that satisfies their definition but has no trajectories
with a positive Lyapunov exponent.

The ancient history of sensitivity to initial conditions. The following seems to de-
scribe how a tiny perturbation can lead to large changes through a pattern of increasingly
big effects over a finite amount of time. Benjamin Franklin included a version of the tale
about horseshoes and battles in their Poor Richard’s Almanack. Franklin’s was far from the
first version. (Benjamin Franklin, Poor Richards Almanack, June 1758, The Complete Poor
Richard Almanacks, facsimile ed., vol. 2, pp. 375–377) [7].

The horseshoe nail cascade effect: “For Want of a Nail”, an example of “finite-time
sensitive dependence”

For want of a nail the shoe was lost;
For want of a shoe the horse was lost;
For want of a horse the rider was lost;
For want of a rider the message was lost;
For want of a message the battle was lost;
For want of a battle the kingdom was lost;
Furthermore, all for the want of a horseshoe nail.
We believe that scientists and mathematicians were among the last people to learn

about sensitivity to initial conditions. The above nail tale has been discussed by other
authors, including Lorenz [8] and Shen [9]. We mention it here to contrast it with our
“parable about angles” in Section 3.

Dynamics of the Lorenz’s 1969 paper [2]. The Lorenz paper from 1969 analyzed a
high dimensional spatial multi-scale model, describing how energy at the model’s smallest
scales could propagate quickly to the largest scales, provided there was lots of energy in the
smallest scales. Perhaps huge numbers of energetic butterflies could provide that energy,
although the article did not mention butterflies. Wikipedia’s “butterfly effect” [10] says:
“According to Lorenz, when he failed to provide a title for a talk he was to present at the
139th meeting of the American Association for the Advancement of Science in 1972, Philip
Merilees concocted ‘Does the flap of a butterfly’s wings in Brazil set off a tornado in Texas?’
as a title.” A single flapping of a butterfly causes chaos in the Lorenz paper from 1963 [1],
whereas the butterfly effect in the Lorenz paper from 1969 [2] is caused by the propagation
of huge numbers of flapping butterflies. The analysis of the Lorenz’s 1969 model’s linearly
unstable solutions was first documented in Shen et al. [11].

Outline of the paper. In Section 2, we begin with a mosquito model instead of a
butterfly. We introduce a simple linear one-space-dimension map. We show that the map
shows a butterfly effect, “the sensitive dependence on initial conditions” for some finite
times, although the map is not chaotic in the sense that it does not have positive Lyapunov
exponents. In Section 3, we describe another well-known multi-dimensional torus map
where the coordinates are angles. We investigate the numerics of the map in Section 4. In
Section 5, we explain the known mathematical results and introduce a conjecture together
with some numerical evidence. We discuss the related works and summarize our results
in Section 6.

2. Linear K-Dimensional System Showing the Butterfly Effect

Models for the spread of Zika-infected mosquitoes. Jeffery Demers et al. [12] in-
vestigated a heterogeneous, two-space-dimensional model of infected Aedes mosquitoes.
Some species of mosquitoes, such as Aedes, can become infected and can transmit diseases
such as Zika, and they have little mobility during their lifetimes. This means it can be
effective to focus the killing of mosquitoes in the small areas where the disease exists.
See our discussion section (Section 6.2) for New York Times articles that discuss the Zika
outbreak in Miami, Florida, and elsewhere. The World Health Organization recently de-
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clared mosquito-borne Zika an “international public health emergency”. Our focus is on
how a new exponentially growing outbreak is local early in the outbreak. Hence, a new
outbreak can sometimes be interrupted using only local strategies for killing mosquitoes,
as opposed to expensive strategies that would try to (temporarily) eradicate mosquitoes
in a large region. Of course, “exponential growth” is temporary. Our model is spatially
one-dimensional, but it is easy to convert it into a two-space dimension model, provided
the winds generally blow mosquitoes in one direction.

