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Abstract: This study presents a comprehensive analysis of extreme events, especially drought and
wet events, spanning over the past years, evaluating their trends over time. An investigation of future
projections under various scenarios such as SSP-126, SS-245, and SSP-585 for the near (2023–2048), mid
(2049–2074), and far future (2075–2100) using the bias-corrected Coupled Model Intercomparisons
Project 6 (CMIP6) multi-model ensemble method was also performed. The Standard Precipitation
Index (SPI), a simple yet incredibly sensitive tool for measuring changes in drought, is utilized in
this study, providing a valuable assessment of drought conditions across multiple timescales. The
historical analysis shows that there is a significant increase in drought frequency in subdivisions
such as East MP, Chhattisgarh, East UP, East Rajasthan, Tamil Nadu, and Rayalaseema over the
past decades. Our findings from a meticulous examination of historical rainfall trends spanning
from 1951 to 2022 show a noticeable decline in rainfall across various regions such as Uttar Pradesh,
Chhattisgarh, Marathwada, and north-eastern states, with a concurrent increase in rainfall over areas
such as Gujarat, adjoining regions of West MP and East Rajasthan, and South Interior Karnataka. The
future projection portrays an unpredictable pattern of extreme events, including droughts and wet
events, with indications that wet frequency is set to increase under extreme SSP scenarios, particularly
over time, while highlighting the susceptibility of the northwest and south peninsula regions to a
higher incidence of drought events in the near future. Analyzing the causes of the increase in drought
frequency is crucial to mitigate its worst impacts, and recent experiences of drought consequences
can help in effective planning and decision-making, requiring appropriate mitigation strategies in the
vulnerable subdivisions.

Keywords: standard precipitation index; JJAS; Indian summer monsoon (ISM); CMIP6; GCM; SSP
scenarios

1. Introduction

India is a predominantly agricultural economy; hence, farm growth and production
contributes to a large proportion (13.7%) of the country’s GDP [1]. Rainfall during the
Indian Summer Monsoon (ISM) from June to September is paramount for supplying water
for agriculture and other living needs. ISM rainfall varies significantly in the spatiotemporal
domain, resulting in severe occurrences of extreme events such as drought and flooding.
As we know, drought has more sensitive and severe influences across a vast region and
time frame compared to extreme flood events. Thus, drought is an intricate recurrent
phenomenon [2,3] caused by a lack of precipitation or a change in the distribution of
precipitation over time, which often results in the water availability. It is a slowly evolving
phenomena [4,5] that impacts a large population’s availability of food and water, propagates
across the whole hydrological cycle, and causes long-term economic losses. In many
districts (>80%) of the country, the frequency of moderate droughts, severe droughts,
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and extremely severe droughts have been recorded to be greater than 9%, 6%, and 3%,
respectively [6].

It is important to point out that the uncertainty of drought occurrence, its frequency,
and its severity have increased in recent decades [6–11]. It is expected to increase in the
future under various climate change impacts [12,13], while there is a slight change in
seasonal or annual rainfall but a significant change in wet and dry days [14–16].

Since shortfall in precipitation is the primary cause of drought, there are a number of in-
dicators that have been developed to quantify the severity of the drought which are helpful
in assessing the conditions of the drought in the region. Kchouk et al. (2021) [17] discussed
about 32 well-established drought indicators that are linked to three types of droughts:
meteorological drought (9 indices), soil moisture/agricultural drought (15 indices), and
hydrological drought (8 indices). The most often used drought indicators among them
are meteorological, followed by agricultural or soil moisture, and hydrological droughts.
The Standard Precipitation Index (SPI) is the most often used indicator, followed by the
Normalized Difference Vegetation Index (NDVI). Based on the SPI rainfall indicator, there
were 23 deficient monsoon years (all India SPI ≤ −1.0) during the period 1901–2010. Three
years, 1972, 2002, and 1987, were severe drought years with drought areas of 63.4%, 42.6%,
and 40.6%, respectively [6], and among them, year 1987 was one of the worst severe drought
years in the past 110-year history (1901–2010). The trend study of drought intensity and
the affected area in two periods, 1901–1955 and 1956–2010, indicates that during the first
period, the intensity and area were decreasing with time; however in the later period, the
severity and area increased [6,18].

