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Abstract: General circulation models (GCMs) run at regional resolution or at a continental scale.
Therefore, these results cannot be used directly for local temperatures and precipitation prediction.
Downscaling techniques are required to calibrate GCMs. Statistical downscaling models (SDSM) are
the most widely used for bias correction of GCMs. However, few studies have compared SDSM with
multi-layer perceptron artificial neural networks and in most of these studies, results indicate that
SDSM outperform other approaches. This paper investigates an alternative architecture of neural
networks, namely the long-short-term memory (LSTM), to forecast two critical climate variables,
namely temperature and precipitation, with an application to five climate gauging stations in the
Lake Chad Basin. Lake Chad is a data scarce area which has been impacted by severe drought, where
water resources have been influenced by climate change and recent agricultural expansion. SDSM
was used as the benchmark in this paper for temperature and precipitation downscaling for monthly
time–scales weather prediction, using grid resolution GCM output at a 5 degrees latitude × 5 degrees
longitude global grid. Three performance indicators were used in this study, namely the root mean
square error (RMSE), to measure the sensitivity of the model to outliers, the mean absolute percentage
error (MAPE), to estimate the overall performance of the predictions, as well as the Nash Sutcliffe
Efficiency (NSE), which is a standard measure used in the field of climate forecasting. Results on
the validation set for SDSM and test set for LSTM indicated that LSTM produced better accuracy
on average compared to SDSM. For precipitation forecasting, the average RMSE and MAPE for
LSTM were 33.21 mm and 24.82% respectively, while the average RMSE and MAPE for SDSM were
53.32 mm and 34.62% respectively. In terms of three year ahead minimum temperature forecasts,
LSTM presents an average RMSE of 4.96 degree celsius and an average MAPE of 27.16%, while SDSM
presents an average RMSE of 8.58 degree celsius and an average MAPE of 12.83%. For maximum
temperatures forecast, LSTM presents an average RMSE of 4.27 degree celsius and an average MAPE
of 11.09 percent, while SDSM presents an average RMSE of 9.93 degree celsius and an average RMSE
of 12.07%. Given the results, LSTM may be a suitable alternative approach to downscale global
climate simulation models’ output, to improve water management and long-term temperature and
precipitations forecasting at local level.

Keywords: comparison; forecasting; gridded data; Lake Chad Basin; LSTM; precipitation; SDSM;
temperature

1. Introduction

The climate system is highly complex, dynamic and multi-dimensional, with no single
steady state. Models that attempt to predict the expected state of the system are therefore
not intended to be an exact representation of the system, or able to reproduce all aspects
of the system perfectly. However, partial representations and predictions are still useful
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in understanding certain phenomena, as well as in financial and infrastructure planning
and adapting to climatic change, which has long been recognised as being crucial in society
and the environment [1]. Where we may not be able to perfectly predict the climate system,
we can attempt to improve our prediction methods for small parts of the system to better
support decision making, especially for regional or local-level analyses [2]. Considerable
efforts have been devoted to improving long-term weather forecasting. General circulation
models (GCMs) also known as global climate models are established techniques for these
types of assessments [3–5]. GCMs use the Navier–Stokes equations of thermodynamics,
to understand climate patterns, given various energy sources such as radiation and latent
heat [6,7]. GCMs produce large scale forecasts which are generally too coarse in resolution
and do not consider processes on a small scale for localized use. To make GCM output
more useful on a regional or local level, downscaling methods of GCM output have been
developed that is either dynamic and based on regional climate models [8], or statistical, or
a combination of both [9]. In this article, the focus is on statistical methods of downscaling.

Wilby [10] developed the Statistical Downscaling Model (SDSM), which has since
been widely applied to temperature and precipitations forecasting [11–13]. Statistical
downscaling is the process of using GCM atmospheric output, to estimate precipitations,
maximum temperatures as well as minimum temperatures at local level [14]. Different
techniques for statistical downscaling have since been developed and are described in
several textbooks and review publications [9,15–17]. In recent years, statistical downscaling
and bias correction have become standard tools in climate impact studies. The growing field
of machine learning has also received increasing attention in geoscientific studies [18,19].
Harphan and Wilby [20] compared SDSM to multi-layer perceptron (MLP) neural network
for precipitations forecasting, with an application to precipitation gauging stations in
England. Contrasting results were found between stations. A number of other studies
comparing both the MLP as well as the recurrent neural network (RNN) with SDSM
were recorded [21–23]. In all these cases, SDSM outperformed both MLP and RNN in
downscaling precipitation, minimum and maximum temperatures forecasting.

