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Abstract: This work represents a first step in the definition of a framework aimed at finding, by
means of efficient global optimization based on metamodels, an optimal configuration of physical
parameters for the ICON (ICOsahedral Nonhydrostatic) Limited Area Mode at high resolution (about
1.1 km) over Southern Italy, to be used for operational runs. The objective of the optimization is to
reduce the distance between observed meteorological variables and modeled data. This distance is
measured by an opportunely designed objective function. This work represents a preparatory step,
since the input parameters considered are only a reduced number with respect to the huge amount
of parameters potentially involved. First, domain size sensitivity was performed to choose the
optimal domain. Then, the optimization was conducted by means of an Efficient Global Optimization
algorithm relying on a Gaussian-based metamodel. The four parameters considered control the
heat transfer in the turbulent layer, the laminar resistance and the snow vertical velocity. They were
optimized over a week in November 2018, a period characterized by extreme events in the region
considered. The results demonstrated the effectiveness of the proposed approach, reducing the
distance from observed data, and the method can be considered promising from the perspective
taking into account a larger set of physical parameters, and validation over a wider time-window.

Keywords: regional model optimization; automatic calibration; machine learning; high resolution;
domain size

1. Introduction—Background and Motivations

Limited Area Models in weather forecasts allow very accurate simulations on small
scales, thanks to their higher grid resolution, if compared to Global Models (GMs). Gener-
ally, the physical parameters of local models, which are often inherited by GM at a coarser
horizontal resolution, need to be re-calibrated over the specific domain of interest, in or-
der to consider new orographic features, which may be quite different from coarser ones.
The geographical configurations, and the fact that high resolution allows new phenomena
to be simulated, need to be taken into account.

Re-calibration is often performed by ‘experts’ within the judgement of a parameters
tuning campaign , even if, in the last decade, increasing attention has been oriented
to automatic calibration. However, this technique is still limited, due to its huge CPU
requirements, as highlighted in the work conducted by Duan et al. [1], where the authors
emphasize the difficulties of this approach. They refer to the large number of physical
parameters involved (a ’curse of dimension’ problem), which makes the optimization hard
to apply in practice, and to the fact that it requires a multi-objective approach, due to
the meteorological variables to be monitored. In order to reduce the CPU request when
performing an automatic calibration, metamodels are replacing the numerical weather
solver response, as shown in the work by Neelin et al. [2], where the authors investigated the
sensitivity to physical parameters of a climate GM and conducted parameters optimization
based on a multi-quadratic regression model. Bellprat et al. [3] tried to reduce the bias of
Regional Climate Models by optimizing eight parameters by means of the same metamodel
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proposed in [2]. Duan et al. [1] performed a calibration of the WRF (Weather Research
& Forecasting) model over the Beijing area, tuning nine parameters with an adaptive
surrogate modeling-based optimization. Recently, Vouduri et al. [4] obtained only slight
model performance gain, but underlined that an objective calibration methodology could
have a significant impact on the future development of NWP models for re-calibration after
major model changes (e.g., different horizontal and/or vertical resolutions).

With this view in mind, a crucial task is the selection of model parameters having a
functional relationship to the forecast quantities to be optimized. A successive step is the
definition of the optimization target, i.e., the objective function, which, consequently, defines
the nature of the optimization problem. Although huge effort has been expended, currently
there is poor agreement among authors [2] on the definition of scalar metrics [3,5,6] or on
the cost functions useful for parameter optimization. For example, Gleckeler [6] highlighted
the risk that a single index can be misleading, since the complex behavior of the variables
involved could show opposite trends and interact in a non-linear way, underlining that
the development of suitable metrics is quite a complex process. In the present work,
three meteorological variables were considered in the calibration process, with the aim
of enhancing their representation in a satisfactory manner. Even if the process requires
model calibration conducted via a multi-objective approach, it is known that this approach
further increases the complexity of model calibration. Hence, the approach followed here is
based on a single-value objective function that aggregates with a scalar weight. This linear
weights combination allows effective reduction of the computational cost, though it can
introduce several other advantages and disadvantages [7]. In this way, we can transform
the optimization problem into a single objective using a surrogate-based optimization
technique, aiming to find a solution that represents the best compromise for each variable,
and imitating, or at least approximating, a Pareto optimal point [8].

The aim of this work was to provide a contribution to the definition of a suitable
high-resolution model configuration for ICON-LAM over southern-Italy, where the nu-
merical model parameters are tuned with automated model calibration. This calibration
is based on a metamodel that measures the distance from the observed data of different
physical variables (e.g., temperature at surface level and precipitation over 24 h) and the
numerical model predictions. A single object optimization in the parameter space is set
to find the best parameter configurations that minimize the distance from measured data.
These methods replace the expert knowledge approach that can be considered a manual,
trial and error approach with intrinsic limitations. The expert judgement approach often
starts from a sensitivity analysis of the target function to model parameter changes. This
approach, according to the number of parameters involved, does not take into account
mutual interactions between parameter changes, but considers perturbations of assigned
reference levels for one parameter at a time. Approaches like the one presented in this
work are, instead, based on full interaction of the parameters involved. The aim of a
well-fitted n-dimensional metamodel is to describe the multimodal landscape of the target
function and to predict its behavior in unknown data points, supporting the optimization
algorithm in finding the global optimum, and avoiding local minima. On the other hand,
a surrogate model-assisted optimization contributes to saving CPU-time if compared to
algorithms that feed optimum search directly with results from numerical models (ICON
in our case). With this approach, we aimed to set up an automated process that is able to
find optimal values of tuning parameters controlling physical parameterization schemes,
enhancing the model configuration. Furthermore, starting from the results obtained from
the first optimization campaign, a new one could be performed, involving additional
parameters alongside the data obtained, in the framework of a refinement chain based on
successive optimizations.