Currently, Global Circulation Models (GCMs) are used to investigate the potential
effects of climate change under various scenarios of future projections on the Indian
Summer Monsoon. Coupled Model Intercomparison Project 6 (CMIP6) epitomizes the
most recent advancement in GCM developments [19,20]. Some studies indicate that the
CMIP6 model’s seasonal mean rainfall is quite improved by 40% as compared to the
previous version, CMIP5, over the Indian Summer Monsoon (ISM) and demonstrates a
better spatial correlation with observations [21–24]. RCM’s upgraded version (CMIP6)
has better emissions, model parametrization, physical processes, land use, and land cover
under different shared socioeconomic pathways (SSPs) [25,26]. Numerous studies have
been carried out on drought events projections and its future impacts on population, crop
yields, and others using the outputs of CMIP6 [27–35]. Most studies have mainly focused
on larger regions, such as the country level or India’s homogeneous region level, with less
emphasis on the more granular levels, such as districts or meteorological subdivisions.
However, these more detailed levels are crucial for improving drought assessments and
developing effective mitigation plans.

In the present study, the historical drought pattern and the likelihood of future drought
risk have been investigated at the Indian meteorological subdivision level. With the aim
of contributing to the understanding of future drought patterns over the Indian region,
this work utilized bias-corrected precipitation from the CMIP6 model and computed a
bias-corrected ensemble GCM SPI index to determine the future changes of the drought
index under the various climate scenarios during the near future (2023–2048), mid future
(2049–2074), and far future (2075–2100). The paper is organized as follows: Section 2
describes the datasets and methods followed by Section 3 which consists of the results. The
summary and conclusions are given in Section 4.

2. Materials and Methods
2.1. Study Area

The primary focus of this study is on the Indian subcontinent, spanning from latitude
7.5◦ to 37.5◦ N and longitude 67.5◦ to 97.5◦ E. India’s climate is exceptionally diverse
owing to its extensive geographical size and varied topography. The Indian climate can be
broadly classified into four seasons: winter (December to February), pre-monsoon (March
to May), monsoon (June to September), and post-monsoon (October to November) [6]. The
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southwest monsoon season is particularly important for agriculture and water resources in
India, as some regions receive up to 75% of their annual rainfall during this time and it is a
key factor in determining the country’s overall annual rainfall.

The Indian climate can be classified region-wise into tropical, subtropical, and arid/
semi-arid regions [6]. The tropical regions are mainly located in the southern and eastern
parts of the country and experience high temperatures throughout the year. These areas
receive heavy rainfall during the monsoon season, making them more susceptible to
flooding. Subtropical regions, located in the northern and central parts of the country,
experience seasonal temperature variations with hot summers and cold winters. These
regions also receive rainfall mainly during the monsoon season, but in lower amounts
than the tropical regions. As a result, these regions are prone to both droughts and floods.
Arid or semi-arid regions are primarily located in the northwest and western parts of the
country and receive low and erratic rainfall throughout the year. These areas are highly
susceptible to drought and water scarcity. India is divided into 4 homogeneous regions
and further divided into 36 meteorological subdivisions based on its rainfall pattern, as
shown in Figure 1.
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Figure 1. Map showing the study area and elevation information (in meters). Homogenous and Met
subdivisions are Northwest India (Jammu and Kashmir (1), Himachal Pradesh (2), Uttarakhand (3),
Punjab (4), Haryana (5), East Rajasthan (6), West Rajasthan (7), West UP (8), East UP (9)), Central
India (East MP (10), West MP (11), Gujarat Region (12), Sourastra (13), Madhya Maharashtra (14),
Marathwada (15), Vidarbha (16), Conkan and Goa (17), Chhattisgarh (18), Odisha (19)), East and
Northeast India (Bihar (20), Jharkhand (21), Gangetic WB (22), SHWB (23), NMMT (24), Assam
and Meghalaya (25), Arunachal Pradesh (26)), South Peninsula (Coastal AP (27), Telangana (28),
Rayalaseema (29), Tamil Nadu (30), Coastal Karnataka (31), N.I. Karnataka (32), S.I. Karnataka (33),
Kerala (34)).
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2.2. Observation Datasets

