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Abstract: We previously introduced the parametric variance Kalman filter (PvKF) assimilation as a
cost-efficient system to estimate the dynamics of methane analysis concentrations. As an extension
of our development, this study demonstrates the linking of PvKF to a 4D-Var inversion aiming to
improve on methane emissions estimation in comparison with the traditional 4D-Var. Using the
proposed assimilation–inversion framework, we revisit fundamental assumptions of the perfect
and already optimal model state that is typically made in the 4D-Var inversion algorithm. In
addition, the new system objectively accounts for error correlations and the evolution of analysis
error variances, which are non-trivial or computationally prohibitive to maintain otherwise. We
perform observing system simulation experiments (OSSEs) aiming to isolate and explore various
effects of the assimilation analysis on the source inversion. The effect of the initial field of analysis,
forecast of analysis error covariance, and model error is examined through modified 4D-Var cost
functions, while different types of perturbations of the prior emissions are considered. Our results
show that using PvKF optimal analysis instead of the model forecast to initialize the inversion
improves posterior emissions estimate (~35% reduction in the normalized mean bias, NMB) across
the domain. The propagation of analysis error variance using the PvKF formulation also tends
to retain the effect of background correlation structures within the observation space and, thus,
results in a more reliable estimate of the posterior emissions in most cases (~50% reduction in the
normalized mean error, NME). Our sectoral analysis of four main emission categories indicates how
the additional information of assimilation analysis enhances the constraints of each emissions sector.
Lastly, we found that adding the PvKF optimal analysis field to the cost function benefits the 4D-Var
inversion by reducing its computational time (~65%), while including only the error covariance in
the cost function has a negligible impact on the inversion time (10–20% reduction).

Keywords: chemical data assimilation; atmospheric inversion; methane emissions; GOSAT; parametric
Kalman filtering; 4D-Var; OSSE

1. Introduction

Methane (CH4) is a critical atmospheric component in both climate and air-quality
contexts [1]. Over the past decade, a continuous increase in global methane concentrations
has drawn urgent attention to quantifying and reducing methane emissions [2–5]. Methane
emissions are derived from either the bottom-up or top-down estimation methods. Despite
containing a substantial amount of data, bottom-up inventories suffer from two weaknesses:
(i) significant uncertainties, due to inaccurate or missing information and (ii) not being
constrained by atmospheric observations to retain a closed-form global budget [2,6,7].
Those eventually can hinder progress toward methane mitigation policies [8]. Top-down
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inventories, also known as atmospheric inversion, are less prone to issues of the bottom-up
method due to incorporating information from observations. In particular, observations
and a chemical transport model (CTM) are used together to make corrections to the prior
bottom-up emissions. Providing adequate information from the observation network along
with an accurate CTM maintains a top-down estimation that is less dependent on the prior
emissions, resulting in estimated emissions with lower uncertainties. Satellite observations
have been extensively used over the past decades to infer methane emissions on different
scales, due to their higher density and global spatial coverage [9,10].

Atmospheric inversions play a key role in evaluating and improving bottom-up
estimation but carry their own limitations for constraining methane emissions. For example,
global and regional inversions are usually incapable of resolving emissions of small source
sectors, such as non-wetland emissions, due to their minimal sensitivity to atmospheric
observations [2,11]. Inversions can also depend on the choice of the prior emissions,
particularly over areas where the observation constraints are limited or observations are
not precisely determined [12,13]. In addition, significant uncertainties in the inversion
are attributed to satellite measurements. Previous studies indicated a large discrepancy
between satellite retrievals (e.g., from Scanning Imaging Absorption Spectrometer for
Atmospheric Chartography, SCIAMACHY) and in situ measurements [14–16]. Furthermore,
inversions rely on a CTM to translate the emissions signal into the observation space.
Although advancements in remote sensing and emissions inventories every year provide
us with more accurate satellite measurements and more reliable prior emissions, potential
errors in CTM still exist and may reflect on the inversion results [17,18].

Many earlier methane inversion studies assume that the CTM is perfect [19–22]. How-
ever, it has been shown that running inversion with different CTMs can exert a tangible
discrepancy in emissions estimates [18,23]. Transport errors such as those originating from
meteorological fields, model advection parameterization, and model spatial and temporal
resolutions are identified as crucial aspects contributing to the CTM’s error, particularly on a
short timescale [18,24–26]. One promising way to address those errors is to simultaneously
estimate emissions and model errors, such as through weak-constraint 4D-Var [25,27,28].
However, besides substantial computational cost, such a method applied to methane es-
timation does not account for the entire model error in the state, as the errors may not
necessarily originate due to transport [29,30]. For example, errors in the chemistry, initial,
and boundary conditions are among those that may not be addressed through methane
weak-constraint 4D-Var.

A reliable emissions inversion result depends on maintaining a precise and realistic
state estimation, whether it is used as the initial state (or background) or boundary condi-
tions in a limited domain. One way to fulfill that requirement is to jointly estimate the state
and source [31]. A joint estimation typically entails a substantial extra computational cost
mainly due to resolving posterior errors for both concentrations and emissions. Further-
more, the procedure may not lead to a convergence of emissions [15]. This is likely due to
the fact that the impact of the initial or boundary conditions on methane concentrations is
much larger than the emissions, although with less variability. From an estimation point of
view, the emissions signal in the inversion is masked by a larger influence of the (inflow or
initial) concentrations. Thus, a joint estimation entails reducing the state uncertainties to a
level comparable to or lower than the emissions signal, which is hardly achievable.

Chemical data assimilation may be used to separately estimate the model state concen-
trations and its error statistics. It is a promising method that is also used to deal with the
issue of the state in inverse modelling. Previous studies assumed that the initial (or bound-
ary) concentrations provided by the model or assimilation system are perfectly known;
hence, potential uncertainties from the state cannot be taken into account for performing an
inversion [32,33]. On the other hand, obtaining the state and its error statistics objectively
using conventional data assimilation approaches, such as 4D-Var and EnKF assimilations,
is a task with high computational cost [34–37]. Arguably, the core of data assimilation and
inverse modelling lies in robust and objective quantifications of errors. We use a different
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assimilation system known as the parametric variance Kalman filter (PvKF), which is
designed to provide a near-optimal methane analysis and its realistic error variance esti-
mates [38]. For state estimation, PvKF is computationally more advantageous than EnKF
and 4D-Var, such that it requires an equivalent cost of only two model integrations [34].
However, unlike the two other systems, PvKF assimilation itself is yet to be capable of
performing source estimation.

The main objective of this study is to determine whether and how methane assimilated
concentrations (i.e., optimal state analysis) and their estimated error statistics can improve
on methane emissions estimations. To answer these questions, we frame a new source
estimation system that links PvKF assimilation to a 4D-Var inversion technique. Figure 1
shows the schematic view of this problem with the main elements involved. One major
focus of this assimilation–inversion framework is to evaluate the contribution of the state
concentrations estimation for constraining methane emissions. Accordingly, not only can
we change the first-guess concentrations to the cost function, but also explicitly include
the estimate of error covariances of assimilation analysis for performing a source inversion.
Besides the computational efficiency, PvKF formulation allows for dynamically propagating
the errors while not relying on a perfect model assumption (εq 6= 0). The modified formu-
lation also accounts for model spatial correlation structures during the inversion, which
is typically missed in methane inversion studies that simply rely on diagonal observation
error covariance matrices [13,25,30,39–43]. Altogether, previous methane inversion studies
are based on a set of questionable assumptions, which are challenged using our proposed
approach in this study. Those assumptions include (i) perfect initial state concentrations
and (ii) not propagating those errors throughout the inversion, and (iii) a perfect model
(i.e., no modelling error).
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Figure 1. Schematic view of using the cost-efficient PvKF assimilation system for estimating methane
emissions through 4D-Var inversion. Chemical Transport Model (CTM), PvKF Data Assimilation
(DA), and 4D-Var Inverse Modelling (IM) systems are shown by grey arrows. εq, εo, and εa represents
model, observation, and analysis error, respectively.

To verify the ability of our framework, we conduct observing system simulation ex-
periments (OSSEs) using the hemispheric Community Multiscale Air Quality (CMAQ) [44]
model and simulate Greenhouse Gases Observing Satellite (GOSAT) observations. Our
inversions optimize monthly mean methane emissions while three major anthropogenic
and one natural category of methane emissions categories are considered. Using different
initial conditions and modified formulations of a 4D-Var cost function, we are able to
determine three different assimilation effects on the source inversion, including (i) the effect
of the optimal initial analysis field, (ii) the model-propagated analysis error covariance,
and (iii) the approximated model error. We perform different perturbations of the prior
methane emissions, aiming to address the limitation of a typical 4D-Var inversion that relies
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on perfect state assumptions (i.e., initial and CTM) as well as a diagonal observation error
covariance. In addition, the impacts of those cost-function configurations on the inversion
of individual source sectors are further demonstrated in our analyses.

2. Methodology

4D-Var methane inversions in the past mainly assumed that the initial state concen-
trations were perfectly known [12,33,45–47]; in addition, a perfect CTM to simulate the
methane in the atmosphere was typically taken into account. In both cases, the uncertainty
of the state is considered to be negligible; therefore, it does not play a role in the inversion
process. Although for an extended period of model integration (e.g., six months and more),
those assumptions might be acceptable due to the homogeneity of the background methane
concentrations [42], the errors in the state, such as transport error, for a short period of
inversion (e.g., one month) are considerable and thus can exert a large impact on source
estimation [25]. Accordingly, in order to proceed to more temporally resolved emissions
inversions, an advancement in methodology is required that accounts for the errors in the
state concentration level.

Our approach is composed of two main parts. First, we perform an assimilation of
CH4 observations using the PvKF framework in order to provide a first-guess concentration
field along with the error variance of the concentrations. Then, the second part executes
a source inversion using a 4D-Var cost function with a modified error covariance weight
that accounts for both observation errors and model-propagated errors. In other words,
we seek to examine the capability of an alternative 4D-Var inversion formalism, which not
only depends on the initial field and its corresponding error variance field but also relies
on the model-propagated uncertainties and the approximated model errors. An illustration
of how the PvKF assimilation framework is linked to a 4D-Var inversion system in order to
address the effects of those state characteristics on methane source estimation is provided
later in Figure 1 and throughout Section 2.4. Before that, in this section, an overview of
GOSAT observations, the CMAQ model, and the prior emissions used in both PvKF and
4D-Var systems are presented as follows.