Long-Short-Term-Memory (LSTM) was proposed by Hochreiter and Schmidhuber [24]
in 1997 and has been shown superior in learning long-term dependencies between inputs
and outputs as compared to MLP and RNN, given its specific architecture, which consists
of a set of recurrently connected subnets, known as memory blocks [25]. Bengio [26]
shows that it is difficult for RNN to remember a sequence of more than 10 lags. Grave [25]
shows in contrast that each LSTM block contains one or more self-connected memory
cells and three multiplicative units, namely the input, output and forget gates, which
allow longer memory. However, very few cases are reported in literature where LSTM
is applied to hydrology and climate studies [27,28]. Given the superior performance of
LSTM in learning long-term dependencies compared to MLP and RNN, the aim of this
article is to compare LSTM prediction performances for long-term precipitation, minimum
and maximum temperature forecasting, against SDSM, to establish whether LSTM can
outperform SDSM, in contrast to the cases of MLP and RNN. In addition, given the limited
applications of LSTM to hydrological and climate-related studies in literature, this study
contributes to literature by establishing the relevance of LSTM within the given context,
as an alternative to the widely used SDSM. Furthermore, by using the Lake Chad Basin
as a case study, our approach specifically test SDSM and LSTM performances for climate
stations with significant differences in Mean Annual Precipitation (MAP: 510–1160 mm/yr)
and average monthly temperatures (24.5 to 41 ◦C) and investigate the drivers of these
differences. The catchment has a high spatial variability in precipitation, ranging from
150 mm/yr in the north to over 1500 mm/yr in the South [29]. Likewise, monthly average
temperature ranges from 40.8 °C in the north to 24.5 ◦C in the south [30].
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The main objective of this study is therefore to compare the performances of SDSM
and LSTM in downscaling monthly precipitation, minimum and maximum temperatures
for selected gauging stations in the Lake Chad Basin. In order to compare SDSM and
LSTM performances, the root mean square error (RMSE) as well as the mean absolute
percentage error (MAPE) and the Nash Sutcliffe Efficiency (NSE) are used as performance
indicators. The interest of using all three resides in the fact that the RMSE measures the
ability of the model to avoid large errors between the prediction and the actual values, the
MAPE provides an idea on the overall error percentage in the prediction, and the NSE is a
standard measure used in the field of climate forecasting and hydrology for comparison [31].
The presented approach provides an enhanced downscaled GCM product, as well as the
modelling framework needed to develop better local predictions of precipitation and
temperature from GCMs, considering data and computing limitations.

2. Study Area and Data
2.1. Study Area

The Lake Chad Basin is a trans-boundary basin, situated between Cameroon, Chad,
Niger and Nigeria. It is one of the largest interior basins in the world, with an estimated
catchment area of 2,500,000 km2. The lake itself supports 37 million people with water
resources which are needed for agriculture, fishing and domestic use [32]. It contains
two rivers upstream, namely the Logone and Chari, and a lake downstream called Lake
Chad. On the northern catchment, the Kumadugu-Yobe river is considered as a marginal
water contributor in the basin, with only one percent contribution, due to its divertion
in Nigeria for national food production. Water for agriculture and domestic water use is
typically taken directly from the lake, its main feeding tributaries, but also from a highly
productive unconfined quaternary aquifer [29]. The southern catchment provides food and
income for riparians living in cities like Ndjamena, through irrigated agriculture and fishing
activities. Food security in this region requires a sustainable management of available
water resources. This is especially important, considering the fact that the Lake Chad is in
a water scarce region.

In the last half century, the lake’s surface area has decreased from 24,000 km2 in
the 1950s to 1700 km2 currently. Inconsistent trends between precipitation and the lake’s
water level remain, particularly during dry periods [33], but significant trends have been
associated between the lake’s water level recovery and the occurrence of wet periods from
2012–2014 [34]. The increasing use of irrigation and abstraction from the lake itself are
additional major threats contributing to the lake’s decline and vulnerability to climate
change [35]. Being able to forecast temperature and precipitation, two critical climate
variables are required for improving water management, to forecast oncoming dry or wet
periods but also reduce the over allocation of water.

For our study, only five out of nine gauging stations are considered, given data avail-
ability and quality. The five stations considered in the study are presented in Figure 1 and
enumerated from upstream to downstream as follows: Sarh, Doba, Lai, Bongor and Ndja-
mena. The MAP for the locations Sarh, Doba, Lai, Bongor and Ndjamena is 1160 mm/yr,
1381 mm/yr, 1100 mm/yr, 1018 mm/yr and 510 mm/yr. The average monthly temperature
for these locations are 30.4 ◦C, 39.0 ◦C, 33.4 ◦C, 39.4 ◦C, and 40.8 ◦C for Sarh, Doba, Lai,
Bongor and Ndjamena.

2.2. Data

The data used in this paper are divided in two sets, namely: (1) The large-scale
atmospheric data used as independent variables [36]; as well as (2) the precipitations,
maximum and minimum temperatures, observed at-site, collected by the Lake Chad Basin
Commission (LCBC) [30]. The latter are used as dependent variables [30] in the SDSM
and LSTM models.The atmospheric data are 57 years (1950–2007) of monthly atmospheric
parameters collected from the national centre for environmental prediction (NCEP), for
each gauging station, using longitude and latitude coordinates for Sarh (9.14 N 18.36 E),
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Doba (8.67 N 16.85 E), Lai (9.39 N 16.3 E), Bongor (10.27 N 15.37 E) and Ndjamena (12.13 N
15.05 E). The data from the LCBC are 57 years (1950–2007) of monthly data recorded at each
gauging station. For the SDSM implementation, the calibration set consists of 70.2 percent
of the original dataset, and the validation set 29.8 percent. For the LSTM implementations,
the training, validation and test sets consist of 70.20, 24.56 and 5.26 percent of the data,
respectively (see Table 1). For the purpose of clearer comparison between SDSM and LSTM,
the SDSM was re-implemented using only the last three years of the SDSM validation, to
correspond with the test set of the LSTM implementation (see Table 1).

Figure 1. (a) Location of Lake Chad within Niger, Nigeria, Cameroon, Chad and their position in
relation to Africa. (b) The zoomed LCB with riparian countries, where C.A.R stands for the Central
African Republic. (c) The major and secondary water courses that feed lake Chad, neighbouring
permanent water bodies and dams used for irrigation/domestic supply, local city names and locations
with over 100,000 inhabitants (location only for cities with fewer than 100,000 inhabitants), irrigation
areas and relative field sizes as well as common agricultural crops grown in the region, as well as the
precipitation gauges considered in the study.