Observed reliable and high spatial rainfall data are crucial for the accurate assessment
of drought. In this study, we used a daily gridded rainfall dataset from the National
Climate Centre (NCC) of the India Meteorological Department (IMD) for the period of
1951–2022 (https://www.imdpune.gov.in/lrfindex.php (accessed on 15 October 2022)) over
the Indian region, which is available at a daily frequency with 0.25◦ × 0.25◦ (~625 km2)
spatial resolution [36]. This gridded dataset is prepared from more than 6955 rain gauge
stations. According to Pai et al. (2014) [36], the accuracy of IMD gridded data is close
to the observations in heavy rainfall areas such as the west coast and over the northeast,
and decreased rainfall in the leeward side of the Western Ghats (orography of the Indian
subcontinent is shown in Figure 1). Researchers [36,37] have evaluated and found it
more appropriate with reference to the previous resolutions of IMD gridded data and
APHRODITE [38,39].

2.3. Model Datasets

Coupled Model Intercomparison (CMIP6) model data are utilized in this study for the
future drought assessment and projections on various Shared Socioeconomic Pathways
(SSPs). The Coupled Model Intercomparison (CMIP) project is currently in its sixth phase
(CMIP6) [19,20,25] and it consists of a collection of climate model output data from various
research agencies in different countries that participated in the project. These climate
models simulate the Earth’s climate system under different scenarios of greenhouse gas
emissions and other drivers considering changes in land use, land cover, and atmosphere
composition. The current CMIP6 version focuses on shared Socioeconomic Pathways
(SSP1-2.6, SSP2-4.5, SSP4-6.0, and SSP5-8.5), whereas previous versions focused on future
greenhouse gas emissions and included four representative concentration pathways: RCP
2.6, RCP 4.5, RCP 6.0, and RCP 8.5. For this study on the Indian climate and future
drought projections, the most recent version (CMIP6) of the monthly precipitation data was
downloaded from the Earth System Grid Federation ESGF (https://esgf-node.llnl.gov/
search/cmip6/ (accessed on 1 September 2022)). We obtained model data for historical
and shared socioeconomic pathways (SSP1-2.6 [sustainable development pathway scenario
with a goal of holding increase in global temperature below 2 ◦C], SSP2-2.45 [middle-
of-the-road pathway scenario with medium challenge in mitigation and adaption], and
SSP5-5.85 [high emissions scenario with high challenge to mitigation and low challenge to
adaption]) [20], in which historical data are used to estimate the value of the bias correction
factor, and the same is applied on the future SSPs projections to remove the model bias. A
list of the CMIP6 models, their institute, countries, variant, and horizontal resolution are
shown in Table 1. The mean spatial rainfall patterns of each model differ, requiring bias
correction with observation datasets. This is crucial in order to conduct further analysis and
make reliable projections of future precipitation trends. (Figure S1). Although the CMIP6
historical runs cover the period of 1850–2014, we concentrated on historical simulations
from 1951 to 2014.

Table 1. List of CMIP6 models, resolution, variant, and country information.

S. No. CMIP6 Model Name Horizontal Resolution
(Long × Lat in Degrees) Variant Label Country of the Modeling Group

1 CESM2-WACCM 1.25 × 0.9375 r1i1p1f1 National Center for Atmospheric Research, USA

2 EC-Earth3 0.703125 × 0.703125 r1i1p1f1 EC-Earth-Consortium, Europe

3 EC-Earth3-Veg 0.703125 × 0.703125 r1i1p1f1 EC-Earth-Consortium, Europe

4 KACE-1-0-G 1.875 × 1.25 r1i1p1f1
National Institute of Meteorological Sciences (NIMS),
National Institute of Meteorological Sciences (NIMS),
Korea

5 KIOST-ESM 1.875 × 1.875 r1i1p1f1 Korea Institute of Ocean Science and Technology, Korea

https://www.imdpune.gov.in/lrfindex.php
https://esgf-node.llnl.gov/search/cmip6/
https://esgf-node.llnl.gov/search/cmip6/
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Table 1. Cont.