2.1. Satellite and Pseudo Observations

GOSAT, launched in January 2009 by the Japanese Space Agency (JAXA) [48], is in
a Sun-synchronous orbit at an altitude of 666 km with a 3-day revisit time. The primary
goal of GOSAT is to monitor the abundance of greenhouse gas, including atmospheric
methane, globally. Because of the instrument’s global coverage, reasonable spatiotemporal
resolution, and acceptable near-surface sensitivities, the assimilation of methane and
inverse modelling of its sources and sinks using GOSAT observations is desirable. GOSAT
retrievals provide a column-average dry-mole fraction of methane that corresponds to the
methane average volume mixing ratio (VMR) of a partial column atmosphere. Methane
VMRs and the corresponding standard deviations are obtained by performing a retrieval
algorithm on the radiance spectrum. We use GOSAT proxy products from the retrieval
algorithm developed at the Netherlands Institute for Space Research (SRON) and Karlsruhe
Institute for Technology (KIT) [49], available through the ESA GHG-CCI initiative, https:
//climate.esa.int/en/projects/ghgs/, accessed on 31 August 2022 [50].

This study performs OSSE experiments requiring pseudo or simulated GOSAT ob-
servations for methane inversion. Although simulated observations depend on the model
forecast, supplementary products of the retrievals, such as column-average kernels and
vertical pressure weights, are needed to compute model equivalent VMRs at observation
time and location [49,50]. Note that, prior to the inversion window, the PvKF scheme
assimilates actual GOSAT observations and provides optimal analysis to initialize the
inversion (see details in Section 2.4). For the consistency of the information content (e.g.,
the number of retrievals) between actual and simulated observations, we perform identical
quality control on all data points used for both assimilation and inversion parts. Our quality
control of GOSAT consists of removing outliers whose departure from the global mean of
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the methane observations is three times greater than the standard deviation. As a result, in
total, 11,489 simulated GOSAT observations over land are used for the purpose of inversion
experiments between 1–30 April 2010, and 6173 land-only actual GOSAT observations are
assimilated by PvKF between 16–31 March 2010.

2.2. Chemical Transport Model and Methane Prior Emissions

The forecast of the PvKF assimilation and the forward model of the 4D-Var inversion
both rely on a chemical transport model, for which the CMAQ model is used here. CMAQ
is a regional air quality model developed by the U.S. Environmental Protection Agency
(EPA) [44]. As we seek to estimate methane across the Northern Hemisphere in this study,
we use the hemispheric version of CMAQ, which has 187 × 187 grid cells horizontally with
a 108 km grid spacing and 44 vertical layers from the surface to the model top at 50 hPa.
Contrary to the regional model, hemispheric CMAQ provides an extended and finer vertical
resolution above the boundary layer to better support long-distance transport suitable
for long-lived species [51]. For our hemispheric modelling of methane, the initial and
boundary conditions are obtained from global modelling and measurement data, which is
demonstrated in Voshtani et al., 2022a [34] as based on Olsen et al., 2013 [52]. Note that
following Voshtani et al., 2022b [38], we assume a time-invariant boundary condition while
excluding a buffer zone below 5◦ N to minimize the influence of the boundary conditions
on domain concentrations for a month of inversion in this study.

The primary sink process of methane is oxidation with hydroxyl radicals through the
chemical reaction CH4 + OH→ CH3 + H2O. In the hemispheric simulation, we consider
including reactive methane in the gas-phase chemistry of CMAQ v5, which is based on the
CB05 chemical mechanism [53]. In the PvKF assimilation, the propagation of error variance
is treated as a chemically inert tracer in CMAQ and follows an advection-only transport
scheme. The detailed configuration of simulating methane and error variance evolution
with CMAQ is illustrated in [34]. Methane emissions implemented in CMAQ are generally
derived from bottom-up global inventories of two categories: anthropogenic sources (~60%)
and natural sources (~40%). 4D-Var inversions usually require a first-guess estimate of
emissions, known as the prior emissions, which is provided by bottom-up inventories. The
Emission Database for Global Atmospheric Research (EDGAR) [54] inventory is frequently
used to provide the prior anthropogenic methane emissions at 0.1◦ × 0.1◦ spatial and
monthly/yearly temporal resolution for the inversion [21,42,55]. We use monthly emissions
from the EDGAR v6 inventory as the prior emissions (and as true emissions for our OSSEs;
see Section 2.4), which consist of 23 subsectors (see Table 1) [54,56]. Wetlands are the
primary natural source of methane. Monthly wetlands emissions data from WetCHARTs
v3.0 with the full ensemble mean [57] are used and mapped into the domain using a
uniform temporal profile. We process methane emissions from anthropogenic and natural
sources using Sparse Matrix Operator Kernel Emissions (SMOKE v3.6) [58] to provide
hourly gridded methane emissions into the hemispheric CMAQ model. Note that for the
proof of concept of the new inversion formulation using OSSE experiments (Section 2.4),
we only consider four main sectors (Table 1) of methane emissions to be optimized. To
fulfill this, we merge the 23 anthropogenic subsectors into three main categories (i.e., source
sectors), namely agriculture, energy, and waste, based on methodological guidelines from
IPCC [59]. Wetland is the fourth source sector considered in our inversion.
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Table 1. Total daily mean methane emissions in four main sectors and their subsets. Anthropogenic
emissions are based on EDGAR v6, and natural emissions are obtained from WetCHARTs v3.0 with
the full ensemble mean.

Anthropogenic Natural

Agriculture[
GgCH4

d−1
] Energy[

GgCH4
d−1

] Waste[
GgCH4

d−1
] Wetland[

GgCH4
d−1

]
386.42 (28.2%) 303.65 (22.1%) 196.9 (14.4%) 483.81 (35.3%)

Agriculture Soil [93.830]
Agriculture waste burning [8.582]

Enteric fermentation a [249.04]
Manure management [34.96]

Aviation b (all types) [0.013]
Chemical process [0.526]

Combustion manufacturing
[1.454]

Energy for building [28.247]
Fossil fuel fire [0.409]

Coal [89.05]
Gas [97.246]
Oil [73.233]

Iron-steel production [0.298]
Oil refineries [11.935]

Power industry [0.876]
Off-road [0.020]

Road transportation [0.175]
Shipping [0.167]

Solid waste incineration
[33.997]

Solid waste c [74.114]
Water waste handling [88.79]

Wetland [483.81]

a Enteric fermentation and manure management represent the emissions of “livestock” used in similar inversion
studies. b All types of aviation refer to three subsets in EDGAR v6, including aviation climb descent, aviation
cruise, and aviation landing takeoff. c Solid waste is equivalent to landfills in similar studies.

2.3. Overview of the Assimilation and Inversion Systems
2.3.1. PvKF Assimilation

The assimilation scheme performed here is a simplified form of the Kalman filter (not of
an ensemble Kalman Filter) for estimating methane concentrations. This algorithm is based
on a parametric variance Kalman filter (PvKF), where the correlations are assumed to be
homogeneous and isotropic, and the dynamics of the error variance are approximated using
only advection. The idea of evolving only error variance with an advection scheme emerged
in Kalman filtering by Cohn, 1993 [60], and the first practical atmospheric implementation
was demonstrated by Menard et al., 2000 [61]. The design and implementation of the PvKF
assimilation with the CMAQ model have been detailed in Voshtani et al., 2022a,b [34,38].
One main objective of developing the scheme was to reduce the computational cost of state
assimilation while avoiding the challenges in the previous approaches, such as EnKF and
4D-Var. In fact, the assimilation requires only two model integrations, one for the state
and the other for the error variance. Despite its simplicity, it was shown that the method
is well-adapted for the assimilation of long-lived species, such as methane, without loss
of variance.

The assimilation system maintains an error covariance function (P) of the form

P = σ C σ′, (1)

between each pair of model grid points, where σ and σ′ are the standard deviations of
forecast error at two different grid points and time t, and C denotes the correlation function
based on the second-order autoregressive (SOAR) correlation model. According to Voshtani
et al., 2022a [34] C has the form

C = CSOAR =

(
1 +

D
L

)
exp

(
−D

L

)
, (2)
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where D is a chordal distance between the position vector of a pair of grid points on the
surface of the sphere, and L denotes the correlation length scales. Based on the cross-
validation method [62], the estimated horizontal and vertical length scales, as used in this
study, are chosen: Lh = 350 km and Lv = 7σl (σl denotes the model vertical layer, starting
from the surface, based on the sigma-pressure coordinate system). Note that the error
correlation function is never stored as a matrix but is computed during the simulation, as
we need the correlation between a pair of points, and thus there is no requirement to store
a large matrix in the model state space. Future details of the algorithm and assumptions
associated with the input error covariances are described in Voshtani et al., 2022a,b [34,38].

2.3.2. 4D-Var Inversion

The inversion procedure is based on a typical 4D-Var algorithm, relying on the CMAQ
model and its adjoint [63,64] to optimize methane emissions in the Northern Hemisphere.
The adjoint of CMAQ has been validated and used previously in different inversion
studies [65,66]. We integrate the adjoint model based on the same version and chemical
mechanism used in the CMAQ model. To optimize surface methane emissions in a formal
4D-Var inversion, we seek to minimize the cost function in the form of

J(x) =
1
2

γ(x− xb)
TB−1(x− xb) +

n

∑
t=0

1
2
(yo

t − Ht(ci, x))TR−1
t (yo

t − Ht(ci, x)). (3)

where x = log(e/eb) denotes the log-transformed emission-scaling factors, xb represents
the corresponding scaling factor of the baseline emissions (eb), n is the number of the hourly
timesteps, yo

t is the methane observations for the timestep t, ci denotes the initial model
concentration field, and Ht represents the observation operator that applies on ci and x
while, at the same time, it maps the model state into the observations space. B and R
denote error covariance matrices of prior emissions and observations, respectively, and γ is
a regularization parameter. We will briefly explain these parameters later in this section.

Accounting for Equation (3), we correct for monthly mean methane emissions (e) at
108 × 108 km resolution using variational optimization, which is an iterative
procedure [25,30,31,67,68]. In fact, the gradients of the cost function with respect to the
methane emissions are computed at each hour using the CMAQ adjoint model. Those
gradients are used to obtain emission-weighted monthly mean sensitivities of emission-
scaling factors in each grid cell. At the end of the iteration, the sensitivities are supplied
to a quasi-Newton limited-memory optimization routine, L-BFGS [69], for which we use
the “optimr” package in R. Using the new scaling factors provided by L-BFGS, updated
emissions are obtained and used in the next iteration. We assume that the convergence
of this procedure occurs once the reduction of the cost function in consecutive iterations
remains less than 1%.