A one-space-dimensional infected-mosquito model. We assume that there is a line
of land tracts numbered k = 1, 2, 3, . . ., perhaps along a road. We imagine that these regions
all have a similar area, perhaps one square hectare. Our model’s infected mosquitoes live
for one time period, and in one time period, each infected mosquito in tract k has ak + bk
progeny, which we imagine is approximately 2. We assume ak ≈ 1 mosquitoes stay in tract
k and bk ≈ 1 are blown by a constant wind into tract k + 1. Writing xk for the number of
infected mosquitoes in tract k yields the following dynamical model, which we call our
“(infected-) mosquito model”.

(x1, x2, . . . , xK) 7→ (a1x1, a2x2 + b1x1, . . . , aKxK + bK−1xK−1), (1)

This equation can be viewed as a linearization about yj = 0 for all coordinates j—of
a spatial logistic-based map. One possibility uses g(y) := y(1− y) where y = yk is a
density at each tract k with a maximum sustainable value of 1. The nonlinear equation is
the following:

(y1, y2, . . . , yK) 7→
(

g(a1y1), g(a2y2 + b1y1), . . . , g(aKyK + bK−1yK−1)
)
. (2)

Recall that yk is a density while xk is the number of mosquitoes. Huge values of xk
correspond to moderate values of yk.

We can write (1) in vector format, writing X = (x1, x2, . . . , xK). For time n ≥ 0, let
Xn = (xn

1 , xn
2 , . . . , xn

K) be a trajectory of (1) determined by

Xn+1 = MgenXn, (3)

where we define Mgen as follows:

Mgen =




a1 0 0 0 0 0 · · · 0
b1 a2 0 0 0 0 · · · 0
0 b2 a3 0 0 0 · · · 0
0 0 b3 a4 0 0 · · · 0
0 0 0 b4 a5 0 · · · 0
0 0 0 0 b5 a6 · · · 0

...
0 0 0 · · · bK−1 aK




. (4)

There can be rapid growth over time for large K when ak + bk > 1 for all k. We invite
the reader to try various choices of coefficients. This model gives many cases to consider.

Notation for “spatially homogeneous” matrices. Tri-diagonal matrix. In this part,
we comment on the case where a map is determined by the tri-diagonal matrix Mabc.
Assume that the K× K matrix Mabc is a tri-diagonal matrix with the following form:



Atmosphere 2023, 14, 821 4 of 13

Mabc =




a b 0 0 0 0 · · · 0
c a b 0 0 0 · · · 0
0 c a b 0 0 · · · 0
0 0 c a b 0 · · · 0
0 0 0 c a b · · · 0
0 0 0 0 c a · · · 0

...
0 0 0 · · · c a




, (5)

where a, b, and c are non-negative real numbers. This type of matrix is considered to
commonly appear in a linearized system in various nonlinear phenomena. An example
with a linearization that is somewhat similar is the Gledzer–Okhitani–Yamada (GOY) shell
model of fluid turbulence that mimics the Galerkin spectral equations of the Navier–Stokes
equations (A detailed analysis of this matter will be reported elsewhere as a joint work with
Miki U. Kobayashi.). It is a system of N-dimensional complex-valued ordinary differential
equations with the following form [13]:

(
d
dt

+ νk2
n

)
un = i[c(1)n u∗n+1u∗n+2 + c(2)n u∗n−1u∗n+1 + c(3)n u∗n−1u∗n−2] + f δn,1,

where f is a forcing parameter, δn,1 is a Kronecker delta, and c(2)1 = c(3)1 = c(3)2 = c(1)N−1 =

c(1)N = c(2)N = 0, and c(1)n = kn, c(2)n = −kn−2, c(3)n = −kn−3 with kn = 2n−4 for other n.
The eigenvalues the matrix Mabc are

λk = a + 2
√

bc cos
[

kπ

K + 1

]
, k = 1, . . . , K; (6)

the Lyapunov number is maxk |λk|, and the Lyapunov exponent is the log of the Lyapunov
number. From this formula, we obtain an inequality:

λk ≤ a + 2
√

bc, k = 1, . . . , K. (7)

See [14] for details. For large K, maxk λk ' a+ 2
√

bc. Of course if b = c, the right-hand
side is a + b + c.