S. No. CMIP6 Model Name Horizontal Resolution
(Long × Lat in Degrees) Variant Label Country of the Modeling Group

6 MIROC6 1.40625 × 11.4516 r1i1p1f1 Japan Agency for Marine-Earth Science and
Technology, Japan

7 MPI-ESM1-2-HR 0.9375 × 0.9375 r1i1p1f1 Max Planck Institute for Meteorology, Germany

8 NorESM2-LM 2.5 × 1.875 r1i1p1f1 Norwegian Meteorological Institute, Norway

2.4. Methodology
2.4.1. Downscaling and Empirical Quantile Mapping (EQM) Bias Correction

The morphology of the CMIP6 model used in our study has been tabulated in Table 1
of different resolutions. To facilitate bias correction, intercomparison, and model selection,
all models were interpolated (using bilinear grid interpolation) to an IMD observation
data grid (0.25◦ × 0.25◦). Statistical techniques are a vital tool in research applications
for reducing systematic bias in the climate model simulations. It indicates that Empirical
Quantile Mapping (EQM) is an effective approach for bias correction in climate model
simulations [31]. It maps simulated and observed data in cumulative distribution functions
(CDFs) that are empirically constructed based on historical data [40–42]. The adjustment on
simulated data is performed by applying a linear mapping function between the observed
and simulated quantiles. Therefore, prior to further analysis, EQM bias correction is applied
to the historic simulation (1951–2014) and all three projected climate model scenarios
SSP1-2.6 (2015–2100), SSP2-4.5 (2015–2100), and SSP5-8.5 (2015–2100). Python library Xclim
(https://xclim.readthedocs.io/en/stable/sdba.html (accessed on 15 September 2022)) is
used for the EQM bias correction [43]. The EQM bias correction factor was estimated for
each grid and month and applied subsequently. EQM bias correction has been chosen as it
is efficient and simple (Figures 2 and S2). Figure 2c,d indicate that the spatial correlation
between the historical MME mean and IMD observed gridded product is greater than
0.3 in most regions, except for a few subdivisions such as Jammu and Kashmir, Madhya
Maharashtra, N.I. Karnataka, and S.I. Karnataka. Furthermore, the root mean square error
(RMSE) is less than 5 mm/day in most areas. The statistics suggest that the ensemble
product shows strong agreement and less error with the observed data, which implies that
there may be fewer uncertainties in future projections. The EQM method performance
was found satisfactory and its detailed description and usage on different meteorological
variables can be obtained in the recent literature (e.g., [31,42–44]).

2.4.2. Standard Precipitation Index (SPI)—Drought Index

The Standard Precipitation Index (SPI) is an important drought indicator for analyzing
the likelihood of rainfall occurrence in a given region over a given time period [45]. It is
highly sensitive to drought change and is useful in all drought assessments at various time
scales. The SPI calculation for any location is based on a long-term precipitation record
for a specified period of time. This long-term precipitation record is fitted to a probability
distribution function (gamma or a Pearson Type III distribution), which is then converted
into a normal distribution with the goal of achieving a mean SPI of zero for the location
and desired period [46].

Pl
n =

l−1

∑
i=0

(Pn−i), n ≥ 1 (1)

where l is the aggregation timescale in months and n is the calculation number which must
be l ≤ n.

The Probability Distribution Function (PDF) of the gamma distribution for monthly
precipitation (P) can be computed as follows:

f (P) =
1

βαΓ(α)
Pα−1e

−P
β , α, β > 0 (2)

https://xclim.readthedocs.io/en/stable/sdba.html
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where Γ(α) is a gamma function and α and β are the shape and scale parameters, respec-
tively. The probability distribution function (PDF) is calculated for each grid separately by
considering independent datasets.
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The SPI is dimensionless. Positive SPI values indicate that there is more precipitation
than the median, while negative values indicate that there is less precipitation than the me-
dian. The SPI is normalized; therefore, we can assess both drier and wetter climates with the
same index. The SPI is classified in the seven classes (Table 2) from extremely wet to extremely
drought categories. The SPI is defined over the different timescales (1 month, 3 months,
6 months, up to 48 months) to address the different drought categories (meteorological
drought, agricultural drought, hydrological drought, and socioeconomic drought).

Table 2. Standard Precipitation Index (SPI) categories.