A conventional method in inverse modelling to balance the weight of the prior con-
straint in the cost function is to use a global regularization parameter γ [66,67,70]. It is
also interpreted as an approximated compensation for the missing objective information
in quantifying error correlations in R [22]. The estimation of the regularization parameter
is performed by inspection and by conducting a series of 4D-Var inversions while choos-
ing the parameter γ that minimizes the cost function J (Equation (3)) among all optimal
experimented estimations. Accordingly, we found the value of γ = 900 as our best estimate
(see Figure S1 for details). The observation error covariance is considered diagonal with a
form of R = (εo)2I, where the observation errors (εo) are proportional to the measurement
errors (εo = f oεm), and the estimated factor, f o, is obtained using the cross-validation
technique [38]. For matrix B, we have adopted a simple approach that the emission errors
are assumed to be uncorrelated in space and between sectors, making B a diagonal matrix.
In fact, we give the same error weight geographically and for all sectors, resulting in an
emissions-weighted matrix with 100% uncertainty in each grid cell.
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2.4. Using PvKF Assimilation Analysis in 4D-Var Inversion: The Formulation

A common assumption typically made in 4D-Var source inversion is that the uncer-
tainty in the initial state is negligible compared to the accumulated effect of emissions
uncertainty over a long period of time. With such an assumption, there is no dependency
on the initial state uncertainty in the 4D-Var cost function (Equation (3)). This is equivalent
to considering the initial concentrations close to the true estimate [12,32,33,45,46,71].

Here, this paper employs a different approach for estimating methane emissions using
the 4D-Var algorithm. In fact, we make the initial state uncertainty as small as possible
by assimilating observations prior to the 4D-Var inversion window. Furthermore, using
PvKF assimilation, we will know what is the analysis uncertainty at the beginning of the
4D-Var window. Figure 2 shows the assimilation window (the blue bar or T0−1 = (T0, T1))
alongside the inversion window (the yellow bar or T1−2 = (T1, T2)) and how they interact
with each other. The PvKF assimilation starts with the initial condition derived from
the global modelling and measurement data [52] and computes the error variance at the
end of the assimilation time window, T1. As part of the assimilation, an estimation of
the modelling error covariance (Q), observation error covariance (R), and background
correlation length (Lc) are obtained using the method of cross-validation and innovation
variance consistency demonstrated in Voshtani et al. (2022b) [38]. These estimated error
statistics will be an informative supply to the subsequent experiments performed in this
study. At the end of the PvKF assimilation window, the analysis field (ca

1) and the analysis
error covariance (A1) are obtained and will be used for the purpose of inversion (Figure 1).
Note that 4D-Var here integrates the same type of observations (i.e., column retrievals of
GOSAT methane) as used in PvKF assimilation but for a different period of time to avoid
double-counting.
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Figure 2. Sketch of the assimilation window in blue, followed by the inversion window in yellow,
used in the proposed approach for estimating methane emissions. Depending on the assumptions,
four types of experiments are shown to provide various initial fields and error covariances during the
inversion window. * Experiment 4 represents what this study proposes and is equivalent to inversion
Type 0 in Table 2. M denotes the CMAQ model and P f is model-propagated error covariance.

As shown in the rest of Figure 1, four main types of experiments are designed to
investigate the role of state concentrations and their uncertainties for emissions inversion.
The difference between these experiments depends only on the assumptions used to
initialize the field and propagate the error uncertainties during the inversion window.
Although the details of performing these experiments are presented in the next section
of OSSEs, here we briefly describe their main differences. In experiments 1 and 2, the
model forecast and the PvKF assimilation generate the concentration field, c f

1 and ca
1,
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respectively. These fields are assumed to be perfect; thus, there is no associated uncertainty
to be propagated during the inversion window. On the other hand, experiment 3 not
only accounts for the initial state uncertainty (A1) but includes the effect of propagating
it during the inversion. To propagate the errors, we use the PvKF algorithm capabilities
that adapt an advection scheme. In experiment 4, we expand on experiment 3 by including
modelling error (i.e., Q), which is separately estimated for the inversion window. Note
that the modelling error Q must be distinguishable from (model) transport error or forecast
error P f (i.e., model-propagated initial error); accordingly, model error Q is assumed to be
zero in experiments 1–3 due to a perfect-model assumption.

In the context of an OSSE (Section 2.5), we need to generate the observations from the
true state. Since the PvKF optimal analysis can be considered as the closest estimate of the
true state, we thus have

y f
1−2 = H(ca

1, xt) + ε
f
1−2 (4)

yo
1−2 = y f

1−2 + εo (5)

where y f
1−2 is the model forecast mapped on observations time and location using the

observation operator Ho. In Equation (4), H includes both model (M) and the observation
operator (Ho), such that H(ca

1, x) = Ho M(ca
1, x). ε

f
1−2 represents the model transported

analysis error up to the current forecast time, and εo is the observation error used to
construct R. The associated forecast error covariance for the inversion window is denoted
as P f

1−2 = P f (A1, Q). It is obtained by

P f
t = Σ

f
t C Σ

f
t (6)

where Σ
f
t is the diagonal matrix of forecast error standard deviation (σ f

t ), where the cor-
responding forecast error variance is computed using the advection-only scheme (see
Section 2.3.1). C is the matrix of error correlations which is derived from Equation (2).

Now, let us define a new form of the cost function for performing our inversion. In this
case, other than the observation errors that affect the innovation (i.e., Observations–Model;
see Equation (3)), we have to account for the propagated analysis error in the inversion
window. The analysis error at time T1 depends on the observations in the window T0−1.
Since the observation errors are assumed to be temporally uncorrelated, the analysis error,
εa

1, is uncorrelated with the future observations used in the inversion window (T1−2). Hence,
the innovation (yo

t − Ht(ca
1, x)) initialized by the analysis field should have an error weight

of the form HoP f
t (A1, Q)Ho T + R (i.e., innovation error covariance) in the cost function.

This is a sum of the two terms, indicating that their contributions are uncorrelated. Since
this typically large-size matrix may no longer be diagonal, inverting it is a challenging
process. In Appendix A (Figure A1), we present a practical approximation using a data
selection approach to deal with the matrix inversion of such matrices. Finally, the modified
form of the cost function that is appropriate for our two-part scheme is presented in
Equation (7) of Table 2. Other variants of the cost functions used in our OSSE experiments
are illustrated in Section 2.5.2.
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Table 2. Cost functions for different formulations of 4D-Var inversion. Pt
f is the model-propagated

(forecast) of error covariance in the model space, A1 is the analysis error covariance at the initial time
of inversion, and Q is the modelling error covariance that is estimated independently (see Section 3.1).
c f

1 and ca
1 represent the initial field of concentrations produced from the hemispheric CMAQ model

and PvKF assimilation, respectively. * Type 0 is the form of the 4D-Var cost function proposed by
this work.

Type Cost Function

Type 0 *: J0(x) = 1
2 γ(x− xb)

TB−1(x− xb) +
n
∑

t=0

1
2
(
yo

t − Ht(ca
1, x)

)T
(

HoP f
t (A1, Q)Ho T + Rt

)−1(
yo

t − Ht(ca
1, x)

) (7)

Type 1: J1(x) = 1
2 γ(x− xb)

TB−1(x− xb) +
n
∑

t=0

1
2

(
yo

t − Ht(c
f
1 , x)

)T
(Rt)

−1
(

yo
t − Ht(c

f
1 , x)

)
(8)

Type 2: J2(x) = 1
2 γ(x− xb)

TB−1(x− xb) +
n
∑

t=0

1
2
(
yo

t − Ht(ca
1, x)

)T
(Rt)

−1(yo
t − Ht(ca

1, x)
) (9)

Type 3: J3(x) = 1
2 γ(x− xb)

TB−1(x− xb) +
n
∑

t=0

1
2
(
yo

t − Ht(ca
1, x)

)T
(

HoP f
t (A1)Ho T + Rt

)−1(
yo

t − Ht(ca
1, x)

) (10)

2.5. Description of the OSSE Experiments

OSSE is a standard method to evaluate the performance of atmospheric inversion or
assimilation systems without using the actual observation data [72]. Our OSSE experiments
are designed with simulated GOSAT observations to verify how optimal state analysis
and its propagated uncertainty may improve a 4D-Var inversion for constraining methane
emissions. Accordingly, we test different effects of the model state on the source inversion
(see Section 2.4, Figure 2). To distinguish those effects, we evaluate the OSSE using different
forms of 4D-Var cost functions across several emissions perturbation types, and we discuss
various aspects of those effects. The basic description of the OSSE setup and emissions
perturbations are provided in Section 2.5.1, followed by explanations of the cost function
variations in Section 2.5.2.

2.5.1. Perturbation Tests

Figure 3 shows the generic design of an OSSE framework. The structure of every
OSSE system consists of two main parts: A nature run and control runs [7]. Through a
nature run, the CMAQ model forecast produces the synthetic (true) concentration field to
be sampled by the observation operator, providing simulated observations. The nature run
is derived by the initial analysis field of concentrations at time T1, meteorological field from
WRF output, and anthropogenic and natural methane emissions that are taken the same
as provided by corresponding inventories (see Section 2.2). It is assumed that both inputs
and the model CMAQ in the nature run are deterministic, comparable to a mean estimate
of a stochastic process. On the other hand, the simulated observations are not assumed to
be perfect but include GOSAT observation errors. Hence, the simulated observations are
imperfect only due to observation errors.

The observations generated through a nature run are used under a controlled en-
vironment to perform different inversion and assimilation runs. Those are conducted
within control runs (also known as perturbed runs), for which different forms of initializa-
tion, error statistics, and emissions perturbations are configured for the inversion window
(Figure 3). Therefore, control runs only cover the inversion window but include the effects
of the assimilation window by providing the initial field and/or initial error covariances at
time T1.

Besides the four types of cost functions that will be described in Section 2.5.2, we
consider three forms of perturbations to produce different distributions of the prior methane
emissions in the control runs. Those perturbations reflect uniform and variable biases in
the prior methane emissions and cover both total and sectoral emissions. Note that in all
our control runs, we assume imperfections in the state concentrations and the CTM, but
we apply the same meteorological field, chemical reactions, and boundary conditions as
used in the nature run. Thus, these processes are considered perfect, and their effects (i.e.,
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potential errors or biases) are not investigated for the objective of our OSSE experiments in
this study.
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Using the OSSE framework (Figure 3), we can compare posterior and the prior emis-
sions against true emissions. Accordingly, the main goal of our OSSE experiments is to
test the ability of our proposed inversion cost function (Equation (7)) to reproduce true
methane emissions. In addition, by exploring three other variations in the cost function (see
Section 2.5.2), we aim to address the limitation of a typical 4D-Var inversion that relies on
perfect state assumptions due to the initial field or the CTM (meteorology and chemistry are
excluded). The approximation of diagonal observation error covariance is also evaluated in
our OSSE experiments.