Define the butterfly number (or the local Lyapunov number) of the tri-diagonal
matrix to be the column sum of the typical column of the matrix,

β(Mabc) := a + b + c. (8)

For positive a, b, c,
β(Mabc) > max |λk|,

which is the largest Lyapunov number. Hence, the temporary growth rate is β(Mabc). If
a = b = 0 and c = 2, the infected mosquitoes double each generation (until the open
boundary at tract K is reached) while the Lyapunov number is 0 (and the Lyapunov
exponent is −∞. If X = (. . . , xk, . . .) has no negative entries and the first and last entries
are 0, then ∑k x′k = β(Mabc)∑k xk where x′k = (MabcX)k. Hence, the sum of the entries
increases by a factor of a + b + c from one application of Mabc.

To focus on a truly elementary case, we focus on the case where all a = c = 1 and
b = 0 or, even more simply a = 0, c = 1, and b = 0.

Our model still has a one-space dimension and is spatially homogeneous (except at
entries 1 and K).

(x1, x2, . . . , xK) 7→ (x1, x2 + x1, . . . , xK + xK−1), (9)
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the one-mosquito-generation map with K land tracts. Assume that, at time 0, there is one
infected mosquito, and it is in tract 1.

As we describe later, tract k at time n for k ≥ n ≥ 1 will have (k
n) infected mosquitoes.

Recall that (k
n) =

k!
n!(k−n)! , which is 0 if n > k. Figure 1 displays the distribution. It seems to

show a pattern analogous to the pipe flow [15], where the center of the distribution at time n
is tract n

2 . Of course, pipe flow is a nonlinear process, while our model emphasizes only the
linear growth phase. See our remarks in Section 6 on the work of Kaneko and Crutchfield
on pipe flow. Later, we discuss how the center of the infected mosquito distribution moves,
as seen in Figure 1. Clearly, in reality, the population of infected mosquitoes exists against a
background of a large uninfected population. The number of infected mosquitoes would
eventually saturate, a fact not reflected in our model.6 YOSHITAKA SAIKI1, JAMES A. YORKE2
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initial value X = e1 = (1, 0, 0, . . .)—with respect to n for even n, where n can be thought of as time
measured in mosquito generations.

One infected Miami mosquito. We examine a finite line of K tracts where all xk ≥ 0,
so eventually, if n is large, the largest value of Xn occurs at the end, i.e., at xK. In Miami,
the winds tend to blow from west to east, and since Miami is on the western edge of the
Atlantic Ocean, its mosquitoes in the last tract can be blown into the ocean and cease to be
a problem. We assume an outbreak starts with one mosquito infected with the Zika virus.
Here, we aim at simplicity. A more detailed model such as Demers’ would be spatially
heterogeneous and two-dimensional, which would include people infecting mosquitoes
and mosquitoes infecting people. The resulting behavior could be similar to the explosive
growth we observe here, depending on the details, possibly growing even faster.
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Again, we can write (9) in vector format, writing X = (x1, x2, . . . , xK). For time n ≥ 0,
let Xn = (xn

1 , xn
2 , . . . , xn

K) be a trajectory of (9) determined by

Xn+1 = MXn, (10)

where M is the two-diagonal matrix K× K matrix M101, i.e., a = c = 1, b = 0.
Let ek denote the vector whose kth entry is 1 and its other entries are 0. The finite-

dimensional matrix M (with dimension K) has only one eigenvector, eK := (0, . . . , 0, 1), and
its eigenvalue is 1, so all of the map’s Lyapunov exponents are 0. The multiplicity of the
eigenvector is K. The matrix M is a Jordan block matrix.

