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Abstract: Given the interdependence of climate change (CLC) and urban expansion (URE) on eco-

system productivity in China and India, hybrid physics-based models were fitted in this study to 

evaluate the effects of these variables on photosynthetically active radiation (PAR). This was accom-

plished by interpolating the most recent five general circulation models (GCMs) from coupled 

model intercomparison project phase 6 (CMIP6) into the CMIP6 multi-ensemble model. The poten-

tial of PAR is projected to increase by 0.001 to 2.077% in China and by 0.002 to 6.737% in India, on a 

seasonal and annual basis, if the warming is kept at 1.5 °C from now until the end of this century. 

The effects of CLC and URE on the changes in PAR in China and India were investigated, and URE 

had a greater impact than CLC when compared to effective contributions, with 49.47% for China 

and 28.41% for India in the entire case scenario. In contrast, CLC and PAR residual factor (PRF) have 

a greater impact in India than in China, with effects of 13.79% and 57.79% compared to 0.89% and 

49.64%, respectively. Preferences for exotic, high-productivity plant species, irrigation, CO2 fertili-

zation, and nitrogen deposition are suggested as measures for replenishing PAR in both countries. 

Keywords: Photosynthetically active radiation; urban expansion; climate change; land use change; 

ecosystem productivity 

 

1. Introduction 

Photosynthetically active radiation, or PAR, is the component of solar irradiance at 

wavelengths of 400–700 nm that is preferable, preferably absorbed by plants for photo-

synthesis. PAR regulates Earth’s climate since it is absorbed by plant tissues for food and 

oxygen production, impacting warming through heat transfer processes. Additionally, 

PAR is important in the global water cycle, as photosynthesis drives the processes of evap-

oration and transpiration. PAR is thus a vital part of the Earth’s climate system, helping 

to maintain global temperatures, driving the water cycle, and ensuring that there is 

enough oxygen and food available for life on Earth to survive. Despite the importance of 

PAR, there are still gaps in our understanding of its role in regulating the Earth’s climate, 

imposing the need for further research on how PAR affects global and local climate pat-

terns.  

PAR is essential for the assessment of crop yields [1] as well as for monitoring vege-

tation health [2], land degradation [3], desertification [4], and related processes [5]. In ad-

dition, PAR can be used to measure the effect of changes in the environment due to defor-

estation [6], irrigation [7], and other human activities in ecosystems [8], as well as to track 

the effects of natural disasters such as hurricanes [9] and floods [10] on the environment. 
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Thus, PAR is a multifaceted tool for monitoring and assessing the environmental impact 

of human activity as well as natural disasters, and its importance cannot be underesti-

mated [11]. It is therefore an invaluable resource for understanding and predicting envi-

ronmental changes and can be used to identify potential solutions to mitigate these im-

pacts, prevent further degradation of the environment, and ultimately help protect the 

health and wellbeing of all living organisms on our planet. 

To ensure global food security, the collaborative efforts of farmers, research institu-

tions, and academia must be focused on developing ecophysiological models to effectively 

predict the global ecosystem and model carbon cycles for their efficiency in addressing 

the global food security crisis [12]. By leveraging data and improving research, farmers, 

research institutions, and academia have the potential to establish a more accurate under-

standing of the global ecosystem and develop more reliable models for predicting the 

long-term sustainability of our global food supply. 

Accurate PAR data is critical to understanding the global carbon cycle [13] and its 

relationship with gross primary productivity, GPP [14], so that a precise determination of 

the contribution of GPP to global climate change can be made. As the impact of climate 

change on the planet intensifies, understanding GPP and its relationship to PAR has be-

come increasingly important over the past several decades [15]. In order to achieve an 

accurate and complete understanding of PAR, sophisticated methods for data analysis 

need to be employed to ensure that the data accurately reflects GPP’s contribution to cli-

mate change. Ultimately, this requires the use of cutting-edge technology such as remote 

sensing devices, computer algorithms [16], and cloud computing [17] to accurately ana-

lyse and store data in a manner that is both timely and cost-effective. While this challenge 

of accurately assessing and recording PAR data is a daunting one, there are certain 

measures that can be taken to ensure its accuracy and reliability, such as employing ad-

vanced statistical methods, calibrating devices regularly [18], and using models [19] to 

predict future GPP behavior in order to make informed decisions about mitigating climate 

change.  