2.5.2. Experimenting with Different Cost Functions

Table 2 summarizes four variations of the 4D-Var cost function. We recall that for this
study, the inversion does not necessarily rely on a perfectly known initial state or a perfect
forward model assumption. We start with Type 0 (Equation (7)) as the principal form of the
cost function proposed in this study. In this equation, we account for the entire information
provided by PvKF assimilation, including the initial analysis field (ca

1) and its analysis error
covariance (A1). In addition, according to the PvKF formulation for propagating errors
using the advection scheme (see Section 2.3.1), the forecast of the analysis error covariance
and the estimated model transport error (P f

t (A1, Q)) are integrated into the second term of
the cost function. Inversions of Type 1–3 (Equations (8)–(10)) consider other forms of cost
functions where parts of the connection between the assimilation and inversion are broken.
For Type 1 (Equation (8)), we neither consider the analysis field nor the propagation of the
error covariances (i.e., P f

t (A1, Q) = 0) during the inversion. In fact, inversion is independent
of assimilation and is initialized by the model forecast, which is assumed to be perfectly
known. In this case, the inversion also only relies on the observation error covariance (Rt)
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in the cost function. Note that the cost function of Type 1 is frequently used in different
inversion studies [42,46,55]. Type 2 inversion (Equation (9)) is similar to Type 1, except
that it begins with the initial analysis field rather than the initial forecast concentrations.
Type 2 cost function is also commonly used in the literature [32,33,73]. Type 3 (Equation
(10)) not only accounts for the initial analysis field but also considers the propagation of its
error covariance during the inversion, yet with a perfect model assumption (i.e., Q = 0).
Note that we keep γ, xb, and B the same between all these cost functions for consistency of
our evaluations.

By comparing all the cost functions in Table 2, we can distinguish the different effects of
using assimilation for performing a 4D-Var inversion. Accordingly, a comparison between
Type 1 and Type 2 cost functions shows the influence of only the analysis initial field on the
inversion result. By comparing Type 2 and Type 3 cost functions, we can isolate the effect
of considering the uncertainties in the model concentrations that originate from the initial
state (i.e., model-propagated initial error covariance). Finally, if we compare Type 3 with
the Type 0 cost function, the influence of model error covariance Q (separately estimated)
on the inversion can be extracted.

3. Role of Assimilation in Improving Inversion Results

Our results of the OSSEs include a month of posterior (i.e., optimized) methane emis-
sions in April 2010 using 4D-Var inversion, preceded by two weeks of PvKF assimilation
(or model forecast when the assimilation is turned off). Note that, in this study, we will
not explore a temporal trend of emissions, such as seasonal and annual biases, but will
mainly focus on optimizing the spatial distribution of emissions in a shorter time scale
(e.g., episodical emissions inversion) that are more subjected to different types of biases
at the state concentration level. The posterior emissions estimate involves monthly mean
methane emissions, or in particular, emission scaling factors. The following sub-sections
(Sections 3.1–3.3) are each dedicated to the results of a specific form of emissions perturba-
tions throughout the OSSEs. These perturbations result in a particular form of the prior
emissions in our control runs (see Figure 3). We recall that all the input and configurations
are the same for all experiments (e.g., meteorological field, regularization parameter γ),
except those that impose the discrepancy between the OSSE cases (Figure 3).

3.1. Perturbation of Total Emissions

The first type of perturbation provides the prior emissions with a uniform bias in
all sectors (see OSSE control runs in Figure 3). In this case, the total true emissions are
uniformly scaled up by 50%. In fact, it is assumed that the prior emissions are strongly in
line with the spatial distributions of the true emissions, yet with different levels of magni-
tude. Although this perturbation method implicitly considers a low level of uncertainty
for the spatial allocation of emissions, it can be taken as the base case, particularly for
evaluating the ability of the inversion method and underlying assumptions to reproduce
true emissions [29,39,74].

Figure 4 compares the posterior emissions of the four inversions according to the
cost functions in Table 2. All inversions start with the same prior with +50% uniform
perturbation of the true emissions. The spatial distributions of the differences between
the prior and true emissions (∆eprior) and between all four posteriors and true emissions
(∆eposterior) are shown in Figure 4a–e, respectively. Type 0 inversion (Figure 4b) accounts
for both optimal PvKF analysis (ca

1) and model-propagated (forecast) of analysis error

covariance during inversion (P f
t (A1, Q)). Posterior emissions show reasonable overall

consistency with the true emissions, particularly for the larger and more local (or point)
sources. Now, we remove all the dependency on the assimilation such that a perfect model
forecast (c f

1 , P = 0) is linked to the inversion (Type 1). In this case, the corresponding initial
condition is far from the truth. The corresponding posterior emissions in Figure 4c indicate
a large deviation from the true emissions. In fact, a significant (downward) over-correction
in many regions, especially for the large sources, is obtained along with an insufficient
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correction for the small sources. This behaviour first implies that relying on a model forecast
with a perfect assumption to initialize the inversion exerts a substantial impact on the state
of the system, mainly due to accumulating incorrect emissions before inversion (i.e., the
prior emissions are incorrect). Hence, this eventually degrades the emissions estimation
through inversion. Furthermore, the prior error covariance (B) is commonly assumed
(uniformly) to be proportional to the emissions in standard 4D-Var inversion (as used in
this study). This itself also limits the ability of the inversion to recover fairly large and
small (scattered) sources, as also suggested by Yu et al., 2021 [39]. In addition, the inversion
performance can be worsened in the presence of an incorrect state and missing modelling
error correlations.
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Figure 4. (a) The prior–true emissions (+50% uniform perturbation); (b) the posterior–true emissions
in Type 0 inversion using analysis initial (ca

1) and both observation R and model-propagated analysis

error covariance HoP f
t (A1, Q)Ho T ; (c) the posterior–true emissions in Type 1 inversion using forecast

initial (c f
1 ) and observation error covariance R, (d) the posterior–true emissions in Type 2 inversion

using analysis initial (ca
1) and observation error covariance R; (e) the posterior–true emissions in Type

3 inversion using analysis initial (ca
1) and both observation and model-propagated analysis error

covariance HoP f
t (A1)Ho T , but without model error. Statistical comparison of (f) the prior emissions

and (g–j) the posterior emissions of Type 0–3 inversions, respectively. The x-axis and y-axis represent
the true and the prior/posterior emissions, respectively. In (f–j), P f (A1, Q) is shown as P, and P f (A1)

is shown as P∗. Simulated observations are generated using the nature run initialized by the analysis,
and a 2-week spin-up is used for the initialization.

In Type 2, the inversion is performed with the PvKF analysis (ca
1), which is used as the

closest estimate to the true state. Figure 4d shows that using the PvKF optimal analysis
field in the inversion instead of a model forecast largely improves the posterior emissions
estimate. This is likely because the analysis increment during the inversion corresponds
more significantly to the correction of the prior emissions, not the initial field. Note that all
the inversions here optimize only for the emissions; thus, a more accurate (and unbiased)
initial field that is produced by the optimal analysis can result in better performance of the
inversion to recover true emissions. Still, the analysis uncertainty is not taken into account
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in Type 2 to propagate errors during the inversion, meaning that the concentration field is
perfectly known. Thus, we only rely on the observation error variance (diagonal matrix
R) in the corresponding cost function (Equation (9)). For this case, although Figure 4d
shows an overall improvement in the posterior emissions estimates compared to Figure 4c,
it remains inaccurate, particularly in the regions with large amounts of methane emissions,
such as East Asia and around the Persian Gulf, and for emission sectors with larger area
coverage such as agriculture in the Midwestern United States and India.

However, comparing the posterior emissions of Type 2 and Type 3, we might infer that,
besides the analysis field, accounting for the analysis error covariance and propagating
it during the inversion can significantly improve the emissions estimates. This is mainly
due to the structures of the correlations that exist in the model forecast (see Appendix A,
Figure A1), while it is usually neglected due to perfect model assumptions or for computa-
tional purposes [22]. Errors in the forecast during the inversion can be produced by the
model due to various effects [18,26] or can be the result of an initial error that is propagated
through the model, both of which are important to be considered besides the observation
errors for a realistic estimation problem.

In Type 3 inversion, a similar condition as Type 0 is considered, except that the mod-
elling error (Q) is turned to zero. This depicts a scenario where the model is assumed to be
perfect, but in our experiments (and in reality), it may not necessarily maintain the optimal
state (closest to the true). Drawing a comparison between Figure 4e (Type 3) and Figure 4b
(Type 0) shows minor global differences, although over some larger emissions regions, such
as East Asia, that discrepancy still remains noticeable. This is likely due to the lower density
of the GOSAT observations over those regions, for which adding model error (Q) makes
those observations more impactful for the inversion. Hence, accounting for model errors Q
in 4D-Var inversion provides room for improvement, particularly when observations are
insufficient. On the other hand, comparing either Type 0 or Type 3 against Type 2 inversion
indicates that a considerable improvement occurs for both large and small sources. This
emphasizes the key role of the model-propagated error correlations (initialized by the
analysis error covariance, HoP f

t (A1, Q)Ho T) that are usually overlooked in an inversion
with perfectly known state assumptions and diagonal observation error covariance.

OSSE experiments aid in determining the statistics of the posterior emissions without
a need to estimate those along with the inversion, which otherwise entails a high com-
putational cost [30,43]. Accordingly, besides the spatial maps, the prior and those four
optimized emissions are demonstrated in scatter plots, as in Figure 4f–j. Figure 4h indicates
that Type 1 inversion, which integrates the biased model initial forecast (due to biased
emissions before the inversion), can result in fairly biased posterior emissions along with
significant variance. Accounting for the initial analysis field in Type 2 inversion improves
on the bias of the optimized emissions while slightly decreasing the variance (Figure 4i).
On the other hand, propagating the analysis error (comparison between Figure 4j,h) can
largely affect the variance of posterior emissions, although with a small bias improvement.

Overall, adding the model error, Q, (comparison between Figure 4g,j) can further
improve the bias (and slightly the variance) in posterior emissions, particularly for the
larger sources, as in Figure 4e,b. Additionally, the posterior emissions in Figure 4g maintain
an estimate that is also statistically more reliable than other inversion types, although it
tends to be less reliable for estimating small sources. This deficiency is likely due to limited
information in determining the prior error covariance (B) for properly weighting the prior
emissions [22,39].

3.2. Perturbation of Each Sector

In the second form of perturbation used in our OSSE experiments (see Figure 3), we
examine the ability of our inversion to reproduce true emissions when only one particular
emission source sector is perturbed. Following the four main emissions categories in Table 1,
each source sector is uniformly perturbed in the same way as the total emissions perturbed
in Section 3.1 (i.e., scaled up by 50%). We repeat inversions with different cost functions
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(i.e., Equations (7)–(10)) for this experiment. Figure 5 presents the spatial distributions of
the differences between the total prior/posterior methane emissions and the true emissions,
in which every map corresponds to a specific sectoral perturbation that is performed with
a particular inversion type.
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Figure 5. (a–e) The prior–true emissions and comparison of the posterior against the true emissions
for the only perturbed agriculture sector, (f–j) only perturbed energy sector, (k–o) only perturbed
waste sector, and (p–t) only perturbed wetland sector. The prior emissions are generated using
50% uniform perturbation. Type 1 OSSE uses (c f

1 ) and (R). Type 2 performs with analysis initial (ca
1)

and (R). Type 3 OSSE operates with analysis initial (ca
1) and forecast of analysis error covariance

(HoP f (A1)Ho T), and Type 0 OSSE works with analysis initial (ca
1) and forecast of analysis error

covariance with model error (HoP f (A1, Q)Ho T).