ICON (ICOsahedral Nonhydrostatic) is a joint project between the Deutscher Wetter-
dienst (DWD) and the Max Planck Institute for Meteorology (MPI-M) for the development
of a unified global numerical weather prediction system [9]. ICON can also be run as a
Limited Area Mode (ICON-LAM) and is replacing the COSMO (Consortium for Small-scale
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Modeling) model in climate and weather forecasting. A major source of uncertainty arises
from the large number of unconstrained model parameters associated to the parameteriza-
tion schemes. The selection of the parameters to be calibrated is a crucial task, since there
are numerous parameters in the ICON-LAM configuration [9].

In order to fulfil the objective of the work, domain sensitivity and an automatic
calibration of physical parameters were performed over a domain located in southern Italy.
This aimed to contribute to the definition of a model configuration suitable for accurate
weather forecasts over this area.

A first sensitivity analysis was performed with respect to the domain size, considering
a reference domain and two additional domains that were respectively 50% and 100%
larger (in both directions) than the original one. Then, an automatic calibration of four
critical physical parameters was carried out starting from a model configuration previously
defined by the authors (in a joint effort with the CMCC Foundation, Italy) for the whole
Italian area, employing a different resolution (R2B10, about 2.5 km) [10]. The tuning was
performed over the following parameters that were previously shown to play a significant
role in determining model response: tkhmin (minimal diffusion coefficient for heat and
moisture), tkmmin (minimal diffusion coefficient for momentum), rlam_heat (factor for
laminar resistance for heat) and v0snow (factor for vertical velocity of snow).

Model evaluation was conducted against observational data provided by the SCIA
dataset (ISPRA, Italy) [11]. Moreover, a comparison with forecasts provided by the COSMO
model at 0.009◦ (about 1 km resolution) forced by the same driving data was performed,
in order to highlight the differences between the performances of the two models. This
paper is organized as follows. In Section 2, the model ICON-LAM is described, while
the domain and the observational data are shown in Section 3. In Section 4 we describe
the test cases under investigation and the SW/HW configuration. In Section 5.1 we de-
scribe how the results were post-processed to obtain the objective function Fobj (described
in Section 5.2), which was minimized in the automatic calibration process, described in
Section 5.3. In Section 6 we discuss the results related to the domain sensitivity, to the auto-
matic calibration and to the validation of the optimized configurations over an independent
dataset, i.e., a week in summer, 2019. Finally, Sections 7 and 8 are devoted to a discussion
of results and conclusions, respectively.

2. ICON-LAM: Model Description and Set Up

In 2018, the COSMO consortium started migrating from the COSMO-LM to the ICON-
LAM (ICON Limited Area mode) as the operational model. ICON-LAM is characterized
by exact local mass conservation and mass consistent tracer transport. The dynamical
core is formulated on an icosahedral-triangular Arakawa C-grid. Time integration is
performed with a two-time level predictor–corrector fully explicit scheme. Time splitting
is applied between the dynamical core and tracer advection, physics parameterization
and horizontal diffusion. Physics-dynamic coupling is performed at constant density (ρ),
rather than pressure, since ρ is a prognostic variable, whereas pressure is only diagnosed
for parametrization, hydrostatically integrated. The fast physics parametrization was
inherited from the COSMO model, except for the saturation adjustment. The Cloud
micro-physics scheme is an extended version of COSMO-EU, with modification of cloud–
ice sedimentation. The turbulence scheme has undergone some revision from ICON to
improve stability under extreme conditions. The TERRA land-surface scheme has also
been extended with a multi-layer snow scheme and tile-based approach accounting for
sub-grid scale land-cover variability. Slow physics were imported from the Integrated
Forecast System (IFS). Since simulations are initialized with horizontally interpolated data,
a tile “cold-start” approach has been employed, where each tile is initialized with the same
cell averaged value, and the initial values with a guess from a run without tiles.

The optimization process performed in the present work starts from a configuration
name list (here referred to as baseline), inherited from the work described in [10], where a
suitable configuration for the whole Italian peninsula was defined, based on a reference
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defined at DWD (Germany) with some modifications suggested by the Israeli Meteorologi-
cal Service (IMS, Israel). This reference configuration assumes that the shallow convection
parameterization is active, whereas the parts treating deep- and mid-level convection are
switched off. Moreover, a single moment cloud microphysics scheme and a diagnostic
Kohler cloud cover scheme are employed. The parameters to be calibrated were selected
after a long selection process carried out in the frame of the Priority Projects CALMO and
CALMO-MAX of the COSMO Consortium [12], aimed at developing a method supporting
an objective calibration of the input parameters of the COSMO model. This selection was
a crucial task, since there are numerous parameters in the COSMO model indicatively
related to sub-grid scale turbulence, surface layer parameterization, grid-scale clouds, pre-
cipitation, moist and shallow convection, radiation, soil scheme, etc. In particular, in [13],
the most sensitive physical and numerical input parameters were identified for a domain
similar to the one considered in the present work. It was found that the parameters with
a relevant influence for a proper representation of temperature and precipitation are the
heat resistance length of the laminar layer, the minimal diffusion coefficient for heat and
momentum, and a factor controlling the vertical velocity of snow. Table 1 shows the four
parameters explored in the automatic calibration, together with their variation ranges
and reference values. The ranges were chosen in order to preserve physical significance.
The parameters considered were associated with turbulence (tkhmin, tkmmin), surface layer
parametrization (rlam_heat) and grid scale precipitation (v0snow). The following points are
particularly relevant:

• v0snow is the factor in the terminal velocity for snow and is used in the grid scale
clouds and precipitation parametrization;

• tkmmin is the scaling factor for minimum vertical diffusion coefficient (proportional
to Richardson number, Ri−2/3) for momentum;

• tkhmin controls the minimum value for the turbulence coefficient (proportional to
Richardson number, Ri−2/3) for heat and moisture;

• rlam_heat is a scaling factor of the laminar boundary layer for heat (scalars), with
larger values corresponding to larger laminar resistance.

Table 1. Calibrated parameters: ranges, reference values and descriptions.