SPI Range SPI Category

<−2.0 Extreme Drought
−1.99 to −1.5 Severe Drought
−1.49 to −1.0 Moderate Drought
−0.99 to 0.99 Normal
1 to 1.49 Moderate Wet
1.5 to 1.99 Very Wet
>2.0 Extremely Wet

In the recent investigation, a 12-month SPI is estimated to address the agriculture
drought and hydrological drought. The climate indices python library (https://climate-
indices.readthedocs.io/en/latest/ (accessed on 20 October 2022)) is used for the estimation
of monthly SPI (gamma distribution) [45,47] for the historical period (1981–2014) as well
as future SSPs scenarios (2015–2100). Following that, we applied mean zonal statistics to
extract the meteorological subdivision level SPI data from gridded SPI data.

2.4.3. CMIP6 Bias Corrected Model Selection and Ensemble Product

Rajesh et al. (2022) [48] recommended eight best bias-corrected CMIP6 models based
on a high correlation, similar spatial pattern, and close seasonal mean between the bias
corrected models and IMD gridded observed datasets. The ensemble mean precipitation
product has been prepared using the selected models. The drought index (SPI) has been
estimated using the ensemble rainfall product of the SSPs scenarios.

The methodology used in this study is summarized in the flowchart (Figure 3). The
CMIP6 data collected required pre-processing since each model’s data were on a different
grid (Table 1). To ensure consistency, all models were interpolated to the same spatial scale
as the IMD gridded observed data. The EQM bias correction method was utilized to remove
any biases in the CMIP6 model data, and the same correction factor was then applied to the
SSP future scenarios of the CMIP6 data. To analyze decadal changes in the drought index
over time, the IMD observed data were used to compute the drought index (SPI) for various
time periods (1951–1980, 1961–1990, 1971–2000, 1981–2010, and 1991–2020). Additionally,
the SPI was computed for the ensemble product of selected models of the CMIP6 historical
data and all SSP future scenarios periods, including the near future (2023–2048), mid future
(2049–2074), and far future (2075–2100).

https://climate-indices.readthedocs.io/en/latest/
https://climate-indices.readthedocs.io/en/latest/
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3. Results
3.1. Spatial–Temporal Variability of Observed Rainfall Climatology over Indian Sub-Continent

The spatial distribution of the mean (June to September) rainfall of the past 72 years
(1951–2022) is shown in Figure 4. Evidently, as documented by several previous stud-
ies [36,49], the regional pattern of the monsoon season rainfall climatology is quite congru-
ent with the rainfall data. A large variability has been observed in the spatial distribution
of the monsoon rainfall (June to September) throughout the country. The met subdivisions
of core monsoon regions, i.e., East and West Madhya Pradesh, Chhattisgarh, Odisha, and
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Vidarbha, Northeast India subdivisions, and Western Ghat subdivisions i.e., Konkan and
Goa, Coastal Karnataka, and Kerala, experience substantial monsoon rains with a rainfall
of 8 mm/day or more during June to September. The Western Ghat and northeastern
regions experience considerable rainfall because of their hilly topography, which condenses
moisture-laden wind flow and causes precipitation there. As we move towards the north-
west direction from the monsoon core region, the rainfall amount is decreased. The low
and vulnerable rainfall zones are West and East Rajasthan, Rayalaseema, N. I. Karnataka,
S. I. Karnataka, Tamil Nadu, and Jammu and Kashmir with a rainfall less than 4–5 mm/day
during the monsoon season [6,50,51].
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The IMD mean rainfall linear trend (JJAS) 1951–2022 (Figure 5) clearly shows that there
is a significant decrease in monsoon rains over the monsoon core regions, specifically the
met subdivisions East and West Uttar Pradesh, East Madhya Pradesh, Chhattisgarh, and
Jharkhand. Saha et al.’s (2022) [44] study is also congruent with our findings on a decreasing
trend of monsoon low pressure system frequency as well as a decrease in monsoon rainfall
over the main monsoon core regions [52,53].
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Other regions, i.e., most of the area of the northeastern states, Haryana, Marathwada,
and the adjoining areas of North Interior Karnataka and Telangana, are experiencing a
decrease in their rainfall trends in the last 72 years. Some regions are also experiencing
an increase in rainfall trends such as Saurashtra and Kutch, the adjoining area of East
Rajasthan and West Madhya Pradesh, the northern region of Uttarakhand, the western part
of Assam and Meghalaya, the western region of Madhya Maharashtra, the adjoining area
of South Chhattisgarh and Odisha, and South Interior Karnataka.