The overall spatial pattern of the posterior emissions in each sector shows the same
order of improvement as obtained for the total emissions in Section 3.1. In fact, the
contribution of the PvKF analysis field, used as the initial condition, and its error covariance
to the inversion leads to a better constraint for every sector. However, the responses of
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each source sector to different types of inversions are not the same. Before discussing
the inversion response (see details in Section 4.1) in each sector, we need to reacquaint
ourselves with some characteristics of each sector, which can be addressed from the figures
with prior perturbations (Figure 5a,f,k,p). Besides the geographical locations of the prior
emissions in each sector, it is important to identify their spatial distribution along with the
density of each sector’s prior emissions. According to those criteria, we consider agriculture
and wetland emissions as area sources (covering large areas with an almost uniform level
of emissions), while the emissions of the energy sector are considered as local or point
sources (covering small or local areas with large amounts of emissions; hotspots). Although
waste emissions appear in both area and point sources depending on their location, overall,
across the domain, we consider it in the point-source category (Figure 5k). All these specific
characteristics enable us to evaluate and distinguish the differences between the responses
of each sector to the inversion. Note that the magnitude of those emission sectors is largest
for wetlands, followed by agriculture, energy, and waste.

For Type 1 inversion, the posterior emissions for each sector show an overestima-
tion of large emissions and an underestimation of smaller emissions in the same sector.
We also found that the biased forecast initial state may cause a miscorrection on other
emission sectors, even though they are not perturbed (i.e., taken as true emissions) in the
prior emissions—hereafter, this is considered as the effect between sectors and referred
to as the cross-sectoral effect. For example, the posterior of the agriculture emissions in
Figure 5c shows an apparent overestimation of emissions at the locations of the energy
sector’s emissions (e.g., over Russia and near the Persian Gulf). However, this impact is
largely removed for the Type 0 inversion of the agriculture emissions (Figure 5b), which is
consistent across all sectors’ perturbations. This implies that a configuration of inversion
that integrates the optimal initial analysis and its error covariance propagation not only
performs reasonably for the incorrect emissions of the same (perturbed) sector but can also
prevent misrepresentation of other sector’s emissions when they are precisely provided in
the prior.

Comparing the results of Type 1 with Type 2 inversions reveals the effect of initializ-
ing the inversion with the assimilation analysis field rather than the model forecast field.
Figure 5c,d (same as Figure 5h,i, Figure 5m,n, and Figure 5r,s) shows meaningful improve-
ments in the posterior emissions from Type 1 to Type 2 for all sectors; however, those
improvements are slightly greater for the energy and waste sectors with localized emissions
than agriculture and wetlands. A similar improvement (in the same perturbed sector) has
been found when we compare Type 2 with Type 3 inversions, for which the forecast of the
analysis error covariances is considered besides the analysis field (Figure 5d,e). Although
those improvements are more substantial for the energy and the waste sector, a slight
degradation occurs in other unperturbed sectors due to a cross-sectoral effect. For instance,
comparing Figure 5i,j of the energy sector indicates that despite the improvement of the
emissions in the location of the energy sources (e.g., East Asia and Russia), it causes a
cross-sectoral effect on the agriculture emissions, resulting in degraded estimate over those
areas (e.g., India and Southeastern Asia). A similar pattern is also shown in the waste sector
(Figure 5n,o), where the estimation over agriculture and wetland areas is slightly worsened
(e.g., Midwestern U.S. and Boreal regions in North America). Nevertheless, we found that
the cross-sectoral effect is not noticeably destructive to the inversion of agriculture and
wetland emissions (Figure 5d,e,s,t) when we account for the analysis error covariances in a
Type 0 inversion (Equation (7)). All that considered, the undesirable cross-sectoral effect
suggests that the approximated correlation model (Equation (2)) with a fixed correlation
length across the domain is not sufficiently informative to resolve the structure of the large
and localized emissions in the energy and waste sectors. Furthermore, we imply that the
weight of the forecast error covariance (HoP f

t (A1)Ho T), compared to the observation error
(R), is likely too small for those sectors; thus, the estimation system relies more on the model
and the prior information (which are more uncertain) than on the observations to correct
emissions. One way to partly alleviate this is to increase the forecast error covariance by
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adding extra (bulk) model error (Q). We consider the effect of this model transport error in
the remainder of this section.

Comparing Type 3 with Type 0 inversion helps us understand the influence of model
error, Q, in reproducing true emissions. From an estimation point of view, model error
compensates for those missing error variances and correlations that are, in fact, unexplain-
able by the error propagation scheme (i.e., advection of variance herein; see Section 4.2
for details). Our results show that accounting for the model error (Q) improves emissions
estimation for all sectors (Figure 5b,e; Figure 5g,j; Figure 5i,o; Figure 5q,t). However, this
level of improvement is larger for the agriculture and wetland than for the energy and
waste sectors. For example, adding the estimated model error to the Type 3 inversion
of agriculture emissions (Figure 5b,e) can substantially remove the underestimate in the
posterior emissions, particularly over Northern India and Southeast Asia. A similar level of
improvement for the wetland emissions over the boreal region and the Southeastern United
States is observed (Figure 5q,t). The influence of model error, however, is not as significant
for the point sources of energy and waste emissions. Nevertheless, adding model error
can still be important for the cross-sectoral effects of a sector primarily composed of point
sources (e.g., energy) on a more spatially distributed sector. For instance, for the inversion
of energy (Figure 5j) and waste (Figure 5o) emissions, the overestimation of the agriculture
(e.g., Southeast Asia) and wetland (e.g., boreal area) emissions are slightly removed by
adding model error Q (comparing with Figure 5g,l).

In our estimation, the model error (Q) is assumed to be proportional to the variance
field, in line with the previous study by Voshtani et al., 2022a [34]. It provides a uniform
and bulk impact on the total error across the domain (see Section 4.2) due to a rather
homogeneous distribution of methane. Therefore, as expected, those emission sectors
covering the broader area, such as agriculture and wetland, are more susceptible to being
influenced by the model error. On the other hand, the model error has less spatial variability
than the emissions and thus has little chance of affecting a point-source estimation, even
though it may have a large magnitude. Perhaps another form of model error, for which the
spatial pattern is different, may improve the influence of model error on the local and large
sources, such as energy and waste emissions. The simple fact that the correction for the
point sources is not as efficient may indicate that the estimation of the point sources and
area sources should be treated with a different modelling framework. In general, due to
limited information and large uncertainty about the origin of model error, finely resolving
its spatial structure is typically a nontrivial task [25,75]. Note that we do not separately
obtain an estimation of model error for each inversion process of this study; instead, we
apply the estimated parameter following Voshtani et al., 2022b [38] (see Section 3.1 for
details). Thus, the error variance associated with the model may also not be the optimal
one in our analyses here. A statistical comparison of the prior and the posterior emissions
against the true emissions is also demonstrated in Figure S2 in Supplementary Materials.

3.3. More Realistic Perturbations

OSSE experiments in this section consider a more realistic inversion scenario, aiming
to provide a random-like (more objective) perturbation in the prior emissions. One way to
achieve this is to perturb each sector individually with different weights and signs (±) of
perturbations while taking them all together for the inversion analysis. Previous methane
inversion studies [2,12,21,76,77] showed that, overall, agriculture and waste emissions
are underestimated, whereas the energy and wetlands are overestimated globally in the
prior (mainly based on EDGAR for the anthropogenic inventory and WetCHARTs for the
wetlands). Thus, the energy and wetland sectors are perturbed upwards by 50% and 25%,
respectively, and the waste and agriculture sectors are perturbed downwards by 50% and
25%, respectively.

Figure 6 summarizes the performance of our four different types of inversion using
these prior emissions. In the Type 1 inversion, the posterior emissions exhibit significant
over- and underestimations (Figure 6c). This plot also shows that the weight of the spatial
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biases in the posterior is almost proportional to the prior emissions, yet agriculture and
waste retain a positive bias contrary to the energy and wetlands with a negative bias. Over-
all, it implies that simply relying on a perfect model initial field results in overcorrections of
posterior emissions in many regions. The statistics of the posterior emissions in Figure 6h
also indicate that, besides a large domain-wide variance, they are negatively biased in
large emissions areas over East Asia (from coal emissions) and near the Persian Gulf (likely
due to oil and gas emissions). Furthermore, a lower R2 and weaker regression line of the
posterior than the prior suggests that the posterior emissions are likely less reliable than
the prior.
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When we compare Type 1 inversion with Type 2, where the PvKF analysis provides
the initial state but the inversion relies only on observation error covariance R, we find a
significant improvement in the spatial biases of posterior emissions. This is particularly true
for the large sources, suggesting that the large domain-wide variance and bias of emissions
have been corrected. The R2 of Type 2 inversion also exhibits a large increase compared to
Type 1 but is still comparable to the prior statistics. The Type 3 inversion (Figure 6e,j), which
includes the model-propagation of analysis error covariance, maintains a large consistent
improvement everywhere compared to the Type 2 inversion. This improvement is reflected
in R2 and the slope of the regression line. The improvement caused by the propagation
of the analysis error covariance can be inferred in two ways. First, we know that the state
of the system, in reality, is not perfect; thus, the total error is greater than the observation
error, R. In this case, relying on a perfect state assumption implicitly gives extra weight
to the observations, resulting in under/overestimation of emissions through the 4D-Var
inversion. Second, in addition to the weight of the error variance, accounting for the error
correlations in P f (A1, Q) helps the inversion maintain a more realistic distribution of spatial
and temporal analysis increments.
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The effect of adding model error (Q) is also examined. It shows a further improvement
of posterior emissions in Type 0 (Figure 6b) relative to Type 3, which is also confirmed by
their statistics (Figure 6g). It indicates that adding model error (Q) to the forecast error
(HoP f

t (A1)Ho T) can, in fact, help better constrain the emissions throughout the inversion.
In addition to this experiment, we conduct another non-uniform perturbation of those
sectors but using different sectoral weights, such that agriculture and wetland are perturbed
50% upwards while waste and energy are perturbed 25% downward (see Figure S3 in
the supplements). Overall, we found a similar correction behaviour as the experiment in
Figure 6.