Name Parametrization Min. Max. Baseline Description

v0snow [ - ] Microphysics 10 30 30 Snow vertical velocity

tkhmin [m2/s] Vertical turbulent diffusion 0.1 2.0 0.5 Heat diffusion coefficient

tkmmin [m2/s] Vertical turbulent diffusion 0.1 2.0 0.75 Momentum diffusion coefficient

rlam_heat [ - ] Soil and vegetation processes 0.05 20.0 10.0 Heat laminar resistance factor

The simulations were performed on the CIRA server ’Turing’, an HPC cluster, based on
the RedHat Enterprise Linux v7.3 Operating System, equipped with 40 Intel Xeon E5-2697
nodes, for a total of 1440 cores, interconnected by means of an Intel Omni-Path network
at 100 Gbit/s. The ICON release installed was the 2.6.4, compiled with Intel Parallel
Studio 2020 XE update 4 with MPI intel libraries. Each simulation was run distributing
the day/instance on 4 nodes, in order to meet internal queue policies. Each simulation
employed about 4 h of elapsed time per day.

3. Domains and Observational Data

The computational domain of a regional climate or weather forecast model must be
carefully selected for its specific application. In particular, domains sufficiently larger
than the area of interest are needed for studies of sensitivity to internal forcing [14].
Goswami et al. [15] stated, for example, that along with initial conditions and resolution,
the size of the domain significantly affects simulated quantities, such as total precipitation.
Furthermore, they showed that, for both average and maximum precipitation, the disper-
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sion in simulations, due to variations of the domain size, is much larger than the dispersion
due to either initial conditions or grid spacing.

The limited area over which a model is integrated must be large enough to allow the
full development of small-scale features [16] and to avoid side effects from lateral bound-
aries. On the other hand, a larger horizontal domain could include complex topographic
areas, absent in the smaller, potentially affecting the extended domain with unexpected
degradation [17].

In this study three domains of increasing size were considered (Figure 1), in order to
select the one that performed better in terms of temperature and cumulative precipitation
forecast over the considered period. The domains included the northern Campania and
southern Lazio regions and were characterized by a spatial resolution of about 1.1 km,
i.e., computational grid R2B11. Further details can be found in Table 2.

Table 2. Domain cells and extensions.

Domain Label Cells Lon [deg E] Lat [deg N]

DOM1 49,192 11.36–15.41 40.23–42.28

DOM2 110,216 9.97–16.03 39.47–43.03

DOM3 182,968 3.71–23.88 33.99–49.13

Figure 1. The computational domains DOM1, DOM2 and DOM3.

Model evaluation was conducted against both grid and in-situ station data provided
by the SCIA-Ispra (National System for elaboration of Climate data) system. Specifically,
over the domain considered, data from 28 stations are available for temperature and 48
for precipitation (Figure 2). Grid data (obtained through an interpolation process, already
considered in a previous work [10]) are available over the whole domain on a regular grid
at 5 km resolution for temperature and 10 km for precipitation. Furthermore, the outputs
of ICON simulations were also compared with the results obtained with COSMO on a
similar domain.

(a) Minimum and Maximum Temperature (b) Precipitation

Figure 2. Distribution of SCIA stations, for (a) Min T and Max T, (b) Precipitation.
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4. The Test Cases Considered

Following the work performed by the authors with COSMO on a similar domain [13],
the week 19–25 November 2018, was selected for the test case for the optimization of the
ICON-LAM model configuration, when a low-pressure system, coming from the Western
Mediterranean, brought intense storms and gusts. The region analyzed is generally exposed
to humid westerly winds and, consequently, high precipitation values are recorded, even
along the coasts, of up to 1000 mm/year. In particular, the first part of the selected week
was characterized by a low pressure system coming from the Western Mediterranean that
ran over Sardinia first and then hit the south-central regions of Italy. Moreover, a second
test case was conducted for the week 1–7 July 2019, in order to test the effectiveness of
the optimized model configuration in a different season (summer) involving different
weather regimes, since the relevance of many tuning parameters depends strongly on the
meteorological conditions, and interactions with existing biases originating from other
sources may vary with the season. This week was characterized by high temperatures,
with the risk of heat waves in urban areas. It is very likely that if the two periods (a winter
week and a summer week) were reversed the results would change, but this verification
was beyond the purposes of the present work.

A computational grid R2B11, characterized by a very high resolution (about 1.1 km),
was adopted. The time step was set equal to 12 s. Initial and boundary conditions were
provided by the ECMWF IFS model at a spatial resolution of about 8.5 km. The boundary
conditions were updated every 3 h. A series of 24 h forecasts was performed, restarting
from interpolated IFS conditions on each day.

5. Methodology

In this section, the operations needed to associate the numerical ICON outputs with a
useful scalar function, easily handled by the automatic calibration process, are described in
the post-processing section. The design of a scalar function that can assess enhancement
resulting from variation of the selected physical parameters from the baseline configuration,
in terms of distance from reference data, was followed. Finally, the automatic calibration
method is described in the last section.

5.1. Post-Processing of ICON Results

The ICON outputs (at hourly frequency) were processed to calculate statistical values
that, as objective metrics, could support the process aiming to find the optimal domain
and the optimal configuration in terms of physical parameters. The variables considered
for the metric calculation were the daily maximum (Tmax) and minimum temperatures
(Tmin) and the total daily precipitation (Pr) , using the observational values as terms of
comparison. Specifically, the usage of in-situ local stations required the identification of
the nearest grid point to the station location. On the other hand, the usage of the grid
dataset required appropriate post-processing activity, aiming to remap the daily values
from the native ICON grid to the grid of the SCIA dataset. Remapping was performed by
means of upscaling from the ICON unstructured grid to the SCIA regular grid, with an
Inverse-Distance interpolating technique. Once the ICON output had been remapped on
the structured grids, compatible with the observations, model fields could be compared
with observed ones. Figure 3 shows the step-by-step transformation process from the native
ICON grid to the SCIA grid.
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(a) ICON results, unstructured grid (b) Remapping data from ICON to SCIA grid

(c) SCIA gridded data (d) Precipitation Difference of ICON vs. SCIA

Figure 3. Example of post-processing steps necessary to compare ICON results with SCIA grid
dataset for daily precipitation.