3.2. Inter Annual Variability of Monsoon Rainfall

The monsoon season is characterized by the onset, advancement, and withdrawal of
monsoons during the season. Many sectors, i.e., agriculture, energy, environmental, etc.,
are affected or influenced by the interannual variability of extreme events. Therefore, a
more detailed assessment of interannual variability and its causes is warranted, which also
may help in planning to ameliorate the worst repercussions of extreme events. Interannual
oscillations in the annual monsoon cycle cause unusually wet and dry years. Many studies
have shown a strong relationship between the Indian monsoon and several indicators.
These indicators include (1) internal dynamics such as atmospheric circulations that exhibit
interannual variability, combined effects of dynamic instabilities (synoptic scale distur-
bances), a nonlinear interaction among various scales of motion, thermal, and orographic
forcing tropical and extratropical interactions, and (2) the influence of global surface bound-
ary conditions such as soil moisture, sea ice, snow cover, and sea surface temperature
(SST), which can be assessed using various indices [6,44], i.e., El Nino Southern Oscillation
(ENSO), the Indian Ocean Dipole (IOD), the North Atlantic Oscillation (NAO), and the
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Pacific Decadal Oscillation (PDO). These indicators are the primary factors influencing the
interannual variation of the southwest monsoon [54–56]. Figure 6a,b shows the interannual
variability of southwest monsoons in rainfall departure percentage (%) and drought index
SPI. Of the last 72 years (1951–2022), 30 years show a deficient rainfall departure (Figure 6a).
A drought index SPI value below or equal to −1 indicates the deficient year. SPI boxplots
(Figure 6b) depict a sinusoidal pattern of mean SPI across time, indicating that there is a
pattern in interannual variability, with certain areas hit adversely in dry years. The extreme
drought years of 1972, 1987, and 2002 are well captured in both rainfall departure and SPI
analyses. In addition, the influence of these severe drought years has been observed in the
immediate next year such as 1972 and 1973, 1987 and 1988, and 2002 and 2003 over the
region as a variance of sample which is high.
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year in blue color), (b) drought index (12-month Standard Precipitation Index) over Indian region for
the period 1951–2021.

3.3. Decadal Variability of Dry and Wet Events

Decadal analysis is quite important to understand the changes in the dry/wet events
frequency as well the shifting of the rainfall pattern for effective mitigation planning. The
drought index at every meteorological subdivision level has been analyzed (Figure 7) and
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the major changes in the recent two decades in a few subdivisions clearly observed. Central
India is an ISM core region in which the Chhattisgarh and East MP met subdivisions’
drought index have shifted significantly to the dry side in the past decade, and the results
are in good agreement with the decreasing trend of ISM rainfall. There has been significant
change in SPI observed over both the east and west coast of central India and over Conkan
and Goa and Odisha in which the frequency of normal events are decreasing on a decadal
basis and the SPI probability density curve (PDF) is skewed towards the wet side (right
side) with a long tail (high extreme wet frequency) in recent decades. The West MP,
Gujarat, Sourastra, Marathwada, Vidarbha, and Madhya Maharashtra met subdivisions are
susceptible to both wet and dry extreme events in the recent past decades.
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The northeast region consists mainly of hilly Himalayan region as well as Gangetic
plains. The whole NE area drought index is shifting towards the dry side (Figure 7b),
making it prone to drought occurrences, similar to the decreasing rainfall trend (Figure 5).
The recent 30 years (1991–2020) SPI plot shows a large shift towards the dry side as well as
a large decrease in probability of a normal drought index.
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Northwest India has very high land variability consisting of arid, hilly, and Gangetic
plains regions in which arid regions are highly susceptible to drought extreme events, and
the recent decade drought index PDF plot clearly shows that East and West Rajasthan
is right (wet side) skewed with a long tail towards the left (dry side), indicating a high
likelihood of a normal year along with a high probability of severe drought risk. The
Punjab and Haryana met subdivisions’ PDF plot shows that normal event frequency is
decreased with a longer tail on both sides, indicating that the frequency of droughts and
floods has increased in recent decades. The drought index over hilly regions, the Jammu
and Kashmir subdivisions, is erratic and unpredictable, but reflects a decreasing trend of
normal events. The decreasing ISM rainfall trend throughout the Gangetic areas (East and
West Uttar Pradesh) has been noticed in Figure 5; however, the similar sensitivity to the dry
side has been exhibited in the drought index PDF plot (Figure 7), where the normal event
frequency is shifting towards the dry side in recent decades.