In addition, comparing the inversion types of Case 6 (Figure 6) and Case 1 (Figure 4)
indicates that both Type 1 and Type 2 in Case 6 provide posterior emissions of higher
quality than their equivalent in Case 1, as R2 increased from 0.79 to 0.82 for Type 1 and
from 0.89 to 0.92 for Type 2. The higher quality of emissions of Case 6 can be explained
by the perturbation of the prior emissions in OSSEs. In Case 1, entire emissions of all
sectors are purebred uniformly upward by 50% (50% increased), but the perturbation of
prior emissions in Case 6 is non-uniform (energy and waste emissions are increased by
50%; agriculture and wetlands are decreased by 25%). A simple comparison of these two
perturbation cases shows that the overall bias in Case 1 is greater than in Case 6. This bias
exists in the prior emissions and may also reflect in the initial field. Given that the inversion
only corrects for the prior emissions (not the initial field), we can expect that the inversion
of Case 6 provides better posterior emissions than Case 1, likely because the control runs
of Case 6 have a lower bias in the initial field and the prior emissions than Case 1. On the
other hand, the performance of the posterior emissions of Type 3 and Type 0 in Cases 1 and
6 are more comparable. Perhaps, this is because there is almost no additional source of bias
(or uncertainties) than in the prior emissions, not to be captured by the inversion. In fact,
the inversion shows a consistent level of performance in different perturbation scenarios
once it is not contaminated by the other source of errors (e.g., from the initial condition and
its propagation).

4. Additional Discussions for the Proposed System
4.1. Statistical Implications

Three forms of perturbations in our OSSE experiments are described in Sections 3.1–3.3.
We examined the ability of four different cost functions for each perturbation type to
reproduce true emissions across the domain. Here, we further evaluate those experiments
in terms of three metrics, including normalized mean bias (NMB), normalized mean error
(NME), and Pearson’s correlation coefficient. Accordingly, we have

NMB =

N
∑

k=1
(ek − et

k)

N
∑

k=1
(et

k)
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where e and et denote the posterior and true emissions, respectively, and N represents the
number of grid cells with emissions.
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The results in Table 3 indicate that NMB significantly decreased between Type 1
and Type 2 inversion in almost all emissions perturbation cases, particularly in Case 1
with 28% reduction and Case 6 with 15% reduction, where all sectors are perturbed. It
suggests that initialization of the inversion with a biased model forecast (c f

1 ) reflects on the
posterior emissions mainly as a form of residual biases. In addition, NME decreased and
R increased for all cases, indicating that the posterior emissions residuals are smaller for
Type 2 inversions. In fact, at the grid level, they are closer to the true emissions. Overall, a
similar reduction of NMB and NME and an increase of R occurs between Type 2 and Type
3 inversions for all cases. This implies that incorporating the model-propagated analysis
error covariance (HoP f

t (A1)Ho T) can also substantially impact our inversion results to
recover the true emissions. Finally, the effect of the model error (Q) is shown by comparing
Type 3 and Type 0 inversion. Although we implemented a simple form of Q, the results
of all metrics slightly improved for perturbations with all emissions (Case 1, 6, and 7);
however, it may influence each sector differently. We found that agriculture and wetland
are more sensitive to model error as all the metrics are altered to provide a better fit to
the true emission. On the other hand, it has little impact on the energy and waste sector.
Those behaviours are mainly attributed to the spatial characteristics of model error that are
more consistent with those sectors with broader areas and uniform emissions, such as area
sources sectors, including agriculture and wetlands. We provide a detailed discussion of
the underlying assumptions for model error (Q) as well as its effect on the inversion in the
next section.

Table 3. Normalized mean bias (NMB), Normalized mean error (NME), and Pearson’s correlation
coefficient (R) for each perturbation case and inversion cost functions (Equations (7)–(10)). In cases
1–5, sector/sectors are all uniformly scaled up by 50%. In cases 6 and 7, sectors are perturbed
non-uniformly between 25–50% (see Section 3.3 for the details).

Perturbation

Cost Function Type 0: Type 1: Type 2: Type 3:

J0(ca
i , P f

t (A1, Q), R) J1(c
f
i , R) J2(ca

i , R) J3(ca
i , P f

t (A1), R)
NMB NME R NMB NME R NMB NME R NMB NME R

Case 1:
All sectors/Uniform +0.02 0.06 0.98 −0.39 0.57 0.88 −0.11 0.29 0.94 −0.03 0.10 0.97

Case 2:
Agriculture/Uniform +0.01 0.04 0.99 −0.07 0.28 0.96 −0.05 0.12 0.93 0.00 0.06 0.95

Case 3:
Energy/Uniform +0.03 0.03 0.98 −0.18 0.31 0.95 −0.09 0.22 0.94 +0.03 0.03 0.97

Case 4:
Waste/Uniform +0.02 0.02 0.99 +0.11 0.45 0.94 −0.03 0.10 0.95 −0.02 0.03 0.98

Case 5:
Wetland/Uniform −0.01 0.01 0.99 −0.06 0.11 0.99 −0.05 0.09 0.99 −0.05 0.04 0.99

Case 6:
All sectors/Non-uniform −0.02 0.05 0.99 +0.22 0.37 0.90 −0.07 0.19 0.92 −0.05 0.11 0.95

Case 7:
All sectors/Non-uniform −0.04 0.06 0.98 −0.10 0.35 0.87 −0.10 0.19 0.93 −0.04 0.07 0.96

Aiming to examine the findings of our results in Section 3, we present the total amount
of emissions obtained by each inversion type and compare them against the total prior and
true emissions. Figure 7 shows the OSSE results of Case 1 with uniform perturbation and
Case 6 with non-uniform perturbation of the prior. Each marker denotes the total emissions
corresponding to the label on the x-axis. The error bars are computed based on the standard
deviation of the difference between the prior/posterior and truth, which is multiplied by
the number of emission grid cells to represent an indication of the uncertainty for the total
emissions. In Case 1, the posterior emissions of all types are close to the truth (1370 Gg/d),
in particular for Type 2, 3, and 0, which are estimated as 1336 Gg/d, 1344, and 1353 Gg/d,
respectively. This indicates that using additional information from assimilation analysis
may not necessarily improve on the total emissions estimates. However, the map of spatial
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distributions of those cases (Figure 4) emphasizes a large improvement in different areas
for the same types of inversion. It implies that an estimate of only the total emissions can
be misleading, since the overestimation and underestimation of posterior emissions in
different local areas may cancel out each other and result in an estimation that remains close
to the truth. Nevertheless, the estimate of the uncertainties for this case Is still consistent
with the previous result, suggesting that the assimilation analysis and propagation of its
error statistics result in posterior emissions with lower uncertainties (σType 1 = 444 Gg/d,
σType 2 = 329, σType 3 = 143 Gg/d, σType 0 = 117 Gg/d).
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Performing a similar assessment on Case 6 with a more realistic perturbation of the
prior emissions shows that the total emissions of Type 1 and Type 2 inversions become even
worse than the prior emissions. This is also in contrast to the maps of posterior emissions
(Figure 6), which show an improvement in the posterior emissions. Comparing Type 0–3
of posterior emissions for this case indicates that accounting for the assimilation analysis
not only reduces the estimation uncertainty of posterior emissions (Type 1 to Type 0 in
Figure 7b) but also makes the total estimate closer to the truth. Overall, we imply that
using an incorrect field to initialize the inversion along with the perfect assumptions on
the forecast can result in a severely weak performance of inversion, depending on the
distribution of the prior emissions (i.e., perturbations in the OSSE). We can conclude that
the modified form of the inversion cost function (Equation (7)) proposed in this study
maintains a great level of robustness in recovering true emissions. Therefore, it is necessary
to include the assimilation analysis with proper error statistics in our 4D-Var inversion cost
function. Note that using a cost-efficient assimilation system, such as PvKF, keeps the total
cost of emissions estimation desirably low. We discuss the timing of different inversion
types later in Section 4.3.

4.2. Implications for Model Error

Model propagated error, P f (A1, Q) in Equation (7), not only depends on the error
covariance of the initial state but can also be produced due to imperfections in the model.
We recall that for practical purposes, our inversions neither rely on a perfectly known initial
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state nor a perfect CTM. We integrate a PvKF formulation that can cost-effectively provide
that error information on the initial state and the model (see Section 2.3). Furthermore, as
shown earlier in Sections 3.1–3.3, accounting for those errors during the inversion process
can improve emissions estimations; hence, it is important to understand the causes of
those improvements.

Using the PvKF assimilation, we obtain the optimal estimation of the analysis error
covariance (A) that is used to initialize the propagation of errors during the inversion. Prop-
agation of this error covariance (HoP f

t (A1)Ho T) is the key element in forming correlations
that exist by nature in the model space but are often missed in a typical 4D-Var inversion
(see Appendix A, Figure A1); thus, not accounting for this error may cause significant
degradation of the inversion results (see Section 3).

Nevertheless, the entire error during inversion does not necessarily originate from the
initial state, but may also be formed by the model, given that the model is not perfect. As
in any Kalman filter, the PvKF does not depend on a perfect model assumption and thus
allows for the inclusion of the model error during the inversion window. Contrary to the
model propagation of the initial analysis error covariance (HoP f

t (A1)Ho T), which involves
the finer structure of the model background correlations, modelling error covariance (Q) is
assumed to be proportional to the field due to a lack of information about its shape. In fact,
there is little knowledge about the underlying processes driving model error covariance
Q [18,25].

The origin of Q is generally unknown, so that identifying its underlying structure is
almost implausible [75]. It has been shown in previous studies as well as here that the effect
of model error is not negligible [25,78], while there are several explanations of their causes.
In this study, the effect of adding model error can be explained in two ways, based on their
forms and effects (although its origin remains unknown). The first type is a domain-wide
stationery (bulk) error associated with various modelling characteristics. Using criteria
based on innovation variance consistency in PvKF assimilation according to Voshtani et al.,
2022b [38], we obtain the estimated value of the corresponding model error covariance Q,
hereafter referred to as QPvKF, which is used in our OSSE experiments (i.e., Q = QPvKF).
Note that numerical discretization error was identified as the first source of error to be
associated with the need for Q [61,79–83]. In particular, Menard et al., 2021 [82] argue that
although we rely on the continuous behaviour of the linear advection, a discretized scheme
used in the model can lead to a loss of total variance. Therefore, part of this bulk model
error tends to compensate for that loss. Here in this section, we discuss the actual model
error, which may be caused by neglecting the explicit diffusion of the model.