In detail, starting from the ICON results on the unstructured grid at 1.2 km resolution
(Figure 3a: rain 24 h), upscaling was done to remap them over an SCIA-like grid (Figure 3b)
by means of Inverse Distance interpolation. Successively, the transformed data could be
compared to the SCIA data set (Figure 3c) in order to evaluate statistics on which the
target function was based, Figure 3d shows the precipitation gap as the difference between
data in Figure 3b minus data of Figure 3c). These operations were valid for the grid data,
and since local data (read at several weather stations) were also considered in evaluating
a devoted target function, the nearest cell centers to the local station coordinates were
selected in the ICON results and compared to the station data. More details are given in
the following section.

5.2. Objective Target Function

The aim of the work was to find a set of numerical parameters that, by tuning of
the empirical physical models of NWP, also significantly influenced the NWP results.
Hence, once those parameters were defined, by searching in the space of their feasible
configurations (i.e., the hypercube defined by their ranges), the optimized search for the
best configuration, was able to minimize the distance between numerical and observed
data. To measure that distance, representing an error, a function has to be defined. This
function has to take the following factors into account: the day-by-day spatial averaging of
the compared data, the time averaging of the same data over the window of observation
(i.e., the week of the simulation), the nature of the observed data (Minimum and max
temperature, precipitations), and the statistical function to be considered to measure the
distance. As explained before, we decided on a single-value objective function.
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With these aims in mind, a scalar metric was defined to quantify the distance between
the model results and the observational data, in terms of Tmin, Tmax and Pr from the SCIA
dataset [11]. The minimization of this scalar metric (objective function) guides the process
of choice of the optimal domain and the process of optimization of the physical parameters.

The target function adopted here was derived from the statistical terms of the Taylor
diagram [5]: the normalized Root Mean Square error (NRMSE), the correlation value (ρ) and
the standard deviation. Some limitations of this statistical set were evidenced by [6], related
to the fact that an overall bias is not considered. For this reason, in the metric introduced
here, an additional term was considered, the normalized Mean Absolute Error (MAEN).
The standard deviation was neglected, since it is mathematically related to NRMSE and ρ
terms. The three terms considered are defined as follows:

ρ =
∑j(Fj − F)(Oj −O)√

∑j(Fj − F)2
√

∑j(Oj −O)2
(1)

MAEN =

1
Ncells

∑j=1 |Fj −Oj|
1

Ncells
∑j=1 Oj

(2)

NRMSE =

√
1

Ncells
∑j=1(Fj −Oj)2

range(Oj)
(3)

In these formulae, Fj is the model value for j-th cell, Oj is the observed value for the
j − th cell or station, since the target function is evaluated against both SCIA-grid and
SCIA-stations. In Equation (2) MAEN is normalized by the mean of the observational
values, while in Equation (3) the NRMSE by its range, range(Oj) (i.e., the distance between
maximum and minimum observed values).

The target function considered is defined as:

Fobj =
V

∑
i

wi

(
A

D

∑
j

maeni,j + B
D

∑
j
(1−∑ ρi,j)

0.5 + C
D

∑
j

nrmsei,j

)
(4)

where V indicates the ensemble of variables vector V = (Tmin, Tmax, Pr), D is a scalar index
running over the analyzed days (hence D = 7). The scalar weight values wi are chosen in
such a way that the variables in V are equally weighted. In a similar manner, the scalar
quantities A, B and C that weight the single statistical terms are set equal to 0.333.

The objective function in Equation (4) was defined in such a way that optimal perfor-
mances corresponded to Fobj = 0, i.e., model values and observations were coincident.

5.3. Automatic Calibration

Several studies have shown that the configuration of an NWP LAM model (developed
for a specific area) cannot be directly transferred to other geographical areas [10]. The defi-
nition of a suitable model configuration for ICON-LAM over Italy is only at an early stage,
so that deep analyses are still required in order to consider the particular orography of the
Italian peninsula and its strong interaction with the sea. In the present work, the values
of these four parameters were optimized by means of an automatic calibration approach,
following a strategy similar to the one presented in [1]. The four parameters (see Table 1)
were tuned so as to reduce the distance of the model output from the observational data.
The metric adopted to measure the enhancement referred to the baseline settings is de-
scribed in Equation (4). The optimization of Fobj relies on an Efficient Global Optimization
(EGO) approach described in [18], based on the definition of a ‘cheap’ metamodel that
replaces the computationally expensive ICON simulations in design space exploration.
The aim of the metamodel is twofold. It should be able to set up a relation among Fobj
and the selected name list parameters and, then, the Kriging model, [19], guides adaptive
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sampling of the design space, defined by the chosen name list parameters, in order to find
global minima values [18].

Figure 4 illustrates the whole iterative process required to set up the metamodel
aimed at finding a promising region in the space of the physical parameters described
in Table 1. The process can, ideally, be split into offline and online (or sequential) stages.
In the first stage, an a-priori sampling of the Design Space was performed, by means
of Latin Hypercube Sampling (LHS) [20]. Within this stage, a test matrix of simulations
was designed, in which, for each design vector (containing the values assumed by the
design variables), a name list of physical parameters was established, followed by an ICON
simulation over the week under investigation. Once the collection of runs necessary to train
the metamodel had been defined, they could be executed in parallel on the Turing server.
Then, once the results had been post-processed and the metrics obtained, the relationship
between the physical parameters and Fobj could be stated in the metamodel definition.

Figure 4. Metamodel-based optimization set up: Flowchart.