Table 1. Data subsets for the purpose of comparison between SDSM and LSTM implementation in
the Lake Chad Basin. The validation set of the SDSM implementation correspond to the test set of the
LSTM subset.

Methods SDSM LSTM

Subset Names Calibration Validation Training Validation Test
Years 1950–2004 2005–2007 1950–1990 1991–2004 2005–2007

Data Allocated (%) 94.74 5.26 70.20 24.56 5.26
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For the chosen training, validation and test subsets, there is a consistent statistically
significant difference in variance between the calibration and validation sets in the five
gauging stations. This significant difference in variance may be explained by the fact
that the validation set coincides with a set of extreme values, caused by the drought that
happened between 2006 and 2007.

3. Methods
3.1. Statistical Downscaling Model

SDSM developed by Wilby [10] is a hybrid of multiple linear regression (MLR) and
the stochastic weather generator (SWG). SDSM is presented in the literature as the easiest
to implement, with low computational requirement and yet satisfactory accuracy. MLR
designs the econometric relationship between the NCEP data and the at-site predictants,
while SWG on the other hand uses the MLR parameters to generate up to 20 climate
scenarios, over a period of 3 years. The SDSM approach is summarised in four steps:
(1) screening, (2) calibration, (3) validation, (4) climate scenarios simulation.

The screening step consists of selecting the atmospheric data presenting the highest
correlation with the variables to predict. A correlation matrix is used to filter the 31 inde-
pendent variables (atmospheric data), such that only the predictors with correlation greater
than 30 percent with at-site dependent variables and presenting very little paired correlation
between each other are used for downscaling purposes. Predictors selected are presented
in Table 2 along with the corresponding models where they are used. The precipitation
forecasting model is denoted by (a), the minimum temperature model is represented by (b)
and the maximum temperature forecast model is denoted by (c). The selected variables
are used in SDSM4.2 [36] to predict precipitations, minimum and maximum temperatures
three years ahead.

Table 2. Definition of variable names, their units and corresponding models. ◦N denotes North
direction, mm denotes Millimeter, and * denotes dimensionless Z-score. (a) denotes monthly pre-
cipitation model, (b) denotes monthly minimum temperatures and (c) denotes monthly maximum
temperatures model.

Variable Definition Units Model

Min temp Minimum temperatures degree celsius (c)
Max_temp Maximum temperatures degree celsius (b)

dswr Direct shortwave radiation * (a,b,c)
lftx Surface lifted index * (a)
p_u Zonal velocity component near the surface * (a)
p_th Wind direction near the surface ◦N (a)
p5_f Geostrophic airflow velocity at 500 hPa * (a)
p5_u Zonal velocity component at 500 hPa * (a)
p5_z Vorticity at 500 hPa * (a)
p5th Wind direction at 500 hPa ◦N (a)
p8_u Zonal velocity component at 850 hPa * (a)
p8th Wind direction at 850 hPa ◦N (a)

pr_wtr Precipitable water * (a)
ncepprec Large scale precipitations mm (a)

r500 Large scale precipitations * (a)
r850 Relative humidity at 500 hpa height * (a)

rhum Relative humidity at 850 hpa height * (a)
shum Near surface relative humidity * (a)
mslp Mean sea level pressure * (b,c)
p_z Vorticity near the surface * (b,c)

pottmp Potential temperature * (b,c)
p500 500 hpa geopotential height * (b,c)

The calibration step consists of finding the suitable parameters that explain the causal
relationship between the selected predictors (see Table 2) and each predictant, namely pre-
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cipitations, minimum temperatures and maximum temperatures. The calibration principle
in the SDSM software (SDSM4.2) consists of splitting the dataset into calibration and vali-
dation, and then splitting the calibration set into k subsets, k ∈ N, such that k− 1 subsets
are used for calibration and the kth subset for internal validation. With such configuration,
k calibrated models are built, and the average parameters are considered for prediction
purposes. SDSM4.2 allows up to k = 20 folds. This study therefore performs 20 calibrations
and internal validation.

The calibration robustness is given by the average coefficient of determination (R2)
from the 20 calibrated models; the model accuracy is given by the average standard
error (SE) from the 20 internal validation subsets. The residual autocorrelation test is
performed on each of the 20 calibrated models to check that the residuals are white noise
and therefore there is absence of lag one residuals autocorrelation, in the models used to
predict precipitations, minimum temperatures as well as maximum temperatures. The
Durbin-Watson test is used to check the residuals for autocorrelation [37]. The parameters
stability test is also performed to check whether the parameters obtained do not vary
significantly with sample change. The Chow tests is performed for the parameter stability
check [38]. Once the tests are successfully performed on the calibration set, the average
regression parameters explaining the causal relationship between the atmospheric data and
each dependent variable, namely precipitations, minimum and maximum temperatures,
are applied to the validation set. The aim is to check the capacity of the model to predict
unseen data with accuracy. This is investigated by comparing the observed values with the
model output. The validation tests include the Levene test for variance comparison and the
Student paired t-test test for mean comparison. The simulation scenarios use the validated
model and generate up to 20 scenarios of future precipitations or temperatures.

The above mentioned procedure is performed to show that SDSM results were ob-
tained through a rigourous process, and can therefore be compared with results from LSTM
without bias.

3.2. Long-Short-Term Memory Network

In this paper, three implementations of LSTM to forecast precipitations, minimum
temperatures and maximum temperatures, respectively, are presented. The following
sections provide details on (1) the architecture, (2) the feedforward propagation, (3) the
loss function and (4) the backpropagation and weights update used in the three different
implementations.