The time n mosquito distribution Mne1 for Equation (10). The natural initial condi-
tion for the mosquito model is e1 = (1, 0, . . . , 0). For this initial state e1, i.e., one mosquito
in tract 1 at time 0, the number of infected mosquitoes at any later time n ≥ 0 on tract k
where k ≤ n, K is (n

k), and the total number of infected mosquitoes is 2n provided n ≤ K.
The vector Mne1 at time n is the left-most column of Mn, and its last coordinate xK

is ( n
K−1), which, of course, is 0 for n < K − 1. Since K is fixed, xn

K grows slower than
exponentially as n increases.

If the last coordinate xK is 0 at time n, then the total number of infected mosquitoes at
time n + 1 is twice the total at time n, i.e., for time n,

K

∑
k=1

xn+1
k = 2

K

∑
k=1

xn
k . (11)

In this case, generally, when time n is less than K, the mosquitoes have not yet
reached the last tract, K, and the application of M doubles the sum. See Figure 1 (right).
As mentioned above, there is only one eigenvector of M, and that is (0, . . . , 0, 1) i.e., all
entries except the last are 0, and the last is one. This is an eigenvector with an eigenvalue
of 1 with a multiplicity of K. Hence, the rapid growth of the sum of the coordinates
seen in Equation (11) is not because of the eigenvalue but is a result of the off-diagonal
terms that do not contribute to the eigenvalues. While Lyapunov exponents come from
linearizations, they do not reflect all of the information in the linearization. Since our map
is linear, this point is easier to see.

3. Converting Each xk into a Direction on a Circle

Skew-product map of a torus. The special mosquito map can be converted into a
well-known “skew-product map” on a torus. Each xk becomes an angle θk = xk mod 1 in
a circle that we represent by [0, 1), and we identify the ends, 0 and 1, by computing each
θk, mod1. In a physics context, angles are often referred to as phases.

It is traditional to include an irrational α, in the rotation map on the first circle T1,

θ1 7→ θ1 + α mod 1, (12)

and having α irrational is required for the results in Section 5. We also obtain maps of
any finite dimension, including the long-studied two-dimensional map on the two-torus
T2 [16–19],

(θ1, θ2) 7→ (θ1 + α, θ2 + θ1) mod 1, (13)

where, in this paper, “v mod 1” signifies that mod1 is always applied to each coordinate
of a vector v.

We investigate the map of the K-dimensional torus TK because it exhibits a butterfly
effect (via the perturbation of angles):

(θ1, θ2, . . . , θK)
F−→ (θ1 + α, θ2 + θ1, . . . , θK + θK−1) mod 1, (14)
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where K is fairly large, perhaps K ' 24. We choose 24 for illustrations because the width of
Texas is approximately 224 times the size of a 3 cm. butterfly.

Each coordinate value, θk, is a point on a circle, so we can refer to it as a “direction” or
an angle. Each perturbation of direction θk on iterate n perturbs the direction θk+1 on iterate
n + 1 and later. We make a conjecture about the behavior of this equation in Section 5. Write
Θ = (θ1, θ2, . . . , θK), and for n ≥ 0, let Θn be a trajectory of (14).

Notice that the kth coordinate at time n, namely Θn
k , only depends on Θn−1

i for i ≤ k,
so that Θn is a trajectory of (14), and for K = 2, it is a vector of length 2, so then it is a
trajectory of (13). Writing (14) in vector format

Θn+1 = MΘn mod 1. (15)

Notice that because all entries of M are integers, the map [Mn(Θ)] mod 1 (applying
mod1 only after n applications of M) is identical to [M(Θ) mod 1]n, applying mod1 at
each iterate. Furthermore, if we make numerical studies in which each coordinate remains
less than 1, the results are meaningful regardless of whether mod1 is applied.