The iterative stage is related to adaptive sampling. The successive ICON simula-
tions are identified by using a promising design variables vector relying on the Expected
Improvement (EI) auxiliary function [18], based on the current Fobj minimum value and
metamodel predictions and uncertainties, which predict the enhancement of Fobj value if a
new ICON evaluation is performed with the suggested configuration. Hence, the suggested
sample (from which a new name list is derived) is evaluated with ICON, and the resulting
Fobj is added to the metamodel database. Then, a metamodel update follows, with a new
sample and new ICON evaluations. This iterative process can be stopped by a criterion,
based on, for example, a computational budget, to limit the number of ICON-allowed
simulations, or, alternatively, it can rely on a threshold value for Fobj or EI.

In this work, two different metamodels were set: the first defined an Fobj for SCIA-
gridded data, Fobj

gridded, and the second for SCIA-stations, Fobj
stations. These metamodels worked

in parallel, since they were fitted on the same database of ICON simulations, but post-
processed separately to obtain Fobj

stations and Fobj
gridded. In the iterative stages, both of them

suggested their own design vectors by means of the maximum EI, and, hence, two ICON
sets of simulations were started.

The computational budget for the off-line stage involved a test matrix of thirty-six
ICON simulations, plus the baseline set of ICON runs with the configuration of physical
variables inherited from [10]. In the adaptive stage, the two metamodels drove the opti-
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mization, each suggesting its own candidate name list that ICON simulated, and, then,
updated the metamodel once the results were post-processed. In this stage, further ICON
evaluations were performed, to reach a total of 130 runs.

6. Results

In this section, the results from the domain sensitivity and the automatic calibration
performed with a surrogate-based optimization are described. The former step is dis-
cussed in the following subsection. Once the optimal domain was defined, the automatic
calibration process was applied and the results are presented in Section 6.2.

6.1. Domain Selection: Results

Since ICON-LAM was tested for the first time on the region under study and with a
high resolution (i.e., ∼1 km), domain sensitivity, to assess the influence of the boundary
location on the solution accuracy, was performed. As already explained, three domains of
different sizes were evaluated (DOM1 was the smallest sized domain, DOM2 in the middle
and DOM3 the largest). In the evaluation process, we also considered, as reference, the
results of a COSMO simulation described in [13], where the configuration of the model was
similar to the present ICON-LAM setting in terms of grid resolution, while the domain was
comparable to DOM1 (Figure 1 and Table 2).

The results obtained over the three domains were compared over the central area, com-
mon to the three domains. Of course, SCIA grid data and local stations were extracted for
this target area. As explained in the previous section, the objective function (Equation (4))
was used to measure the effectiveness of the three domains. It is worth noting that the
final choice of the optimal domain was also driven by the CPU request, which increased
considerably with domain size, as shown successively. In order to check the reliability of
Fobj for the proper selection of the optimal domain, the Taylor diagrams [5] were also used
as a supporting tool to compare the results. The Taylor diagrams are graphical methods
useful to compare model output with reference data, based on the metrics involved in the
evaluation of Fobj. However, despite its reliability, this graphical method does not lend
itself to use in an automatic calibration algorithm.

The Taylor diagrams resulting from comparison with the SCIA grid dataset are shown
in Figures 5 and 6, averaged over the week considered. An evident result was represented
by the better performance of ICON against COSMO, especially for Tmin and Pr. However,
an analysis of the diagrams did not allow the selection of the best domain, even if DOM2
seemed to perform better for Pr.

Figure 5. Taylor’s Diagram for the comparison of the three ICON domains (DOM1, DOM2, DOM3)
and COSMO [13]: Precipitation.

In fact, while the Pr difference among ICON domains could be appreciated, this was
hard to do graphically, since the solutions were very close to each other, as can be observed
in Figure 6.
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Figure 6. Taylor’s Diagram for the comparison of the three ICON domains (DOM1, DOM2, DOM3)
and COSMO [13]: Temperature.

Figure 7 shows the results of the evaluation in terms of Fobj values. Specifically,
in Figure 7b it is possible to compare the global metric obtained with the three ICON
domains and with COSMO. The results show that the DOM2 and DOM3 performed in a
similar manner and both out-performed DOM1 and COSMO. In order to check the roles
played by the three variables analyzed in achieving the results, their contributions to the
global value of Fobj are shown in Figure 7a. In terms of Tmax and Pr, the model performed
better with DOM2, while for Tmin, better results were obtained with DOM3.

(a) ICON: variables contributions to Fobj (b) Fobj: ICON domains and COSMO

Figure 7. Results of the optimal domain selection based on Fobj metrics.

Taking into account the computational loads required by the simulations over the three
domains, DOM2 was selected as the optimal one, since its performances were comparable
with DOM3, but it was less expensive in terms of CPU. DOM2 was used in the second
phase of this work for the calibration of the physical parameters.

6.2. Automatic Calibration: Results

According to the methodology described in Section 5.3, a series of simulations were
performed with ICON-LAM, aimed at minimizing the target function. Figure 8 shows the
evolution of Fobj

gridded and Fobj
stations resulting from the ICON run, and, along with the single

Fobj realizations, the lower envelope was overlaid with the dashed gray lines, representing
the evolutionary history of the minimum values Fobj. It can be seen that the trend of these
functions narrowed in the region of lower values, as the number of iterations increased,
meaning that the algorithm was exploring regions of the design space where ICON, on av-
erage, performed better than the reference name list. The two functions (grid and stations)
were only poorly correlated. This circumstance could be ascribed to the following factors:
the interpolation process grid data underwent during generation; the interpolation process
necessary to upscale ICON results over a coarser grid; the short observation period could
have influenced the poor correlation, independently of the other factors. These aspects will
be investigated in future work.
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Figure 8. Fobj optimization history as valued by ICON-LAM, with minimum envelopes.

Table 3 reports the values of the design parameters, for the baseline and for the
best configurations obtained considering, respectively, SCIA-grid and SCIA-stations. The
corresponding values of Fobj are provided too. The histogram plot of Figure 9 shows the nor-
malized values (with respect to their variability ranges) of the four parameters, highlighting
the extent of their variations in the optimal configurations with respect to their original
values. These results revealed that the algorithm moved in the design space towards a
common direction, in both grid and station optimization processes. Compared to the
baseline parameters, it can be noted that the v0snow value moved towards its upper bound
in both cases, tkhmin increased its values by around 40% of its range; tkmmin increased
more in the Station case; rlam-heat decreased, more consistently so for the Station case.