3.2.1. LSTM Architecture and Feedforward

Figure 2 presents a classical hidden layer node with an activation function (A) and a
single cell LSTM memory block with forget gate, input gate and output gate. In the figure,
ct denotes the cell state that contains all previous values of atmospheric data, such that:

ct−1 =



x11 x12 x13 . . . x1t−1
x21 x22 x23 . . . x2t−1

...
...

...
. . .

...
xi1 xi2 xi3 . . . xit−1
...

...
...

. . .
...

xI1 xI2 xI3 . . . xIt−1


,

where xit−1 is the general term of the ith predictor at time t− 1, with i ∈ I and t− 1 ≤ T. It
is worthwhile to note that I is the set of predictors and T is the length of time of a specific
predictor. In this case study, the number of predictors is 16, 6, and 6 for precipitations,
maximum and minimum temperatures respectively (see number of predictors for model
(a), (b), (c) in Table 2).
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Figure 2. Contrast between a classical reccurrent neural network cell equipped with an activation
function (A) and a memory block for LSTM artificial neural network [39].

An effective use of the information contained in the cell state for actual prediction at
time t is performed through three types of decisions which are taken at three gates in the
LSTM architecture, namely the forget gate, the input gate and the output gate.

Forget gate: This gate is used to decide on the atmospheric data points to throw away
from the cell state ct−1 in the estimation process of the target value ŷt. A sigmoid function
(σ) is used for the purpose, with

ft = σ(W f xt + U f ht−1 + b f ). (1)

In Equation (1), ft is a vector with values in the range (0,1), W f the matrix of the
learnable coefficients associated with the vector of predictor inputs xt (atmospheric pre-
dictors at time t), U f is the hidden layer vectors ht−1, representing all matrix of predictors
value up to xt−1 (atmospheric predictors before time t) and b f is the matrix of biased
coefficients associated to each hidden layer, at the forget gate f . At time step t = 1, the
hidden layer is given by a null vector of length I, and the potential cell state vector denoted
by c̃t = 0, given that there is no previous information in the network. For t ∈ {2, 3, . . . , T},
c̃t = tanh(Wc̃xt + Uc̃ht−1 + bc̃), such that c̃ is a vector with values between (−1, 1), Wc̃, Uc̃
and bc̃t are another set of learnable parameters.

Input gate: This gate decides on what new information from atmospheric data should
be used to replace the information removed from the cell state at the forget gate. It uses both
a sigmoid function to decide which values to update, and a hyperbolic tangent function
(tanh), to create a vector of new cell state candidate values, denoted by ct. The computation
used at the input gate to update the cell state is given by

it = σ(Wixt + Uiht−1 + bi), (2)

where it is a vector with values in range (0,1), Wi, Ui and bi are learnable parameters defined
for the input gate.

The cell state update from ct−1 to ct is finally given by

ct = ft.ct−1 + it.c̃t. (3)

Output gate: The output gate controls the information flow from ct to the next hidden
layer ht such that

ot = σ(Woxt + Uoht−1 + bo) (4)

where ot is a vector with values in the range (0,1), Wo, Uo and bo are learnable parameters
for the output gate. A new hidden state is computed for the next prediction, such that

ht = tanh(ct).ot. (5)
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The single output neuron at the last time step (ŷt), which computes either the precip-
itation, the maximum or minimum temperatures, is given by the last layer of the LSTM,
denoted the dense layer, such that

ŷt = Wdht + bd, (6)

where Wd is the matrix of the learnable weights of the dense layer, bd is the biased term.
The computation of ŷt is followed by the computation of the error function.

3.2.2. Error Function

The output of the activation function at the last layer is compared to the target solution,
given in historical data. The error function at the kth iteration (Ek), is the average deviation
obtained for each sample (yt, ŷt), as given by

Ek =
1
T

T

∑
t=1

(yt − ŷt)
2. (7)

Here, the objective is to find a linear combination of weights and inputs, that minimises
the error function.

Backpropagation is used to determine the contribution of each neuron per layer to the
error function. It allows weight update, in order to increase forecasting accuracy.

3.2.3. The Backpropagation in LSTM

This study uses the mini batch gradient descent, as it updates weights for every mini-
batch of m training examples (m ∈ T, m < T), and ensures more stable convergence to the
minimised error function. Mini-batch is a good trade-off optimisation algorithm for error
function minimisation [40]. This study uses mini batch sizes of m = 4, 5 and 10 (see Table 3).

Table 3. Architectures and hyperparameters investigated for monthly precipitation and tempera-
tures forecasting.

Hyperparameter & Architecture Options Explored Best Selections

Window size 1, 2, . . . , 12, 24, 36 36
Hidden Nodes 5, 10, 15, 20, 25, 30, 35 15, 20
Optimizers adam, adagrad, sgd, adadelta, Nadam adam
LearningRates 0.1, 0.01, 0.001, 0.09, 0.2 0.01
Dropouts 0.09, 0.1, 0.2, 0.3, 0.4, 0.5 0.09, 0.2
Batch sizes 4, 5, 10, 20, 25, 30 5, 10, 15
Epochs 100, 200, 500, 1000, 2000, 2500, 3000 2500, 3000

In order to minimise the error function in Equation (7), partial derivatives with respect
to the parameters of the weight matrices (W f , U f , b f , Wi, Ui, bi, Wc̃, Uc̃, bc̃, Wo, Uo, bo) are
computed. Previous weights are updated according to both the sign of the derivative, and
the learning rate (ν), given as input to the network, in order to speed up the convergence in
the optimisation direction.