A parable about angles. This part is about angles or orientations. We now propose a
parable about changing directions, where one orientation of something causes a change in
the orientation of something larger. Imagine a lot of activity in a flat field with a butterfly, a
bird, a cat, a dog, a person, a bike, a car, and a truck, all traveling in different directions. The
direction of each is a point in a circle, collectively a point on an eight-dimensional torus T8.

A butterfly flaps its wings;
a nearby bird changes direction;
a running cat watching the bird swerves;
a dog swerves at the motion of the cat;
a walking person swerves to avoid hitting the dog;
a passing bicycle swerves a bit;
causing a passing car to change its direction;
a truck changes directions in response.
The butterfly flapping its wings cascades to ever larger scales, perhaps to Texas-sized

scales containing tornadoes. All of these changes in directions need not affect the energy
of each component. Or we can follow Lorenz, who investigates packets of air of different
sizes, small packets perturbing larger packets, in increasing sequence of increasingly
large air packets. Each packet is twice the diameter of its predecessor [2]. Tiny initial
perturbations throughout the small-scale packets grow quickly and together become a
large-scale perturbation. In this sense, one butterfly flapping its wings in the smallest packet
under consideration totally changes the direction of the largest-scale tornado environment,
shifting the tornado perhaps from Oklahoma to Texas, or vice versa. Oklahoma and Texas
are adjacent states in the USA. These are among the places in the world with the most
severe tornado weather.

The perturbations keep influencing the larger scales, adding ever-increasing perturba-
tions to the direction of the next larger packet. The time scale for the perturbations to occur
is shorter for the small scales than for the larger scales, but we ignore this inconsistency.

4. Numerical Investigations

We use a superscript to denote the iterate number of vectors such as φ, θ, and ψ and
a subscript for coordinate number. Choose initial vectors φ, θ ∈ TK so that only the first
coordinates (denoted by subscripts) have a difference: (φ− θ)1 := φ1 − θ1 = 10−30, and
for coordinate k > 1, (φ− θ)k := φk − θk = 0. We find that the 20th coordinate of the 300th

iterate of M is approximately 1
2 , i.e.,

(φ− θ)300
20 = M300(φ− θ)20 mod 1 ≈ 1

2
.
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Note that the value 1
2 is the maximum possible difference since φk and θk are in a circle

where the maximum distance between two points is 1
2 .

We can think of different θks as representing behaviors at different scales of different
swirls in the atmosphere, consecutive scales representing the size differences of a factor
of 2. Perhaps we can say that a typical butterfly has a size of roughly 0.06 meters, while
tornado weather patterns have a scale of at least 106 meters, which is the approximate
width of Texas. These differ by roughly 224 (or more precisely 23.99). Each swirl can change
the direction of the next higher swirl. In order to realistically scale the butterfly problem is
K ≈ 24 for our skew-product system Equation (14). Each swirl might be twice the scale of
the next smaller scale.

Of course, there is an immense number of air packets that are the size of a butterfly,
and perturbations in each might affect some next larger packet. An intermediate-size packet
might be perturbed by several smaller packets. However, here, we look only at a single
cascade starting with one butterfly, and for each packet, we only look at its influence on
one larger packet. Realistically, the time of propagation from the kth packet to the larger
(k + 1)st is longer as k increases, a fact that our maps do not reflect.

A moving peak of the distribution. In the following Table 1, define

C(n) :=
(

n
n/2

)

for n = 2, 4, 6, . . .. It is the magnitude of the largest coordinate of Mne1 where e1 = (1, 0, 0, . . .)
for the case of unbounded space. Hence the location of the peak value is at n

2 . This location
moves to larger values as time n increases.

The number C(n)1/n is a finite-time geometric growth rate (which approaches 2 as
can be seen in the table). This value approaches 2, but it is showing that as n increases,
some circle (namely circle # n/2) is strongly affected by the initial tiny perturbation. See
also Figure 2.