Table 3. Values of the design parameters and Fobj, for the baseline and for the best configurations.

v0snow tkhmin tkmmin rlam-heat Fobj

Baseline 20.00 0.500 0.750 10.00 1.000

Gridded 29.99 0.951 0.886 5.771 0.9854

Stations 29.94 0.829 1.307 2.089 0.9768

Figure 9. Best parameter values vs. baseline ones, in normalized ranges.

Other useful information for future steps in the optimization campaign were also
derived from the regions of design space of the variables in Table 3, characterized by higher
expected improvement.

For example, for the SCIA-gridded data, (Figure 10a) the best values for tkhmin slightly
shifted from the baseline values and a promising region was found by sampling the EI
function (described in Section 5.3) in the range of 0.8÷ 1.1. This information could be
useful as a new reduced range of exploration for tkhmin, to be reconsidered in order
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to verify its interaction with other variables in future activities with additional physical
parameters involved.
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Figure 10. Improvement region in the space of parameters (EI, red points, left axis), with Fgridded
obj

(blue big-square points, right axis).

The best values for the parameter rlam_heat, against SCIA-gridded data (Figure 10b),
were lower compared to the baseline ones and the promising range was 5÷ 9 c.a. On the
other hand, the parameters v0snow and tkmmin revealed quite noisy behavior, with v0snow
(not shown here), characterized by a triple region of improvement, clustered on the upper
and lower bounds, and also on medium values (around 20).

Against SCIA-station data (Figure 11a,b), for tkhmin, the expected improvement was
higher in upper and lower boundaries, while for rlam_heat it was also high in the range close
to the lower boundary, in addition to the range of values already highlighted in Figure 10b.
It can be seen that, for some variables, e.g., rlam_heat, there was an overlapping region of
expected improvement, which suggests the possibility that, with further sequential runs,
the solutions could converge.
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Figure 11. Improvement region in the space of parameters (EI, red small-square points), with Fstations
obj

(blue big-square points).

6.2.1. Analysis of Results against Grid Dataset

Figure 12 shows the comparison between the model biases obtained using the baseline
and the optimal configuration, considering the SCIA-Grid dataset as reference. The maps
represent the difference between the daily precipitation simulated by the model and that
observed, averaged over the seven days considered. Even though the differences were
not so evident, it is important to keep in mind that the enhancement of the metric Fobj
was about 1.5% with respect to baseline, and that the contribution could be ascribed to a
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cumulative precipitation improvement of about 3% (while for the other two variables the
improvement was 1% for minimum temperature and 0.5% for maximum temperature).

(a) ICON-baseline (b) ICON-best

Figure 12. Bias of daily precipitation with respect to SCIA-gridded dataset.

In order to quantify the distribution of the cumulative precipitation error plotted in
the maps of Figure 12, a frequency histogram was elaborated (Figure 13), from which it
is evident that both the model configurations tended to underestimate the precipitation,
but the best one caused a shift toward central values (characterized by lower errors).

Figure 13. Frequency histogram of cumulative precipitation error.

The graphical method, based on Taylor diagrams, could be useful to check if the
calibration process, driven by the minimization of Fobj, is working in the right direction.
Figure 14 shows the Taylor’s diagram including results from all the samples of the automatic
calibration performed over DOM2. The data employed to define the diagrams were
averaged in space and time, as already done in the definition of Fobj (Equation (4)). Tmin
(Figure 14a) shows little sensitivity in terms of NRMSE, bias and standard deviation. In this
case, the best sample enhanced performances in terms of bias and correlation with respect
to the baseline values. The diagram related to Pr (Figure 14b) shows a larger spread in
terms of standard deviation and NRMSE. The best configuration facilitated enhancements
in terms of bias, standard deviation and NRMSE, while the correlation slightly reduced.
On the contrary, Tmax (Taylor’s diagram not shown here) was not very sensitive to the
tuning of the physical parameters involved in this optimization.
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(a) Minimum Temperature (b) Precipitation

Figure 14. Taylor’s diagrams with all samples of calibration for SCIA-gridded dataset (baseline: �;
Best: ?)

6.2.2. Analysis of Results against Station Data

According to the values of Table 3, the optimized name list facilitated an improvement
of 2.3% with respect to the baseline configuration when in-situ station data were considered
as the reference. As defined in Equation (4), the results were obtained as an average among
the three variables, over all the stations and over the whole week considered. Hence, if we
look at specific stations, there is the possibility to find the worst, equal or better results.
Figure 15 shows an example of the comparison between model results and observed data
for two in-situ stations, in terms of daily minimum and maximum temperatures and
cumulative precipitation, considering both the baseline name list configuration (blue curve)
and the optimized configuration (red curve). It is evident that Pr for Itri station and Tmin
for Fondi station experienced clear enhancements with the new configuration.

(a) Itri Station (b) Fondi Station

Figure 15. Time series of daily values comparing model results and observed data for two specific
stations, for both baseline and optimized configurations.

Figure 16 shows the scatter plots of the station observed vs, simulated values (high-
lighting the correlation between them) for the reference name list, an intermediate name list
and the optimal name list configurations, in such a way that the evolution of the distance
between observed and forecast data, through the search in the design variable space, can
be appreciated by noticing enhancement of the statistics in the latter plots compared to
the references. In each scatter plot, the value of the R2 index is also indicated, as a dashed
line, as is the ideal curve indicating the equivalence between model (y axis) and observed
data (x axis). The first row of scatter data (Figure 8a–c) is relative to the reference name list
configuration. The central row (Figure 8d–f) refers to an intermediate name list configura-
tion (iteration no. 54, see also Figure 8b), characterized by optimum performances for Pr,
and Tmin, while Tmax was slightly worse than the baseline, as can be noted by comparing
the respective R2 values. The last row refers to the ’best’ configuration (iteration no. 126
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in Figure 8b), which out-performed the baseline name list in each of the target variables,
even if the precipitation scatter plot is characterized by a lower R2 index when compared
to Figure 16d. It should be kept in mind that the correlation index is only one among the
three metrics considered in Fobj.
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Figure 16. Scatter plots of observed vs. model data for the three variables against station data:
evolution from the baseline configuration (top row) to the best one (bottom row).