The southwest monsoon is also significant over the South Peninsula region. However,
the majority of the annual rainfall in certain southernmost regions of South Peninsula India
occurs during the northeast monsoon (October to December). This region comprises both
coastal and inland geographical areas. A significant change in the drought index has been
noticed in the inland geographical areas in recent decades. The frequency of the normal
drought index is reduced and an increase in the frequency of both dry and wet events is
observed over N.I. Karnataka, S.I. Karnataka, Rayalaseema, and Telangana (Figure 7d). In
the last decade, the Tamil Nadu met subdivision experienced extreme severe drought [57]
and severe wet events, which are clearly portrayed in the drought index PDF plot. Over the
Coastal AP and Coastal Karnataka subdivisions, a slight shift in normal event frequency
towards the wet side has been observed, but over the Kerala subdivisions, there is a major
shift in normal event frequency with a high frequency in dry events. Thus, in a nutshell, a
substantial change in normal event frequency has been seen in most subdivisions over the
last two decades, which is crucial for future risk and its mitigation assessments.

3.4. Bias-Corrected CMIP6 Projected Changes in the Frequency of Extreme Events (Dry/Wet)

As stated previously in the decadal analysis section, the uncertainty of dry and wet
occurrences is increasing year-by-year, and future scenarios of the CMIP6 models indicate
the same. CMIP6 ensemble rainfall anomalies for the future under SSP245 and SSP585
scenarios indicate that the concentration of rainfall is likely to increase in major pockets
of central Madhya Pradesh, Bihar, the western coastal region of Concan and Goa, Coastal
Karnataka, Chhattisgarh, Odisha, East Uttar Pradesh and East Rajasthan (Figure 8). The
primary focus of the future projection study is an analysis of the probability of drought
occurrence during the monsoon month (June to September). The CMIP6 model projections
help to understand the risks of future extreme drought/wet events, its potential ramifi-
cations on various sectors, and risk mitigation policies designed at the regional level to
minimize its negative impact. Future extreme events probability is analyzed using the
kernel density estimation (KDE) and separate wet/dry event frequency analysis under
different SSPs scenarios projections (SSP1-2.6, SSP2-4.5, and SSP5-8.5) for the periods of the
near (2023–2048), mid (2049–2074), and far future (2075–2100). India is divided into four
homogeneous regions based on coherent rainfall: East and Northeast, Northwest, Central,
and South Peninsula India, which are further subdivided into 36 sub-meteorological zones.
We conducted the study of climate change scenarios over the 34 major meteorological
subdivisions (excluding Andaman and Nicobar Island and Lakshadweep).
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Figure 8. CMIP6 bias-corrected MME ensemble mean rainfall anomaly with reference to historical
period (1989–2014) (a) mean rainfall anomaly SSP-126 Near future (2023–2048), (b) mean rainfall
anomaly SSP-126 mid future (2049–2074), (c) mean rainfall anomaly SSP-126 far future (2075–2100),
(d) mean rainfall anomaly SSP-245 near future (2023–2048), (e) mean rainfall anomaly SSP-245
mid future (2049–2074), (f) mean rainfall anomaly SSP-245 far future (2075–2100), (g) mean rainfall
anomaly SSP-585 near future (2023–2048), (h) mean rainfall anomaly SSP-585 mid future (2049–2074),
and (i) mean rainfall anomaly SSP-585 far future (2075–2100).