A summary of the implementation process of the LSTM methodology is presented in
Algorithm 1. Python 3.5 [41], Pandas [42], Keras [43] and tensorFlow [44] libraries are used
for the implementation.
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Algorithm 1 Steps to implement LSTM in Python
Import Packages
Import and transform time series to Dataframe
Transform Dataframe to supervised series
Normalise data to scale [0; 1]
Split Data into Training, Validation and Test subsets
Use the Training and Validation sets to define the LSTM model
Compile and fit the model
Tune the parameters until ∆Ek → 0
Use the model to perform the predictions on the test set
Perform 30 simulations and store the output
Compute average performances of the simulation outputs

3.2.4. LSTM Setup

In this work, we developed a basic neural network model based on the LSTM frame-
work. The model contains 3 layers (Figure 3). LSTM layers with 576 and 216 neurons
were set as the input layer, for precipitations and temperatures forecasting, respectively.
A dropout rate of 0.2 was set on the LSTM layer. A fully connected layer was then set up
as the output layer which yields three time series, namely precipitations, minimum and
maximum temperatures.

3.2.5. Tuning Procedure for LSTM Window Size and Hyperparameters

A proper setting of the window size is important for good model performances. In
this study, monthly window sizes, of 1, 2, . . . , 12, 24, and 36 months, were explored (see
Table 3). The window size of 36 months, that produce the best forecasting accuracy were
then selected for each forecasting task. Hyperparameter optimization or tuning is the
process used to find a tuple of hyperparameters that yields a model which minimize the
loss function on the given data [45]. The mean-square-error was used in this study as the
loss function for hyperparameter optimization [27].

Figure 3. The general architecture of the proposed LSTM networks implemented for both the
precipitations and temperatures forecasting.

In this study, after investigating five options of optimisers (see Table 3), we chose the
efficient adam version of stochastic gradient descent [46]. The epoch, which is generally
defined as one pass over the entire dataset in neural network, is used to separate training
into distinct phases. Training for too long will lead the model to be overfitted, learning
patterns that only exist in the training dataset. Whereas training for too short will lead
the model to be underfitted, which means the model has not learned the relevant patterns
in the training data [45]. In this study, the training epochs were first set to 200 [27] and
the highest NSE were achieved after 2500, and 3000 epochs (see Table 4 and Figure 4), in
the five gauging stations, for precipitations and temperature forecasting. Consequently,
we used the number of 2500, and 3000 epochs for the final training of the model. These
number of epochs were selected after a continuous stability of the training and validation
loss, over more than 1500 iterations, after an unstable learning stage that occurred between



Atmosphere 2023, 14, 708 10 of 25

0 to 1000 iterations, represented with an oscillating validation loss function, as observed in
Doba and Bongor (see Figure 4).

Table 4. The chosen LSTM architectures for precipitation, minimum and maximum temperature
forecasting in the five gauging stations after hyperparameter tuning.

Window Size Nodes Epochs Hidden Layers Optimiser Dropout Batch Size Simulations

Precipitation
Sarh 36 20 3000 1 adam 0.09 4 20

Bongor 36 15 3000 1 adam 0.2 10 20
Doba 36 20 2500 1 adam 0.09 5 20

Lai 36 15 3000 1 adam 0.2 10 20
Ndjamena 36 15 3000 1 adam 0.2 10 20

Minimum temperature
Sarh 36 15 3000 1 adam 0.2 10 20

Bongor 36 15 3000 1 adam 0.2 10 20
Doba 36 15 3000 1 adam 0.2 10 20

Lai 36 15 2500 1 adam 0.2 10 20
Ndjamena 36 15 3000 1 adam 0.2 10 20

Maximum temperature
Sarh 36 15 3000 1 adam 0.2 10 20

Bongor 36 15 3000 1 adam 0.2 10 20
Doba 36 15 2500 1 adam 0.2 5 20

Lai 36 15 2500 1 adam 0.2 10 20
Ndjamena 36 15 3000 1 adam 0.2 10 20

The best network architecture per gauging station for precipitation is given in Table 4.
They indicate heterogenous architectures per gauging stations. These architectures were
obtained after trials and errors of multiple configurations. The window size of 36 months
was investigated for all stations, with one hidden layer and adam optimiser. Twenty nodes
were found suitable for Sarh and Doba, while fifteen nodes were found suitable for Bongor,
Lai and Ndjamena. An identical number of epochs were found to produce best results for all
stations, except for Doba, where fewer epochs were used. Different dropout and batch size
strategies were found for each gauging station. The ensemble method was implemented
for twenty simulations per stations. The LSTM architectures for minimum and maximum
temperatures are also given in Table 4. Almost identical architectures were implemented
for both minimum and maximum temperatures forecasting. A fewer number of epochs
(2500) were considered in Lai for minimum temperature forecasting. A fewer number of
epochs in both Doba and Lai (2500 epochs), for maximum temperatures forecasting, and a
fewer number of batch size in Doba (5 batch size).

3.3. Models Comparison

The results from the three LSTM models for precipitation, minimum and maximum
temperatures forecasting are compared with results from the SDSM using the root mean
squared Error (RMSE) as well as the mean absolute percentage error (MAPE), and the Nash
Sutcliffe Efficiency (NSE). The corresponding mathematical formulations are given by

RMSE =

√√√√ 1
N

N

∑
t=1

(
xt − st

)2
, (8)

MAPE(%) =
100
N

∑N
t=1(|xt − st|)

xt
, (9)

NSE = 1−
∑N

t=1

(
xt − st

)2

∑N
t=1

(
xt − xt

)2 , (10)
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where xt is the observed data, st is the generated data, and N is the length of the dataset.
The model with the smallest MAPE, RMSE or the highest NSE was considered as the

most accurate, and was adopted for precipitations and temperatures forecasting in the
given gauging station.