PAR data is expected to be increasingly valuable in the next few years, as climate 

change becomes an ever-growing global issue, because understanding the underlying 

contributing factors is of paramount importance to successfully combating the climate cri-

sis. Thus, it is essential that scientists and researchers are able to accurately measure and 

record PAR in order to understand the effects of climate change on the environment and 

to make informed decisions about how best to combat it in a cost-effective and timely 

manner.  

There are a number of global PAR datasets with a fair amount of accuracy based on 

satellite data, including the Global Land Cover Facility [20], the Breathing Earth System 

Simulator [21], and the Japan Aerospace Exploration Agency (JAXA) satellite monitoring 

program for environmental studies [22]. These datasets provide an unprecedented level 

of accuracy, allowing researchers to map the Earth’s PAR fluxes in ways previously not 

possible at large scales. The availability of global PAR datasets today provides an unpar-

alleled level of accuracy, not only for mapping the PAR fluxes but also for a broad range 

of fields such as ecology [23], hydrology [24], and climatology [25]. The improved data 

accuracy has enabled researchers to make precise estimations and predictions in these 

fields, to better understand how PAR changes will affect ecosystems and future climate 

[26] and to assess the solar energy resource availability [27] at local and global scales.  

The limited availability of historical PAR data, especially before the 1990s, is a draw-

back for assessing the long-term impacts of the changing climate on natural and agricul-

tural ecosystems. This is a limiting factor for the accuracy of predictions about future eco-

system responses to climate change and also for the development of effective strategies 

for habitat conservation and management. On the other hand, satellite data can produce 

highly accurate spatial patterns. By combining satellite-based PAR datasets with data on 

other environmental parameters such as soil moisture [28], precipitation [29], and temper-

ature [30], researchers can gain a more complete picture of how ecosystems are 
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responding to climate change and how changes in the environment may impact species 

composition [31], food webs [32], and other complex ecological relationships [33]. 

Hao et al. [34] recently investigated the daily and hourly land surface downward 

shortwave and PAR performances of numerous satellite and in situ monitoring networks 

in various locations around the world, and found that NASA’s Deep Space Climate Ob-

servatory (DSCOVER) and Earth Polychromatic Imaging Camera (EPIC) 1.2 atmospheric 

and cloud products perform better than in situ observation networks such as the Baseline 

Surface Radiation Network (BSRN) and the Surface Radiation Budget Network (SUR-

FRAD), and the Earth’s Radiant Energy System Synoptic (CERES), GLASS, BESS, ISCCP-

FD, and GEWEX-SRB data. The same authors discovered that NASA DSCOVER/EPIC dis-

plays comparable geographic variability and latitudinal gradient distribution when com-

pared to CERES data [35].  

Despite DSCOVER/EPIC and CERES having similar performance, it is worth noting 

that DSCOVER/EPIC outperforms in situ observation networks such as BSRN and SUR-

FRAD. The authors found that while all of the data sources performed similarly at larger 

scales, DSCOVER and EPIC still outperformed in situ observation networks due to their 

higher spatial and temporal resolutions and their capability for capturing more detailed 

features at a finer spatial resolution. This is due to the fact that DSCOVER and EPIC are 

able to better detect and distinguish small-scale cloud and atmospheric features, leading 

to more accurate estimates of the surface radiation budget, which is critical for climate 

studies and climate model validation. 

Moon [36] discovered that the PAR/H conversion ratio was relatively constant, re-

gardless of the latitude or season of the year. He proposed that this constant ratio applied 

to fluxes of global solar radiation (H), which was later found to be true to an extent by 

several researchers [37,38]. These researchers found that the ratio proposed by Moon [36] 

still holds true, as they calculated that PAR is 0.45 to 0.46 times the flux of global solar 

radiation, depending on the season, which is consistent with the ratio proposed by Moon 

[36]. These findings by Nwokolo and Amadi [37] provide further evidence of the pioneer-

ing work done by Moon [36]—which established that PAR can be generated from fluxes 

of global solar radiation—in their global review study on PAR ratio, which resulted in 

significant advances in our understanding of solar radiation and its implications for pho-

tosynthesis and the photosynthetic productivity of plants. Since the discovery by Moon 

[36], there have been numerous advances in understanding the process of photosynthesis, 

its implications on global solar radiation, and its effects on the photosynthetic productiv-

ity of plants, which can be attributed to his pioneering work. 