6.3. Model Validation

As already stated, the week 1–7 July 2019, was chosen for an independent evaluation
test, because it was characterized by a dry weather regime, e.g., the 2-m maximum tem-
perature, averaged over the region and over the week, reached 32 °C, while the average
minimum temperature reached 19 °C, with rare and isolated rainfall.
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The two optimal configurations previously defined (‘grid-best’ and ‘station-best’)
were tested against the reference one (‘baseline’). Figure 17 shows the histogram plot
of the comparison among the three configurations in terms of objective function values.
In particular, in Figure 17a, the three name lists are compared assuming the grid data
as reference. In this case, it is evident that the ’grid-best’ performed slightly better than
the ‘baseline’, while ‘station-best’ was not able to improve performances. In Figure 17b
the three name lists are compared against station data. In this case, both ‘grid-best’ and
‘station-best’ provided better results than the baseline.

(a) Objective function on gridded data (b) Objective function on stations data

Figure 17. Best name list validated on summer week: comparison of Fobj over grid and local data.

In detail, we found that the two ‘’best’ configurations showed optimal performances
on the forecast of the 2 m minimum temperature, out-performing, in both cases (grid
and local data), the baseline performances. Good behavior in precipitation forecast for
the name lists was recorded against station data. Some difficulties were encountered in
simulating the daily maximum temperature, especially for the‘’station-best’ configuration.
This behavior could probably be ascribed to the fact that these configurations were trained
in a winter period.

Moreover, an independent verification of the tuning results for other forecast variables,
not processed by the optimization algorithm, was performed in 2 m relative humidity,
mean wind speed and gusts at 10 m against selected station data (grid data for these
variables are not currently available). In detail, data from seven weather stations were
selected for the evaluation, for both the training week (in winter) and the validation
one (in summer). The selected stations were located at four airport stations (Napoli
Capodichino, Grazzanise, Pratica di Mare and Rome Ciampino) and three other locations
(Capri, Trevico and Pontecagnano). Figure 18 shows the mean daily values of wind speed
at Rome Ciampino (observational and model values obtained with the three configurations
considered), from, respectively, 19–25 November 2018 (a), and 1–7 July 2019 (b). ICON
reproduced the wind behavior well, and, in particular, it is worth noting that both the ‘best’
configurations out-performed the baseline one. Similar behaviors were recorded for the
other stations (not shown).

A similar analysis was performed in terms of relative humidity at 2 m. Figure 19
shows the mean daily values at Napoli-Capodichino (model and observations), respectively,
in the winter week (a), and the summer week (b).
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(a) Training week (b) Validation week

Figure 18. Daily wind speed values (models and observations) over Rome-Ciampino in the valida-
tion week.

(a) Training week (b) Validation week

Figure 19. Daily relative humidity values (model and observations) over Napoli-Capodichino in the
winter (training) and summer (validation) weeks.

Finally, a synthesis of the forecasting skills of the optimized name lists, in both winter
and summer weeks, is presented in Figure 20 for the three variables (Relative humidity,
mean wind speed and gusts), in terms of objective function values defined in Equation (4)
normalized against the values assumed with the baseline name list.

(a) Fobj Rel. hum. (b) Fobj Average wind speed (c) Fobj Gusts

Figure 20. Single (non-optimized) variable objective function, in training week (winter) and validation
week (summer).

In the validation week, the relative humidity (Figure 20a) showed that the optimized
name lists were not able to improve performances (values of the objective functions were
greater than 1.0), while in the winter week the grid-best name list out-performed the
baseline. The average wind speed (Figure 20b) was well predicted in the validation week
by both the ’best’ name lists. In particular, the station-best showed optimal performances
in both weeks. Finally, Figure 20c shows that the optimized configurations were not able to
improve the gust forecasts in the winter week, while different behavior was found in the
validation period, where the station-best out-performed the reference name list.
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7. Discussion

This work represents a first approach to set up a preparatory methodology for an
optimization campaign for a large set of physical parameters, aimed at defining an optimal
ICON-LAM model configuration at high resolution over southern Italy, for operational
runs. In fact, the input parameters considered for optimization in this work were only a
few of the huge amount of parameters potentially involved.

The three terms that compose the weighted, single objective Fobj, representing the
three observed variables to be optimized, behave differently, and, hence, the final Fobj best
solution often does not coincide with the "partial" best solutions for the single variables
(Tmin, Tmax and Pr). This is due to the fact that optimal parameters for a given variable
may conflict with those for other variables, and, furthermore, this consideration also holds
for the three different metrics involved in Equation (4), as also stated in Duan et al. [1],
who also showed how the optimization of a single meteorological variable in a single
objective functional optimization can out-perform, for the specific variable, an optimization
involving an objective function that averages two or more variables, even if the latter
results in a non-dominated configuration, i.e., is better than the reference configuration,
but worse than the individual one. This issue is due to the conflicting natures of the
objectives. In this work, the issue of multi-objective optimization was treated as a single
value problem. For this reason, in order to verify that the optimal solutions found improved
all the variables involved in V, compared to the reference solution, a Pareto frontier was
plotted, for both the optimization problems considered, i.e., against grid and station data.
Since V has three components, a 3D plot should be visualized, but this confuses the 2D
support. For this reason, Figure 21 displays 2D plots (i.e., Tmax vs. Pr and Tmax vs. Tmin) to
overcome this visualization issue. To support an effective classification of the best sample,
the third variable neglected is displayed by means of a colour scale applied to the markers
representing the sample points. These kinds of plot are characterized by four regions
(quarters), generated by the straight lines passing through the point with coordinates
(1, 1) that represents the baseline objective function (or reference point). The region I
(third quarter, where both the Fobj coordinates are less than 1) is the region characterized
by samples that have out-performed the baseline configuration, also known as the non-
dominated region, Region II includes samples that enhance only the Fobj of the vertical
axis (i.e., y < 1 and x > 1). Region III has x < 1 and y > 1 and only the Fobj on the
horizontal axis is enhanced. Finally, samples in region IV (x, y > 1) are dominated by the
reference point. Figure 21a,b show the regions for the optimization process conducted
against grid data. In detail, Figure 21a shows the samples (ICON runs) in the plane
(Tmin, Tmax). A grey dashed line links the samples from the outer solutions, namely the
best one in terms of Tmax (labeled with iteration number 83) up to the best values found
for Tmin (iteration 84). A Pareto Frontier can be approximated in this plane, going from the
latter point (iteration 84) to the one labeled 108, linking the solutions of region I, which
represent the non-dominated samples. As stated before, the colour scale of the samples
represent the Fobj values of the variable not represented in the plane (in this case it is Pr).
The samples that belong to the Pareto frontier are characterized by colours going from light
green to red, meaning that FPr