 
 

 

 
Figure 4. The training and validation loss function plots for the maximum and minimum temperature
and precipitation forecasting for the five gauging stations.
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4. Results
4.1. SDSM Results

The SDSM models’ performances on the training and validation precipitation subsets
are presented in Figure 5. The mean RMSE, the mean MAPE, the mean NSE, as well as the
mean coefficients of determination (R2) for 20-folds precipitations forecasting are given for
each of the five gauging stations. There is a contrast between both the high NSE and R2,
on the calibration set, and the low NSE and R2, on the validation set, in the five gauging
stations (NSE = 0.70 versus NSE = 0.51; and R2 = 88.81% versus R2 = 30.61%). This is
an indication of the weak robustness of the SDSM precipitation forecasting models. This
may be explained by a number of aspects, including a consistent statistically significant
difference in variance between the calibration and validation sets in the five gauging
stations (see Table 5). This significant difference in variance may be explained by the fact
that the validation set coincides with a set of extreme values, caused by the drought that
happened between 2006 and 2007, and which has as consequence to increase the bias of
the calibrated model toward unseen data. This is a common issue encountered in the
process of implementing a regression based model like the SDSM. Nevertheless, the values
of NSE show that the models may be useful. In addition, the performances obtained are
comparable with results generally observed in the literature [10,11,13,31,47]. For example,
the average RMSE of the recorded literature survey is 72.62 millimeters, which is greater
than the average RMSE of 53.32 millimeters, observed in each of the five gauging station
considered in this case study.
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Figure 5. Comparison of SDSM performance on the training and validation sets for monthly precipi-
tations forecast in the Lake Chad Basin.
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Table 5. The statistical difference of the mean and variance estimation for the five gauging stations
between the training, validation and test sets. p-values are given in brackets.

Training vs. Validation Validation vs. Test Training vs. Test
∆X̄ ∆var(X) ∆X̄ ∆var(X) ∆X̄ ∆var(X)

Sarh

MaxTemp −0.14 (0.55) −0.15 (0.91) −0.19 (0.70) −0.47 (0.81) −0.33 (0.47) −0.62 (0.76)
MinTemp −0.67 (0.35) −13.76 (0.22) −1.66 (0.29) −4.97 (0.78) −2.33(0.08) −18.72 (0.33)

Precipitation 2.73 (0.72) 62.30 (0.53) −0.12 (0.99) −99.79 (0.88) 2.62 (0.86) 566.50 (0.86)

Bongor

MaxTemp −0.34 (0.73) −3.90 (0.99) −2.04 (0.31) −5.68 (0.71) −2.38 (0.20) −9.58 (0.70)
MinTemp −0.33 (0.72) −11.75 (0.56) −2 (0.31) −1.26 (0.92) −2.33 (0.19) −13.01 (0.68)

Precipitation −3.55 (0.66) −1864 (0.63) −2.62 (0.68) 850.40 (0.80) −6.18 (0.88) −1013.94 (0.57)

Doba

MaxTemp −0.14 (0.55) −0.15 (0.92) −0.19 (0.70) −0.47 (0.81) −0.33 (0.47) −0.62 (0.76)
MinTemp −6.67 (0.35) −13.76 (0.22) −1.66 (0.29) −4.97 (0.78) −2.33 (0.08) −18.72 (0.33)

Precipitation 2.22 (0.81) 871.38 (0.83) 0.08 (0.99) 91.55 (0.96) 2.30 (0.89) 962.93 (0.95)

Lai

MaxTemp −1.90 (0.19) −33.51 (0.52) −3.78 (0.23) −35.44 (0.47) −5.68 (0.04) −68.95 (0.24)
MinTemp −1.92 (0.16) −56.58 (0.15) −3.65 (0.23) −18.63 (0.74) −5.57 (0.03) −75.22 (0.25)

Precipitation 0.29 (0.96) −14.31 (0.90) −0.29 (0.98) −243.09 (0.88) −0.005 (0.99) −257.39 (0.82)

Ndjamena

MaxTemp −0.36 (0.70) 15.2 (0.24) −1.36 (0.45) −1.64 (0.91) −1.73 (0.35) 13.56 (0.61)
MinTemp −0.39 (0.67) 8.92 (0.32) −1.31 (0.45) 1.08 (0.99) −1.70 (0.32) 10.01 (0.59)

Precipitation −3.26 (0.62) −843 (0.60) −3.05 (0.82) −45.27 (0.78) −6.31 (0.60) −888.28 (0.55)

The prediction performances of SDSM for minimum and maximum temperatures
at the five gauging stations are given in Figures 6 and 7, respectively. The performances
obtained suggest an average RMSE of 8.68 degree celsius, a MAPE of 17.40 percent, a
NSE of 0.64 as well as a coefficient of determination of 68.43 percent on the validation
set, for minimum temperatures forecast. For maximum temperatures, the results suggest
an average RMSE of 9.93 degree celsius, a mean MAPE of 14.55 percent, a NSE of 0.47
and a coefficient of determination of 81.10 percent on the validation set. These results are
indicators of the robustness of the calibrated model developed for minimum and maximum
temperatures forecast and fall within the threshold of what is generally encountered in the
literature [13,20,48,49].
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Figure 6. Cont.
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Figure 6. Comparison of SDSM performance on the training and validation sets for monthly minimum
temperature forecast in the Lake Chad Basin.
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Figure 7. Comparison of SDSM performance on the training and validation sets for monthly maxi-
mum temperature forecast in the Lake Chad Basin.