The conversion from the global solar radiation datasets, which have been recorded 

since 1900 with frequent intervals [39,40], is the only way to predict solar fluxes in the past 

due to the extreme scarcity of PAR data globally. For instance, since 1979, a monthly da-

taset on the world’s solar radiation (H) has been made available by the interim reanalysis 

of the ERA [32]. Since 1958, the JRA55 reanalysis has provided solar fluxes, and 

NCEP/NCAR has done so since 1948 [41]. Global ecosystem models have used and con-

verted these datasets of solar radiation to PAR [42]. The conversion process is not without 

its issues, however, as the uncertainties associated with these datasets can be substantial 

and cause errors in model simulations if not accounted for. Thus, careful attention must 

be paid to the accuracy of solar radiation datasets and how they are converted into pho-

tosynthetically active radiation for use in global ecosystem models.  

To ensure accuracy and prevent errors in model simulations, global ecosystem mod-

els should not rely solely on the conversion of datasets for solar radiation to PAR [41]. 

Instead, a combination of satellite data and ground observations can be used to validate 

the conversion process and make sure that the correct data is being used in the models. 

This combination of satellite data and ground observations allows for the validation of 

datasets as well as confirmation that they accurately represent solar radiation before they 

are converted into PAR for use in global ecosystem models. This allows for greater accu-

racy in the models and reduces the likelihood of errors in simulations, which can have far 
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reaching impacts on global ecosystems. In addition, data from other sources, such as re-

motely sensed vegetation indices, can be used to further validate the datasets before they 

are converted and used in global ecosystem models. 

Various researchers have used empirical [43–45], machine learning [46], and numer-

ical methods [47–49] to predict PAR in all-sky weather conditions. This might be explained 

by the fact that, in contrast to other weather-solar parameters such as the length of the 

sunshine, relative humidity, minimum and maximum temperatures, the amount of clouds 

and precipitation, etc., radiometric fluxes are less frequently measured in most weather 

stations around the world. Furthermore, this makes it difficult to establish correlations 

between radiometric fluxes and PAR with other weather-solar parameters [50], which lim-

its the accuracy of empirical models to predict PAR in all-sky conditions and calls for the 

development of machine learning and numerical models, which can be more accurate in 

forecasting PAR in the presence of clouds. Despite the challenges of accurately predicting 

PAR in all-sky weather conditions, researchers have made significant advances in the use 

of machine learning and numerical methods to develop accurate models for this purpose 

and have shown that these models are able to accurately predict PAR with a greater degree 

of accuracy than traditional empirical models in many cases. In particular, the use of ma-

chine learning and numerical models has enabled researchers to more accurately predict 

PAR in all-sky weather conditions due to their ability to capture non-linear relationships 

between radiometric fluxes and other weather-solar parameters than traditional empirical 

models can, which makes it possible to more accurately predict PAR in different weather 

conditions with greater accuracy. 

In relation to PAR prediction and forecast, achieving sustainable international goals 

such as disaster preparedness, greenhouse gas mitigation, and sustainable development 

plans calls for a significant reduction in the error indicators of empirical, machine learn-

ing, and numerical approaches, as well as the development of new methods to predict and 

project PAR potential using cutting-edge crop and climate models. Such a reduction in 

error indicators and the development of new predictive methods would enable accurate, 

reliable PAR prediction and forecasting, which is key to achieving sustainable interna-

tional goals accurately and efficiently. By accurately predicting and forecasting PAR po-

tential, we can reduce the risk of suffering a natural disaster or other environmental con-

sequence, provide the necessary resources to sustainably develop regions prone to agri-

cultural failure, mitigate greenhouse gas emissions to protect the environment, and main-

tain a healthy and sustainable future for all. 

It is critical to remember that no model based on any parameter can surpass the PAR 

predictions. Given that each of the aforementioned methods necessitates a distinct set of 

input variables, the cost of the evaluation soars. This increases the importance of selecting 

the appropriate parameter and model that is not only the most cost-effective but also effi-

cient in its ability to accurately predict PAR. The most important point to consider when 

selecting a model for predicting PAR is that accuracy should not be sacrificed in the name 

of cost-effectiveness.  