The model error can also be produced due to assumptions employed in our inver-
sion/assimilation system. For example, here, the propagation of the error during inver-
sion/assimilation is performed using a continuous formulation based on the advection of
variance. It has been shown previously that over the 3-day revisit time of GOSAT the total
variance remains conserved to a great extent (>95%) [34]. Relying on that assumption for a
month of inversion in our experiments may lead to a degradation in realistically simulating
the forecast model error. In fact, for the extended period of a month, diffusion spreads a
portion of the variance in the form of spatial correlation, which is not considered in error
propagation formulation based on the advection-only scheme used in PvKF. Those missing
correlations might be addressed using a general form of parametric Kalman filter [81],
where besides the variance, the evolution of characteristic parameters of correlations are
computed, yet at a sizeable additional cost. Nevertheless, using a simple form of model
error, we can compensate for the missing correlations due to diffusion by approximating its
impact on the model concentrations. In Appendix B, we present a simple approach to ap-
proximate the violation of diffusion assumption that appears in the form of modelling error
(Qdi f f usion). We found an almost linear growth of this type of error over time. Therefore,
the actual modelling error can be derived from a relationship as Q∗ = QPvKF + Qdi f f usion.
Figure 8 shows a schematic view of the estimated modelling error (QPvKF) over time that is
compounded by the approximated modelling error due to neglecting diffusion.
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4.3. Computational Timing of Inversions

We showed earlier in our OSSE results in Section 3 that both the initial analysis field
and model-propagated analysis error covariance can substantially impact inversion results
in reproducing the true emissions. This section examines the computational time required
for our modified inversion schemes that link PvKF assimilation to 4D-Var inversion. We
recall that the 4D-Var inversion is designed in a way that the estimation iteratively converges
to a local minimum (considered as an optimal solution) by minimizing a quadratic cost
function (J) of the residuals between the model and observations (Equation (3)). It is also
assumed that when the reduction of the cost function between successive iterations is
less than 1%, the iteration process will be terminated (see Section 3.2). Using consistent
convergence criteria for all experiments, we compare the computational time of employing
different cost functions (Type 0–3 inversions or Equations (7)–(10)) in terms of the required
iterations. Accordingly, Figure 9a depicts the value of the cost functions J at each iteration
until convergence for all types of inversions. Note that the results here are associated with
the OSSE of non-uniform perturbations, as described in Section 3.3, Figure 6.

Our results in Figure 9a indicate that performing Type 1 inversions with a biased model
forecast initial and assuming a perfectly known state of the model (light blue line) requires
23 iterations for convergence. However, only accounting for an improved initial field (red
line) from our optimal PvKF analysis (ca

i ) significantly reduces the computational cost of
inversion. In fact, the number of iterations reaches nine in Type 2 (~one-third compared to
the cost of Type 1). Now, once the model-propagated error covariance (HoP f (A1)Ho T) is
also considered in our cost function of Type 3 (purple line), the number of iterations for
convergence reaches eight, indicating that the cost of inversion does not change significantly.
A similar effect is observed when the model error is considered (green line) in our cost
function Type 0 (HoP f (A1, Q)Ho T), and the number of iterations remains the same. These
comparisons imply that although accounting for the propagation of error covariance, either
from imperfect transport or the initial state, does not provide a noticeable computational
benefit, it exerts a substantial impact on the quality of the posterior emissions (e.g., see
Table 3). On the other hand, considering the optimal initial analysis field maintains not only
a better emissions constraint but also a lower cost of inversion. Note that the PvKF before
the inversion window is computationally inexpensive, as it requires a little more than two
model runs [34]. Hence, the overall cost of inversion combined with the PvKF assimilation
remains low enough compared to the cost of Type 1 inversion (without PvKF assimilation).
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the required computational time of four different inversion types (Type 0–3); (b) Comparison between
the computational time of inversions when the initial field is provided with the model forecast (c f

i )
for all the cases (Type 1 inversion); however, the impact of adding only error statistics to the cost
function is shown.

Consistent with the experiments in Section 3, in Figure 9a we only look at the marginal
difference in adding improved error statistics to the inversion once the initial state has
already been corrected with assimilation analysis. Now, in another experiment, we keep
the initial field of the model forecast and replace only the error covariance term in the cost
function (Figure 9b). In fact, during the assimilation window, besides the model forecast
(c f ), we account for the model propagation of error covariance without updating them by
observation assimilation. Accordingly, at the end of the assimilation window, instead of the
analysis error covariance matrix A1, we obtain the forecast error covariance P1 sto initialize
the inversion. In addition, an updated form of model error (Q∗), as described in Section 4.2,
is used in this experiment. Therefore, we can test if the error statistics alone (due to initial
or model transport) are sufficient to reduce the computational cost.

Figure 9b presents three forms of inversions, all of which carry on the same model
forecast (c f ). Besides the Type 1 baseline inversion (light blue line), the figure shows
an inversion (dark blue line) where the model-propagated forecast error is considered
(HoP f (P1)Ho T), and another inversion (grey line) where model error is added to the
forecast error (HoP f (P1, Q∗)Ho T). The results of the computational cost of inversions
indicate that accounting for those error covariances in the cost function can reduce the
number of iterations to 20 and 18, respectively. It suggests that the effect of error statistics
alone would barely reduce the computational cost (up to ~20%). Although this amount is
greater than the cost of the marginal difference of adding error statistics once the analysis
is already used as the initial field (~10% reduction in cost; Figure 9a), it is still insignificant
compared to the cost of replacing the initial forecast field by the analysis (~65% reduction).
Note that the effect of error statistics alone (given the same c f ) on recovering the spatial
distribution of true emissions is also more significant than the marginal effect of adding
those errors when the analysis field is used. Finally, we remark that using the updated
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form of model error (Q∗) than the initial form (Q) provides no further reduction of the
computational time of inversion (see Figure S4).

5. Summary and Conclusions

We present a new approach for performing methane source estimation, where the
PvKF assimilation system of methane concentrations is combined with the 4D-Var source
inversion. Previous methane inversion studies typically assume that the initial state un-
certainties are negligible compared to the effect of accumulated emissions uncertainties
for a typical duration of methane inversion (e.g., one month) in a limited domain. As
a result, the state is considered to be close to the truth, and thus the inversion is nearly
insensitive to the initial state uncertainties. However, in this study, we not only produce
an assimilation analysis with small uncertainties to initialize the 4D-Var inversion but
also account for those state uncertainties for the duration of the inversion. Our PvKF
assimilation scheme provides this information. It is a lightweight assimilation system that
allows for the propagation of errors using an advection scheme while remaining capable of
taking the model error approximation into account. These state estimation properties allow
us to examine their effect on the source estimation when it is linked to an inversion system.

It is also commonly assumed in methane inversion studies that errors in observation
space are not correlated (or correlations are insignificant), and thus independent measure-
ment errors dominate the total error weight, resulting in a diagonal observation error
covariance. This assumption is indirectly attributed to the perfect model assumption made
in many methane inversion studies. However, in our proposed assimilation–inversion sys-
tem, the effect of the model forecast errors in the observation space leads to a non-diagonal
error covariance matrix. This covariance matrix aims to provide proper correlations when
the state of the system is not considered perfect, which is the case in reality. Accordingly,
besides the impact of the initial analysis field provided by our PvKF assimilation, we
examine the influence of forecast error covariance (model-propagated initial error and
modelling error) on the inversion results.

We demonstrate observing system simulation experiments (OSSEs) to achieve our
goals using the hemispheric CMAQ model and simulated GOSAT methane observations.
Our source estimation system considers a monthly mean correction on methane emissions
at the grid level across the domain. We construct modified inversion cost functions to
account for those state characteristics, including (i) the effect of the optimal initial analysis
field, (ii) the forecast of analysis error covariance, and (iii) the approximated modelling
error, in reproducing true emissions. In addition, different perturbations of prior methane
emissions, including (i) uniform perturbations of all sectors together, (ii) individual sectoral
perturbations, and (iii) non-uniform perturbations, are generated to address the limitation
of a typical 4D-Var inversion that relies on perfect state assumptions and a diagonal
observation error covariance.

Our base case OSSE with uniform perturbation of total methane emissions indicates
that not only the initial analysis concentrations but their model-propagated uncertainties
have a substantial impact on recovering the true emissions. Comparing the proposed modi-
fied inversion cost function, which is fully linked to the assimilation of state and uncertainty
(Type 0), with the regular cost function that only relies on the (biased) model forecast with
the perfect assumption (Type 1) shows a considerable improvement in posterior emissions
statistics. As a result, NMB and NME indicate 37% and 51% reduction while the correla-
tion R increases from 0.88 to 0.98. In addition, using a biased initial state (model forecast
with perfect model assumption instead of assimilation analysis) results in a significant
overestimation of posterior emissions in many regions with large sources. Accounting for
the initial analysis field instead of forecast concentrations improves inversion results but
still remains inaccurate, particularly over the large local sources. However, including the
model-propagation analysis uncertainty can significantly improve emissions constraints
over those areas. This is mainly due to the structures of the error correlations that exist in
the model forecast but are usually ignored by making perfect model assumptions in 4D-Var
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inversion. We also found that by accounting for the estimated model error Q, in addition
to the analysis field and model propagation of uncertainties, slight overall improvements
are obtained for the posterior emissions. This impact is more effective in areas where
the density of observations is smaller, suggesting that added model error Q makes those
observations more impactful in recovering the true emissions.

Our results using individual sectoral perturbation also emphasize the importance
of considering both the analysis field and model propagation of errors for each sectoral
inversion experiment. Nevertheless, the analysis field reflects a more tangible impact on
improving local (or point) sources, such as those in the energy sector, while the influence
of the model error propagation is more substantial on area sources, such as those in the
agriculture sector. In addition, when the initial state is biased or when the model is
assumed to be perfect, inversion with only one sector perturbation can negatively impact
the posterior emissions of other sectors, which were initially unperturbed. This effect is also
resolved when we use the initial analysis together with model-propagated uncertainties
(Type 0). Finally, variable perturbations of different sectors together (a more realistic case)
are examined in our OSSE experiments. The results overall go along with our previous
finding with uniform perturbations, indicating 20% and 32% decreases in NMB and NME,
respectively, and an increase from 0.90 to 0.99 in R.

The computational timing of using different inversion cost functions is also examined.
Using a modified form of 4D-Var inversion, as proposed in this study (Type 0), suggests
a significant reduction (of more than 60%) in the computational cost of inversion. This
reduction occurs mainly when the optimal analysis initial field from PvKF assimilation,
instead of the biased model forecast, is used. On the other hand, the propagation of
analysis errors (and transport errors) in our OSSE experiment (Type 3 and Type 0) shows a
negligible improvement in the computational time of inversion (10–20% reduction). An
implication for the computational benefit of the 4D-Var inversion with optimal analysis is
that the initial state is the closest to the truth, so that inversion requires fewer iterations to
converge. In other words, the optimal analysis field avoids the additional iterations that
4D-Var inversion might use to compensate for the bias in the model forecast initial. Those
additional iterations may appear in the case of not providing the optimal analysis field,
even though a more realistic error covariance is taken into account in the cost function.

One main limitation of this modified 4D-Var source estimation, despite its practical
application as well as high computational efficiency, exists in the simplified assumptions
for simulating and evolving errors. In fact, using an advection-only scheme for propagating
errors over a month-long inversion window may cause a loss of variance, which eventually
can impact our ability to constrain emissions with our inversion system. Although we
can partially compensate for that loss by using an extra modelling error in a simple form
(see Section 4.2), a more precise solution for an extended period of inversion is to account
for that loss by propagating the correlations using a diffusion scheme together with the
advection of variance. This, however, entails extra computational costs.

Another limitation of the current approach that can be resolved in the future is associ-
ated with the simple form of model error, Q. We assumed a fairly primitive form of the
model error, which is spatially proportional to the methane variance field; however, this
leads to inadequate correction for the energy and waste sector, contrary to the agriculture
and wetlands. Thus, the structure of the model error can be designed to be more sophisti-
cated in the future to address emissions inversions of large and local sources, such as those
in the energy and waste sectors.