Table 1. The magnitude of the largest coordinate ( n
n/2) of Mne1 where e1 = (1, 0, 0, . . .). Conver-

gence of the right column to 2 is slow as n increases.

n C(n) = ( n
n/2) C(n)1/n

2 2 1.414214

4 6 1.565086

22 705,432 1.844331

24 2,704,156 1.853537

26 10,400,600 1.861602

100 1.009 × 1029 1.950018

Sensitivity is about the behavior of the difference between two different trajectories.
Since the equations we study are linear, we can write the equations for such a difference.
Let ψ = φ− θ where φ and θ are two trajectories. Then, the difference ψ satisfies

ψ = (ψ1, ψ2 . . . , ψK) 7→ (ψ1, ψ2 + ψ1, . . . , ψK + ψK−1) mod 1. (16)

This equation without mod1 is the mosquito model (9). In that case, the sum of
coordinates of ψ doubles each iterate in the unbounded case where K is infinite. We
consider two trajectories whose initial conditions differ only in the first coordinate. In
Figure 3, we see the growth in the difference in coordinate k of ψ between two trajectories
with respect to n. It asymptotically converges to an exponential growth.
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n
n/2

)
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(

n
n/2

)
of Mne1

where e1 = (1, 0, 0, . . .). Convergence of the right column to
2 is slow as n increases.tab:convergence

Figure 3. For Eq. (4.1), the growth in a ψ coordinate of the
difference between two trajectories. The initial condi-
tion for the difference ψ is chosen with the first coordinate
ψ1 = 10−30, and all other coordinates are 0. Notice that
for each k, ψn

k=0 for iterate n when n < k. Left panel,
ψn

10. The dots plot ψn
10 as a function of the number of it-

erates n of the map, and the straight line (green) is C1 · n9,
where C1 is chosen so that the line and the curve are tan-
gent. Right panel, ψn

20. This panel is similar to the left
panel using the straight line C2 · n19. The green lines have
“slopes” s = 9 and 19 in our “log log” plot, respectively, i.e.,
log (ψn

10 or ψn
20) = s · log(n) + constant. This fact does not

depend on the base of the logs since the slope is the ratio of
two logs with the same base.fig:errorgrowth

This equation without mod 1 is the mosquito model (2.9). In that case, the sum of243

coordinates of ψ doubles each iterate in the unbounded case whereK is infinite. We244

consider two trajectories whose initial conditions differ only in the first coordinate.245

In Figure 3, we see the growth of the difference in coordinate k of ψ between246

two trajectories with respect to n. It asymptotically converges to an exponential247

growth.248

Figure 3. For Equation (16), the growth in a ψ coordinate of the difference between two trajectories.
The initial condition for the difference ψ is chosen with the first coordinate ψ1 = 10−30, and all other
coordinates are 0. Notice that, for each k, ψn

k =0 for iterate n when n < k. (Left), ψn
10. The dots plot

ψn
10 as a function of the number of iterates n of the map, and the straight line (green) is C1 · n9, where

C1 is chosen so that the line and the curve are tangent. (Right), ψn
20. This panel is similar to the left

panel using the straight line C2 · n19. The green lines have “slopes” s = 9 and 19 in our “log log” plot,
respectively, i.e., log (ψn

10 or ψn
20) = s · log(n) + constant. This fact does not depend on the base of the

logs since the slope is the ratio of two logs with the same base.

5. Occasional Closest Approach of Two Trajectories

In this section, we discuss the mathematical aspects of the map F in Equation (14)
concerning the degree of complexity.

Scrambled pairs. For a map F, we say a pair φ, θ of points in the space is scram-
bled [20] if

lim inf
n→∞

dist(Fn(φ), Fn(θ)) = 0 and lim sup
n→∞

dist(Fn(φ), Fn(θ)) > 0.

For the map Equation (14), the first coordinate of Fn(φ)− Fn(θ) is independent of n.
Hence, the infimum of the distance between Fn(φ) and Fn(θ) could go to zero only if we
choose two points with the same first coordinate.