The MLP-CARIMA-GPM approach, which was not previously used to predict PAR 

but produces a higher-level predictive capacity comparable to existing hybrid machine 

learning approaches, was employed to estimate PAR in this work. The MLP-CARIMA-

GPM approach is capable of predicting high accuracy PAR fluxes without the need for 

expensive satellite imagery or manual labor to monitor environmental conditions over 

large areas on the ground. 

The externalities of global climate change affect all solar energy sources and the pa-

rameters derived from them, including PAR. The degree to which these externalities affect 

PAR fluxes and the ways in which they are absorbed and converted into photosynthetic 

energy vary from region to region and depend on a variety of factors, such as local weather 

patterns, vegetation cover, air pollution levels, and surface albedo effects.  

The results of PAR assessments can also vary greatly because the accuracy of climate 

simulations is typically dependent on the model’s accuracy and assumptions. Therefore, 
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research examining the reality of climate change effects on PAR fluxes using the most re-

cent Coupled Model Intercomposition Project Phase Six (CMIP6) is crucial. Since CMIP6 

models offer more accurate estimations of current climate conditions, they are better able 

to predict future climatic effects on plant growth and PAR fluxes compared to CMIP5 

models due to more sophisticated parameterizations, higher resolution, and an improved 

representation of aerosols and clouds. In addition, the improved resolution of CMIP6 al-

lows for a better representation of regional climate change due to its ability to capture 

finer scale features such as changing weather patterns and land cover changes. Therefore, 

applying the CMIP6 model is useful for understanding the effects of climate change on 

plant growth and PAR and predicting how these effects will interact with the growth of 

vegetation over time in order to better understand the implications of climate change on 

vegetation growth and ecosystem functioning in the future. 

Specifically, this study aims to identify the impact of climate change on PAR flux 

potentials and additionally evaluate which fitted novel hybrid MLP-CARIMA-GPM PAR 

prediction model can best capture likely climate effects in China and India up unti 

 l the end of this century. To achieve this goal, the climate-induced changes in PAR in 

the near-future (2015–2049), far-future (2041–2099), and all-future (2015–2099) were sim-

ulated using an ensemble of Global Climate Models (GCMs) and the best-performing fit-

ted novel hybrid MLP-CARIMA-GPM PAR prediction model was used to determine the 

future potential PAR flux projections in both China and India till the end of this century. 

The authors developed a computational model based on theoretical physics to isolate and 

account for the impacts of climate change and urban expansion (URE) on changes in PAR 

in the future (2015–2099) in China and India under various emission scenarios and under 

the assumption that changes in PAR productivity are attributed to climate change (CLC) 

and URE. 

This study provides a valuable insight into the potential effects of climate change and 

urbanization on PAR over the next century and the implications that this may have for 

sustainable development in China and India. To predict PAR, several meteorological pa-

rameters were employed, and the influence of climate change and urban expansion on 

PAR fluxes for future emission scenarios was also investigated: 

• using a novel hybrid parameter-based strategy (MLP-CARIMA-GPM) to predict 

PAR; 

• using the most recent simulated CMIP6 multi-ensemble model interpolated from five 

GCMs CMIP6 models to quantify the effects of future climate change on PAR under 

various shared socioeconomic pathways (SSPs) for the near future (2015–2049), far 

future (2050–1999), and all future (2015–1999) in China and India;  

• by analyzing historical data (1984–2014), to assess the impacts of climate change and 

urbanization on PAR for the near (2015–2049) and far (2050–2099, 2015–2099) futures, 

considering also various shared socioeconomic pathways (SSPs).  

• The remaining sections of this study are as follows: Gumbel’s probabilistic method 

(GP), swapped ARIMA and controlled ARIMA models, boosting, bagging, and MLP 

models for PAR using meteo-solar parameters, as well as hybridization of the MLP, 

GPM, and ARIMA (MLP-CARIMA-GPM) models are all covered theoretically in Sec-

tion 1. Section 2 provides details on positions, datasets, quality control checks, data 

pre-processing, and evaluation metrics. Model, configuration, performance, and re-

porting are presented in Section 3 along with a discussion of the results. The conclu-

sions are discussed in Section 4. The conceptual/theoretical framework for the study’s 

primary focus, pertinent literature review studies, methodology, findings, and con-

cluding remarks. 