A main monsoon core region, the Central India homogeneous region’s SPI index
median is most likely to shift towards the wet side with some extreme wet events and mod-
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erate to severe dry events in the near future under SSP-126, SSP-245, and SSP585 scenarios
(Figure 9a, Figure 10a, Figure 11a, and Figure 12a). If we drill down to the subdivision level,
the frequency of occurrence of dry events (Figure 13) is likely to be moderate to severe
drought frequency in the near future under the SSP-126 climatic scenario which is also
likely to decrease in the mid and far future. Wet event frequency is comparatively high for
West MP in the near future under the SSP126 scenarios (Figure 14). The wet frequency is
likely to increase with extreme SSP scenarios in the mid and far future for all subdivisions
of Central India. The East and Northeast India homogeneous regions are also in line with
the Central India region and are likely to increase in wet event frequency in the mid and
far future. The PDF plot (Figures 10–12) shows the more erratic SPI index distribution with
the extreme SSP scenarios for the mid and far future.
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Homogeneous regions such as Northwest India and South Peninsula India are likely to
be impacted more than the Central and Northeast homogeneous region. Except Himachal
Pradesh and Jammu and Kashmir, all subdivisions of Northwest India are vulnerable
to severe drought events in the near future, especially Haryana, Punjab, West UP, and
West and East Rajasthan (Figure 13). Figures 10c, 11c and 12c show the broader base of
the probability density curve for both wet and dry, which indicate the erratic pattern of
extreme events in the near future over the subdivisions of North West India. Figure 9c
clearly illustrates that the frequency of wet events increases with the scenarios SSP-126,
SSP-245, and SSP-585, and from the near to far future, similar to Central and North East
India. South Peninsula subdivisions Coastal AP and Tamil Nadu are more susceptible to
the drought events in the near future under all SSP scenarios and are likely to shift towards
the wet extreme events in the mid and far future (Figure 14). Figures 10c, 11c and 12c show
that the frequency of wet events is two-fold from the near future to mid future under the
SSP-245 scenario.
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4. Summary and Conclusions

This paper discusses the spatial–temporal variability of observed rainfall climatology
over the Indian subcontinent. The spatial distribution of the mean (June to September)
rainfall for the past 72 years (1951–2022) is presented, indicating a large variability in
the spatial distribution of monsoon rainfall throughout the country. Some regions are
experiencing a decrease in the rainfall trend in the last 72 years, while other regions are
experiencing an increase in the rainfall trend. This paper also discusses the interannual
variability of monsoon rainfall and the relationship between the Indian monsoon and
several indicators. This paper presents the interannual variability of the southwest monsoon
in rainfall departure percentage and drought index SPI. Finally, the study analyzes the
decadal variability of dry and wet events in the past, and also examines the projected
variability of these events in the near, mid, and far future under various SSP pathways,
with the aim of facilitating effective mitigation planning.

The findings aid in comprehending the past trends and variations in the frequency
of extreme dry/wet events and their correlation with future projections for various SSP
scenarios at the met subdivision level. This comprehension enables improved assessments
of vulnerable subdivisions and the effective implementation of mechanisms to mitigate
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future risks. The increase in drought frequency could lead to various possible conse-
quences, such as water scarcity, agricultural losses, economic setbacks, health impacts, and
environmental degradation. Analyzing the causes of drought is crucial in mitigating its
worst impacts. These causes can be natural or anthropogenic factors (i.e., excessive water
demand, deforestation, irrigation, etc.), or a combination of both [58]. Recent experiences
of the consequences of drought can also help effective planning and decision-making such
as implementing water conservation and management strategies, promoting sustainable
agriculture practices, developing contingency plans for water shortages, etc. Our study
suggests that subdivisions in Northwest India and South Peninsula India are particularly
vulnerable in the future to droughts, given their existing drought-prone conditions. There-
fore, it is imperative to develop appropriate mitigation strategies to address the risks
associated with droughts in these regions.

The findings of this study can also significantly contribute to the global understanding
of climate change and its impacts on extreme events. The study’s regional understanding
of the Indian subcontinent can complement the global understanding of climate change
impacts by providing a more detailed and context-specific analysis of the impacts on a
particular region. Additionally, the study uses a novel approach that combines the analysis
of observational data and climate model projections at the meteorological subdivision level.
This approach can help to improve the accuracy and reliability of global climate models.
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