Let P be a set of pairs of points. Let diam(P) denote the maximum possible distance
between pairs in P . We say a pair φ, θ in P is totally scrambled (in P) if the pair is
scrambled and satisfies

lim sup
n→∞

dist(Fn(φ), Fn(θ)) = diam(P).

Conjecture 1. For the map Equation (14) on TK for K > 2, let P be the set of pairs φ, θ whose
first coordinates are equal. Then, almost every pair φ, θ in P is totally scrambled.

We describe the numerical evidence for this conjecture later in this section. Notice that
P is invariant: for each pair φ, θ in P , the pair (Fn(φ), Fn(θ)) is in P for all n > 0.

Results for the map Equation (14) when α is irrational. The following theorems by
Furstenberg [19] are fundamental results for the map (14). See also Furstenberg Theo-
rem 4.21 (p. 116) and Corollary 4.22 of the book [18].

Theorem 1. The map is minimal (every orbit is dense).

Recall: A Borel set is any set that can be formed from open sets through the operations
of countable union, countable intersection, and complements.

Theorem 2. The map is uniquely ergodic (there is only one invariant Borel probability measure).
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Since the map Equation (14) preserves the Lebesgue measure, its unique ergodicity
implies its minimality. In general, minimality does not imply unique ergodicity, for example,
interval exchange transformations (IET).

Numerical evidence for our conjecture. Two trajectories might occasionally move
close together, only to diverge, repeating this pattern in a non-periodic or apparently
stochastic manner. In Figure 4, we can see that the closest approach y(N) between two
trajectories during the time interval [0, N] decreases as time N increases and converges
to 0. It supports the first condition of the above conjecture. The decay rate of the closest
difference at time N seems to obey a power law which can be explained below. Suppose we
choose N random points using a uniform distribution on a D-dimensional box [0, 1

2 ]
D. For

0 < ε < 1
2 , when choosing N random independent points, the expected number of points in

[0, ε]D is (2ε)D N. If we choose ε so that the expected number is 1, we obtain (2ε)D = N−1,

i.e., 2ε = N
−1
D . In our case, D = K− 1. Thus, we plot ε = 1

2 N
−1

K−1 on a log-log scale which
yields a straight line −1

K−1 log(N) − log 2 with slope − 1
K−1 . For such an ε, given N, the

probability that none of the N points are in the [0, ε]D is (1− ( 2
ε )

D)N = (1− 1
N )N ≈ 1

e .
Figure 4 shows that the difference between two trajectories behaves in this manner. Note
that, if two values of N are chosen close together, whether the plotted points on curves are
above or below the line is correlated.

Figure 4. Closest approach between two trajectories θn and φn up to time N. The initial points
θ0

1 , φ0
1 were chosen at random. For coordinates k = 2, · · · , K, at time n, define δn := max

k=2,··· ,K
|θn

k − φn
k |.

Notice coordinate k = 1 is excluded since for all n > 0, θn
1 − φn

1 = θ0
1 − φ0

1 is constant. The (left)
panel is for dimension K = 5 and the (right) is for K = 11. For both, we plot y(N) := min

n≤N
δn, the

closest approach between two trajectories θ and φ on [1, N]. This is non-increasing as N increases.
For comparison, we also plot y = 1

2 N−
1

K−1 , which in this log-log plot is a straight line with slope −1
K−1 .

6. Discussion
6.1. Summary

We present linear models exhibiting large-scale rapid growth that is not reflected in
the Lyapunov exponent of the model since there exist no positive Lyapunov exponents. The
growth of solutions is due to off-diagonal terms. The off-diagonal terms correspond, in our
case, to spatial transmission. This is an often-discussed topic, but our treatment is different
in that, here, our system is linear. Since M is a lower-triangular matrix, the off-diagonal
terms do not affect the eigenvalue(s) of M. We observe an initial exponential growth in the
total number of infected mosquitoes, but the exponential growth is only transient. Note
that this is not a chaotic transient [21], as there is no chaotic invariant set.