Finally, the proposed source estimation framework provides a practical application for
real observations of different types to address the limitations of similar inverse modelling
and to improve the current inventories. However, the current method is yet capable of
estimating the error statistics of the emissions. To efficiently provide that information
using the current source estimation approach, we need to develop a coupled source–state
estimation system with joint assimilation–inversion capabilities in the future. This allows
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one to propagate the emissions error besides the state error and estimate their uncertainties
as part of the solution.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/atmos14040758/s1, Figure S1: Given the cost function of Equation
(7) in the main manuscript, the prior and observation term of the cost function has the form Jb =
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respectively. (a) Show a traditional method of estimating γ that minimizes the sum of a normalized
cost function [67]. J0 is the magnitude of the total cost function (J = γJb + Jo) once γ = 0, indicating an
optimization without prior constraint; and J1e6 is the magnitude of the total cost function at γ = 106,
showing an optimization with a dominant prior constraint. In this method, we aim at a γ among a
few selected values that minimize the total normalized error. It shows that γ = 900 is the appropriate
choice, although, for a wider range of this parameter (e.g., 500–2000), the choice of γ has little impact
on the overall optimization (inversion) solution. (b) The L-curve method for the determination of the
regularization parameter shows a comparison between the prior term of the cost function (Jb) in the y-
axis and the observation term of the cost function (Jo) in the x-axis for different choices of γ. According
to the method of Hansen (1999) [70], γ = 900 is an optimal (balanced) choice for the regularization
parameter. In principle, the optimal γ is obtained when the solution tends to change in nature
from being dominated by the prior cost (or perturbation error, where a small variation of γ causes
rapid changes in Jb) to being dominated by the observation cost (or regularization/smoothing error
where a large variation of γ makes a slow improvement in Jb); Figure S2: (a–e) statistical comparison
of the prior and posterior emissions against true emissions in scatter plots for the only perturbed
agriculture sector, (f–j) only perturbed energy sector, (k–o) only perturbed waste sector, and (p–t)
only perturbed wetland sector. The prior emissions are generated using 50% uniform perturbation of
each sector individually; Figure S3: (a) the prior–true emissions (±25–50% variable perturbation);
(b) posterior–true emissions in Type 0 inversion using analysis initial (ca

1) and both observation R and

model-propagated analysis error covariance HoP f
t (A1, Q)Ho T ; (c) posterior–true emissions in Type 1

inversion using forecast initial (c f
1 ) and observation error covariance R, (d) posterior–true emissions

in Type 2 inversion using analysis initial (ca
1) and observation error covariance R; € posterior–true

emissions in Type 3 inversion using analysis initial (ca
1) and both observation R and model-propagated

analysis error covariance HoP f
t (A1)Ho T , but with no model error. Statistical comparison of the (f) the

prior emissions and (g–j) posterior emissions of Type 0–3 inversion, respectively. x-axis and y-axis
represent the true and the prior/posterior emissions, respectively. In (f–j),P f (A1, Q) is shown as P,
and P f (A1) is shown as P∗. Synthetic observations are generated using the nature run initialized by
the analysis, and a 2-week spin-up is used for the initialization; Figure S4: Comparison between the
computational cost of two inversions in which only model error is different in the cost function. Q∗

is the updated form of model error (Q∗ = Q + Qdi f f usion). Q is the estimated model error during
the PvKF assimilation (or QPvKF) and Qdi f f usion is approximated model error due to neglecting
propagation of error correlations by diffusion; Figure S5: Normalized difference of concentrations
between two cases where in the first one, the model diffusion scheme is deactivated, and in the
second one, it is activated. It shows the distribution at the model’s first layer after one month of
simulation. Except for this difference, all other inputs and configurations between the two cases are
the same.
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Appendix A. Numerical Aspects of Matrix Inversion

We use GOSAT methane observations for a period of a month, which contains
11,489 observations after all quality control and bias removal. It is typically assumed
in methane inversion studies that the observation errors of this type are uncorrelated (or
with insignificant correlations) both in space and time, resulting in a diagonal observation
error covariance (R) [19,25,30,40,42]. Contrary to the observation error covariance, the
forecast error covariance in observation space (HoP f Ho T) is not diagonal (Equation (7)).
From a physical point of view, since the forecast error is propagated in time and space, its
error covariance mapped into a one-month-long observation space is no longer a diagonal
matrix (in observation space). To make this clearer, the elements of the 11,489 × 11,489
covariance matrix (i.e., HoP f Ho T + R) are, in fact, ordered by observation ID numbers
(not by time and not with space). Therefore, the forecast error correlates with different ID
numbers (or observation space), resulting in a covariance matrix, HoP f Ho T + R, that is not
a diagonal matrix for a month-long data window. In contrast, if we would only account
for observation errors that are spatially and temporally uncorrelated, it would lead to a
diagonal matrix in the observation space.

Since the number of observations is significant, as is the case here, inverting the
covariance matrix, HoP f Ho T + R, becomes problematic. For regular matrices of that size
(i.e., non-diagonal, non-sparse), the matrix inversion is not only computationally expensive
but could lead to numerical issues [84].

In data assimilation, a traditional approach known as the data selection procedure [72,85,86]
is used to avoid inverting large covariance matrices in observation space, HoP f Ho T + R.
The data selection procedure involves partitioning the entire set of observations into smaller
sets, known as batches of observations, that are mutually uncorrelated (also referred to as
observation packets by Rodgers, 2000 [87]). In this case, the sizeable non-diagonal observa-
tion error covariance matrix transforms into a block diagonal matrix (with a reasonable
block dimension), where each block represents the corresponding batch of observations
(Figure A1).

In data selection, in general, we divide the model domain into N regions and perform
the analysis for each region. By limiting the number of observations (p) that influence
analysis in a given region (e.g., p < 1000), the size of the error covariance matrix to invert
will be reduced (i.e., p × p) and thus be manageable. The influence of observations on a
region is determined by the correlation length scale. For example, any observation that is
farther than five times the correlation length will not contribute to the analysis equation
of the corresponding region. Thus, the number of regions to consider depends on the
correlation length scale and the maximum number of observations that we can process
in matrix inversion. This procedure is typical for optimal interpolation (OI) [72]. Note
that some variants of this scheme (not discussed here) are also designed for the ensemble
Kalman filter [85,88].

http://cci.esa.int/ghg
https://edgar.jrc.ec.europa.eu/dataset_ghg60
https://edgar.jrc.ec.europa.eu/dataset_ghg60
https://github.com/Sinavo/PvKF_crv_methane.git
https://github.com/usepa/cmaq_adjoint
https://edgar.jrc.ec.europa.eu/index.php/dataset_ghg60
https://edgar.jrc.ec.europa.eu/index.php/dataset_ghg60
http://www.computecanada.ca
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Figure A1. (a) One-month non-diagonal error covariance, HoP f Ho T + R, is applied to the data
selection procedure with (b) 3 days batch of observations to form (c) a block diagonal matrix of the
same size. (d) Non-diagonal covariance matrix in one day.

In the case of GOSAT satellite observations, each observation in space is considered
with its own time (i.e., satellite retrieval time). Thus, it is more appropriate to partition the
GOSAT observations according to their retrieval times, meaning that the error correlations
between two observations depend not only on their geographical distance but also on their
time difference. In this study, we simply assume that there are no correlations after three
days between two locations of observations. As shown in Figure A1, we conduct a data
selection procedure by considering a 3-day batch of GOSAT observations equivalent to
the satellite revisit time. In this case, the number of observations within a batch remains
as low as about 1000. Note that for a larger number of observations (p & 1500 herein),
the condition number of the covariance matrix increases rapidly, resulting in a non-full
rank matrix.

Figure A1a displays the full error covariance matrix for a period of a month (and of a
size ~11,000 × ~11,000). Ignoring the small covariances between the 3-day batches results
in a block diagonal matrix (Figure A1c). Each block is represented in Figure A1b, where
we perform matrix inversion using the Cholesky decomposition [89] to solve a system of
linear equations of the same size as in that block. In Figure A1d, the covariance elements
are shown within a day and are normalized relative to the values in the main diagonal.
The correlation structures (off-diagonal elements) in this figure retain values that are as
substantial as the main diagonal. Figure A1b indicates that the sub-diagonal elements (i.e.,
non-zero values that run parallel to the main diagonal) are from observations that occur
one day (for the closest sub-diagonal line) or two days (for the second sub-diagonal line)
later, but at slightly different locations. It implies that observations in a subsequent day are
being translated into space according to the 3-day revisit cycle of GOSAT, but because of
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accounting for correlations using HoP f Ho T , they appear as non-zero correlations, although
R remains diagonal.

Appendix B. Approximation of Modelling Error Due to Violation of Diffusion

We perform a series of model forecast simulation experiments to determine how the
forecast error variance remains conserved after a month of integration. We approximate
the evolution of error variance as proportional to model forecast concentrations while
considering the model with an active or deactivated diffusion scheme. Our results indicate
that a maximum of 12% violation of the innovation covariance consistency occurs after one
month if we do not account for the model error covariance Q (Figure A2a). Figure S5 also
shows the map of methane concentrations of that difference in the first layer of the model
after one month. We consider this effect (unaccounted diffusion of error variance) on the
forecast error covariance as the modelling error due to the diffusion (Qdi f f usion). Thus, it
is recommended to include Qdi f f usion for the extended period of error propagation (e.g.,
∆T ≥ one month) using the PvKF advection-only scheme. We also found an approximately
linear behaviour of this effect on the total model error, as shown in Figure A2a. To compare
Qdi f f usion with the model error covariance that is already estimated (QPvKF), we perform
the same procedure to retain its impact on domain concentrations over the same month of
integration. Our results indicate that the effect of QPvKF is nearly two times larger than the
effect of Qdi f f usion at the end of a month-long simulation.

To test the effect of Qdi f f usion on emissions inversion results, we assume a simple
form of that error (Figure A2b) as explained above (proportional to the field with linear
growth over time). We repeat our OSSE experiment in Section 3.3 with the same inputs
and configuration, except that the model error covariance Q is replaced with Q∗ in Type
0 inversion (see Table 2). Besides the estimated model errors (QPvKF), Q∗ includes model
error covariance due to the violation of diffusion (Qdi f f usion); thus, Q∗ = QPvKF +Qdi f f usion.
Figure A2b,c compares the spatial distribution of posterior–true emissions for two inversion
cases: (i) with Q = QPvKF and (ii) with Q∗. The result shows a similar spatial distribution
of posterior emissions with minor changes in magnitude over some large emissions areas.
It implies that the additional part of the model error covariance due to diffusion (Qdi f f usion)
has a rather small impact on recovering true emissions, although it was shown in Section 3.3
that removing the entire model error covariance can exert a substantial impact on the
inversion results.
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