Nevertheless, it is worthwhile to note the descrepency of the model performances,
between the calibration and the validation sets. This may be due to both the difference
in the variance between the calibration and the validation sets (see Table 5), as well as
the structural difference of the data, in the two subsets, as shown by the boxplot, in
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Figure 8. Additionally, this may suggest that SDSM is sensitive to temporal heterogeneity
in the dataset.

Figure 8. Boxplot of monthly minimum and maximum temperatures data, displaying the heteroge-
neous spread in (a) the training, (b) the validation and (c) the test sets.

4.2. LSTM Results

The LSTM performances for the five gauging stations, as well as the average prediction
performance in the LCB are presented in Figure 9, for precipitation. The performances
obtained suggest an average RMSE of 40.69, an average MAPE of 28.55 percent and an
average NSE of 0.82 on the test set, and which shows reliable forecasting. This obser-
vation is consistent for each of the five (05) gauge station considered in the study. The
minimum NSE is observed in Lai (NSE = 0.71), and its maximum value is recorded in Sarh
(NSE = 0.98). The loss function plot shown in Figure 4, indicate that there is no overfitting
in the LSTM models trained for precipitation forecasting, and the above performances
show that reanalysis data are suitable predictors for precipitations forecasting.

The prediction performances for each station as well as the average performances
in the Lake Chad Basin, for minimum and maximum temperatures, are presented in
Figures 10 and 11, exhibit a mean RMSE of 0.66 degree celsius for minimum temperatures
and 1.22 degree celsius for maximum temperatures. The average MAPE informs that
the prediction errors are 2.93 percent for minimum temperatures and 2.74 percent for
maximum temperatures. In addition, the average NSE (0.95 and 0.97 for minimum and
maximum temperature respectively), indicate that the LSTM models trained for minimum
and maximum temperature forecasting are very suitable for practical use. Finally, the loss
function plots shown in Figure 4, indicate that there is no overfitting in the LSTM models,
trained for temperature forecasting. These results show that reanalysis data are suitable
predictors for temperatures forecasting.
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Figure 9. The LSTM model performance on the training, validation and test sets of precipitation in
the Lake Chad Basin. The number of simulations run were 20 in all cases.
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Figure 10. The LSTM model performance on the training, validation and test sets of minimum
temperature in the Lake Chad Basin. The number of simulations run were 20 in all cases.
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Figure 11. The LSTM model performance on the training, validation and test sets of maximum
temperature in the Lake Chad Basin. The number of simulations run were 20 in all cases.

4.3. Forecasting Comparison

A sample of the actual and predicted precipitation values on the test set for Ndjamena
are given in Figure 12. A sample of the actual and observed temperatures for Ndjamena
are given in Figures 13 and 14. The monthly prediction biases (errors), as well as the
correlations between predicted and observed values are provided in Table 6. The monthly
prediction errors, indicate a tendency of underestimation in the LSTM predictions in March,
April, May, September, November and December, and a tendency of overestimation, for
the months of January, February, June, July, August, and October for precipitations. With
regards, to the minimum temperature, LSTM predictions are underestimated in April,
May, June and July, and overestimated in the other months. Maximum temperatures are
underestimated in August, and overestimated elsewhere. In addition, the correlation
between the observed and the predicted values of temperatures and precipitation show
that both are highly related, especially for the prediction obtained with LSTM.
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Table 6. Monthly predictions biases and monthly correlations between observed and predicted values.

Precipitation
Error Correlation

sdsm lstm sdsm lstm

January 11.47 1.34 0.33 0.92
February 11.46 1.32 0.33 0.75

March −3.22 −4.26 0.55 0.96
April −8.11 −13.17 0.74 0.85
May 19.52 −1.48 0.25 0.77
June 34.57 13.93 0.65 0.83
July 72.84 37.81 0.01 0.84

August 28.89 25.63 0.40 0.83
September 3.23 −5.65 0.64 0.94

October 7.67 1.91 0.55 0.88
November −1.28 −3.69 0.57 0.91
December −1.95 −3.61 0.88 0.91

Minimum Temperature
Error Correlation

sdsm lstm sdsm lstm

January −1.30 0.12 0.36 0.82
February −1.29 0.09 0.52 0.72

March −0.90 0.45 0.63 0.74
April −0.49 −0.39 0.08 0.89
May −2.64 −0.29 0.21 0.90
June −2.29 −0.07 0.77 0.76
July −0.75 −0.22 0.04 0.74

August −1.35 0.44 0.53 0.80
September −0.16 0.60 0.86 0.87

October 0.53 0.74 0.25 0.95
November −0.51 0.36 0.67 0.85
December −1.73 0.68 0.96 0.92

Maximum Temperature
Error Correlation

sdsm lstm sdsm lstm

January 2.38 0.77 0.01 0.89
February 2.30 1.18 0.25 0.93

March 2.53 1.87 0.01 0.90
April 6.83 3.01 0.05 0.74
May 6.69 2.25 0.24 0.75
June 1.51 0.01 0.56 0.77
July 2.20 0.03 0.59 0.75

August 1.09 −0.01 0.35 0.87
September 0.92 0.05 0.35 0.91

October 3.05 0.20 0.01 0.85
November 3.17 −0.20 0.06 0.75
December 1.51 1.69 0.91 0.97
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Figure 12. Observed and predicted precipitation in Ndjamena.
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Figure 13. Observed and predicted minimum temperature in Ndjamena.