These models present an alternative source for the sensitivity to initial conditions
present in complex systems. See Sander and Yorke [22] for a discussion of some of the
many definitions of chaos that reflect different aspects of chaos.

6.2. Zika-Infected Mosquitoes in Miami, Florida, USA

The problem of containing and controlling Zika-infected mosquitoes is based on an
actual outbreak in the Americas and specifically in Miami, Florida, where it was a localized
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outbreak. The New York Times published articles about Zika in Miami with the titles. (The
online titles may differ from the print version’s titles).

• (3 February 2016) “Fighting the Zika Virus. Subtitle: The World Health Organiza-
tion was right to declare the mosquito-borne disease an international public health
emergency” (by the Editorial Board)

• (1 April 2016) “In Miami, Facing Risk of Zika With Resolve but Limited Resources.
Subtitle: Stopping the virus’s spread, health experts say, requires vigorous control of
the mosquitoes that carry it.”

• (9 August 2016) “Zika Cases Rise in Miami, and Officials Try to Soothe Fears”
• (print edition 10 August 2016, page A3) “Zika Cases Rise in Miami, but Remain

Contained”

Our simplified model shows that a local outbreak can be treated locally with insecti-
cides, but there is a risk of a rapidly growing outbreak. In particular, it is not necessary to
treat all of Miami with insecticides. We rejected the alternative approach of treating the
problem of mosquitoes with partial differential equations with diffusion, thereby creating a
model no politician in Miami could understand.

6.3. Related Works

Other than simple temporal chaos, complexity in dynamical systems can be generated
by several mechanisms, some of which are similar to those in our simple map in some
sense. See [21].

Works on Kaneko and Crutchfield on coupled map lattices. There is of course, a
huge literature on pipe flow where there can be a moving localized region of turbulence,
outside of which the flow is laminar. This can be seen in the earlier paper by Briggs [23] for
a similar phenomenon called convective instability in plasma physics. Kerswell [24] is a
more recent discussion of pipe flow with real fluid turbulence.

In Kaneko’s study [25] of a coupled map lattice model of pipe flow, the isolated regions
of chaos move at a fixed rate. To detect the chaos, he uses a moving frame of reference to
compute the co-moving Lyapunov exponent, which is related to the propagation of the
disturbance in space.

There is also a study [15] on the following coupled system of the Nagumo map, each
of which has stably periodic dynamics, but the total system shows similar behavior to that
shown in spatio-temporal chaotic dynamics:

xn+1
k =

1
2r + 1

r

∑
j=−r

f (xn
k+j), (17)

where f (x) = sx + ω (mod1) for some real values s and ω, and xn
k ∈ [0, 1) is the state at

the kth site (k = 0, . . . , K− 1) at time n, r the radius of the coupling, and K the number of
sites. In their work, r is fixed as 1, meaning the nearest neighbor coupling. Even if the local
dynamics is periodic under conditions such as s = 0.91, ω = 0.1, when it is coupled into a
spatial system, “turbulent” behavior can exist for times that grow faster than exponentially
with increasing system volume.

Spatially varying chaos. Nonlocally coupled oscillators can exhibit complex spatio-
temporal patterns called chimera states, consisting of coexisting domains of spatially coher-
ent (synchronized) and incoherent dynamics [26]. High-dimensional coupled Kuramoto
oscillators can show chaotic behavior, although a single oscillator behaves periodically
without mutual interactions [27–29]. It is also well known that the degree of chaos in the
Kuramoto–Sivashinsky system becomes higher as the spatial size increases [30,31]. The
system can show so-called spatio-temporal chaos.

Strange nonchaotic attractor (SNA) [32–34]. The skew-product map above and SNA
models have an irrational rotation as in Equation (12). Both can show rapid growth,
but neither has a positive Lyapunov exponent. SNA models are nonlinear and usually
two-dimensional, whereas our maps are linear and high-dimensional.
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