obj > 1, while the samples labeled with 75 and 120, belonging
to the region of non-dominated solutions, are quite near the calculated Pareto frontiers,
representing, respectively, the best sample and the second best in terms of FPr

obj. In fact,
in Figure 21b, which displays the plane (Pr, Tmax), sample 75 belongs to the Pareto frontiers,
and sample 120 is quite near this boundary, meaning that these solutions are also optimal
in terms of precipitation. From this analysis, it can be assumed that the optimization
process with respect to grid data identified solutions that enhanced performances for all
the involved variables.
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Figure 21. Optimization results in the space of contributing objective functions with approximation
of Pareto frontiers.

Figure 21c,d refer to the optimization process against station-data. Figure 21c shows
the calculated Pareto frontier and highlights the best solutions for Tmax and Tmin, i.e., 5
and 10, respectively, while the non-dominated ones are 69 and 102. The colour of sample
markers here help to identify the performances in terms of Pr. In the non-dominated region,
sample 54 was noteworthy, while sample 126, even though it fell in region II, was the
best solution identified in the optimization process against the station data. In fact, in the
plane (Pr, Tmax) (Figure 21d), it was undoubtedly the best element. Sample 54 fell in the
non-dominated region, also in this plane. We verified that an approach that promotes
the non-dominated samples, as proposed in [8], would reward this solution (i.e., 54) too,
and, therefore, it could be considered a valid methodology to adopt in future works.

The differences recorded in terms of optimal parameters, when considering grid and
local data, were already described in Section 6.2 and shown in Table 2. The differences
can be ascribed to several factors, such as the short time window of the training dataset.
However, an aspect worth investigating is related to the interpolation technique adopted to
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fulfil conservative up-scaling of the ICON output to the grid of observational data. This
issue could be an influencing feature when dealing with grid upscaling that involves grids
with very different sizes, such as the case of a very high-resolution model grid, projected
over a grid of observed data, where the ratio between source and target cell is larger than 5.

8. Conclusions

In this paper, an automatic calibration methodology was implemented to optimize the
parameters of the high resolution ICON-LAM over a region located in southern Italy. As a
first step, an assessment of the effects of the size domain on the solution was performed,
in order to select an optimal domain, able to minimize the distance between modeled
and measured meteorological variables, e.g., minimum and maximum temperature and
daily precipitation. Then, in the automatic calibration procedure, only a limited number of
physical parameters was considered for tuning, starting from a reference ICON configu-
ration inherited from a previous work. The multi-objective nature of the calibration was,
here, transformed into a single-objective surrogate-based optimization, since the scalar
objective function was a linear combination of the distance between model data and ob-
servations, averaged over the selected time window. Two distinct metamodels drove the
adaptive sampling, measuring, respectively, distance from grid observed data, and local
stations. This analysis made it possible to evaluate the effects of the nature of the data on
the optimization results. The grid data metamodel resulted in a smoother landscape than
the in-situ data. Moreover, the optimal values of the tuned physical parameters showed
that the optimization process moved in a common direction. Starting from the reference
parameters, tkhmin increased and, according to [13,21,22], this implies that the turbulent
kinetic energy is maintained in stable condition, eliminating strong inversion. Moreover,
its increase caused a growth in precipitation, since it increased small convective cloudiness.
The rlam_heat decreased and its reduction caused increasing instability, thus, influencing
precipitation. However, the relevance of this parameter was largest under calm anticyclonic
conditions with a stable nocturnal boundary layer. In the experiments presented, v0snow
did not show a clear influence on the objective function. The best elements were both char-
acterized by almost upper boundary values, but there was also a trend that recognized the
area of improvement towards the lower limits or towards the central area. It was evident
that there were discrepancies between results against grid and local station data, but this
mismatch could be ascribed, among other causes, to the interpolation technique that was
used to project the ICON output on the grid of observational data. A check in the space of
the objective function performed at the end of the optimization process indicated that the
algorithm moved towards a set of solutions that were non-dominated by the reference one
(the improvement of metrics on the local stations side was 2.3%, while the improvement
on the grid data side was 1.5%), and, hence, approximated a Pareto frontier. Finally, it
is worth mentioning that the period chosen for the optimization (19–25 November 2018)
was characterized by huge precipitation and strong winds, and of course the optimiza-
tion process was mainly aimed at having a better fit of the cumulative daily precipitation.
For this reason, the best name lists resulting from the optimization stage were tested for a
validation week in a different season, showing that the reference configuration could be
out-performed anyway. Furthermore, performances of the forecast of additional variables
were also tested, showing an improvement in some of them, i.e., the mean wind speed. The
promising results of the presented approach represent the basis for the next steps in this
research field, involving a longer training period, and more variables and parameters to be
tuned, in order to establish the best configuration for the region under investigation.
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