Jan-00
Nov-00

Sep-01
Jul-02

May-03
Mar-04

Jan-05
Nov-05

Sep-06
Jul-07

Dec-070

20

40

60

80

100

Time

Te
m

pe
ra

tu
re

s
(d

eg
re

e
ce

ls
iu

s)

Observed maximum temperature Ndjamena
Prediction with SDSM
Prediction with LSTM

Figure 14. Observed and predicted maximum temperature in Ndjamena.
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5. Discussion
5.1. Performance of LTSM vs. SDSM

The multivariate LSTM for precipitations forecasting presents both the smallest RMSE,
MAPE, and the highest NSE (see Figure 15). Therefore, LSTM may be a better prediction
tool for long-term precipitations in the Lake Chad Basin.
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Figure 15. Comparison of SDSM & LSTM for monthly precipitations forecast in the Lake Chad Basin.

A comparison of SDSM and LSTM for minimum and maximum temperatures fore-
casting per gauging station (see Figures 16 and 17) indicate that LSTM produces better
performances in all five gauging stations, with the smaller values of RMSE and MAPE, and
the higher values of NSE, for all the five gauging stations (see Figures 16 and 17).

In terms of maximum temperature, LSTM outperforms SDSM in the five gauging
stations, showing smaller values of RMSE, MAPE as well as the higher values of NSE.

The RMSE results shows the better abilities of LSTM to handle outliers as compared to
SDSM, and NSE results indicates better reliability of LSTM forecasting outputs, for practical
use, related to water ressources management and other hydrological purposes.

The better performances of neural networks in comparison to SDSM for precipitations,
and temperatures forecasting observed in this study, do not align well with the results
reported by Harphan and Wilby [20]. They compared the performances of RNN and
SDSM in some gauging stations in England. Results of previous research still establish
SDSM as the benchmark approach. This paper presents an exception. The tendency
of LSTM to outperform SDSM in the Lake Chad Basin case may suggests LSTM as a
good alternative to SDSM. The broader literature also suggest that LSTM architectures
generally present an additional advantage in the forecasting of time series [50,51]. Moreover,
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LSTM performances can be improved through an automated hyperparameters search, with
an advanced algorithms such as grid search or Bayesian optimisation, which are not
investigated in this paper.
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Figure 16. SDSM and LSTM forecasting performance comparison for monthly minimum temperature
forecast.

5.2. The Spatial and Temporal Heterogeneity of Microclimates in Forecasting Precipitation
and Temperature

This study has shown the performance of SDSM and LSTM to be dependent on the
local microclimates within the Lake Chad Basin. This application showed that SDSM had a
higher NSE for stations with a higher overall MAP (Ndjamena 500–750 mm/yr) compared
to stations with a lower MAP (Sarh, Doba, Bongor, Lai: 1000–1500 mm/yr).

For LSTM the largest NSE was less dependent on stations’ MAP. In the minimum and
maximum monthly temperature forecasts, SDSM tended to perform worse for Doba in
terms of NSE, where this station had a lower average monthly temperature (25–27.5 degree
celsius) compared to stations in Sarh, Bongor, Lai and Ndjamena (27.5–30.3 degree celsius).
In contrast, LSTM performance was less biased by the overall average temperature and was
less dependent on local microclimate in this study. From the above observations, LSTM may
present better abilities to handle the spatial heterogeneity of microclimates in forecasting
precipitation and temperature, in the Lake Chad Basin. To fully evaluate the advantage
of LSTM over SDSM for conditions with higher local microclimate variability, catchments
with more in-situ data need to be selected. The application of LSTM has potential relevance
for forecasting temperature and precipitation in regions with known high microclimatic
variability, such as the Berg River in the Western Cape of South Africa [52], but also a region
experiencing localised droughts [53]. Forecasting and the bias correction of GCM products



Atmosphere 2023, 14, 708 22 of 25

using LSTM has the potential to be useful where recent data has shown spatial precipitation
shifts and where other approaches tend to be more bias for local microclimates.
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Figure 17. SDSM and LSTM forecasting performance comparison for monthly maximum tempera-
ture forecast.

6. Conclusions

The aim of this paper was to compare the performances of SDSM and LSTM for
monthly time–scales precipitations and temperatures forecasting in the Lake Chad basin,
using grid resolution GCM output at a 5 degrees latitude × 5 degrees longitude global grid.
This was motivated by the absence of such comparison in the literature. MLP and classical
RNN were previously investigated in the literature, and results still confirmed SDSM as
benchmark method for monthly precipitations and temperatures forecasting. From the
results obtained in this study, the following conclusions can be made:

1. LSTM provides more accurate monthly precipitations and temperatures forecasting
outputs than SDSM, both in terms of sensitivity to outliers, with smaller RMSE, or in
terms of forecasting reliability, with higher NSE coefficients;

2. SDSM monthly precipitations and temperatures forecasting outputs are subject to the
spatial heterogeneity of microclimates. This leads to less accurate forecasting outputs,
in stations with higher MAP. Yet LSTM is capable to consider those variability, in the
forecasting process;

3. The comparison of LSTM with SDSM show that LSTM has high potential for monthly
forecasting and the bias correction of GCM products, where recent data has shown
spatial precipitation shifts and where other approaches tend to be more biased for
local microclimates.
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4. The performances of LSTM could be enhanced by adding hyperparameter optimisa-
tion methods, such as grid search, and Bayesian optimisation. This may contribute
further to establish LSTM as a benchmark for monthly climate forecasting.
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