  



Atmosphere 2023, 14, 687 6 of 38 
 

 

2. Materials and Methods 

2.1. Meteorological Datasets 

The National Aeronautics and Space Administration atmospheric science data center 

(NASA) provided the historical datasets of photosynthetically active radiation used in this 

study. NASA is responsible for archiving and distributing Earth science data related to 

the atmosphere, including data on aerosols, clouds, precipitation, and atmospheric chem-

istry. The climatological PAR and other atmospheric datasets can be downloaded as lon-

gitude-latitude specific point data between 2001 to 2021, at a mean monthly resolution, at: 

https://power.larc.nasa.gov/data-access-viewer/ (accessed on 14 March 2023). 

PAR datasets from 3415 cities in China and from 889 cities in India were used in this 

work (Table 1 and Figure 1. The cities are available via an online country geographical 

coordinate assessment (https://www.countrycoordinate.com). To obtain generalized da-

tasets for further analysis, the location-based datasets were processed by averaging all the 

locations in each country. Surface incoming shortwave radiation (global solar radiation, 

H in W/m2), incident shortwave radiation in the upper atmosphere (extraterrestrial radia-

tion, Ho in W/m2), surface air temperature at 2 m height (Tave in °C), and near-surface 

relative humidity (%) with monthly spatial resolution were used as input parameters (Fig-

ure 1 and Table 1). The National Center for Meteorological Research, France (HadGEM3-

GC31), the EC-Earth Consortium, Europe (EC-Earth3), the Centre for Climate Research, 

Indian Institute of Tropical Meteorology, India (IITM-ESM), the Beijing Climate Center 

Climate System Model (BCC-CSM2), and the National Oceanic and Atmospheric Admin-

istration, Geophysics and Fluid Dynamics Laboratory, USA (GFD-ESM4) were among the 

five global climate model (GCM) outputs that contributed to the Coupled Model Inter-

comparison Project Phase 6 (CMIP6) used in this study. The mathematical techniques de-

scribed in Zheng et al. [51], were applied to produce the additional input parameters such 

as saturated vapor pressure (SVP in kPa), actual vapor pressure (AVP in kPa), and vapor 

pressure deficit (VPD in kPa) presented in Figure 1 and Table 1. The monthly extraterres-

trial PAR (PARo) was estimated by using the following equation: 

𝑃𝐴𝑅𝑜 = 0.5(𝐻𝑜) (1) 

Table 1. Descriptive statistics of the input and output parameters in China and India. 

Country N Minimum Maximum Mean Std. Deviation 

China PAR 40.89 122.50 82.67 21.21 

 PARnH 0.4234 0.4695 0.4514 0.0115 

 H 93.46 267.03 182.43 44.09 

 RH 73.40 85.97 80.93 2.44 

 VPD 1.59 2.87 2.19 0.25 

 Tave 14.00 27.30 21.93 3.90 

 kt 0.4069 0.7599 0.5582 0.0752 

 Tdew 32.28 34.31 33.53 0.58 

 SVP 9.28 13.25 11.57 1.18 

 AVP 7.08 10.96 9.38 1.13 

 Ho 179.90 473.90 336.57 103.83 

India PAR 69.85 128.73 94.83 16.93 

 H 154.30 291.09 213.24 40.01 

 kt 0.3407 0.7012 0.5640 0.1059 

 AT 16.10 30.37 24.28 4.19 

 RH 45.07 83.29 65.08 10.91 

 Td 31.16 34.25 32.76 0.92 

 AVP 5.44 10.82 8.01 1.65 

 SVP 9.84 14.31 12.31 1.31 

 VPD 2.14 7.61 4.29 1.49 

 PARnH 0.4216 0.4753 0.4457 0.0157 

https://power.larc.nasa.gov/data-access-viewer/
https://www.countrycoordinate.com/
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Where PAR is the photosynthetically active radiation (W/m2), H is the global solar 

radiation (W/m2), kt is the clearness index, AT is the ambient temperature (°C), RH is the 

relative humidity (%), Td is the dewpoint (°C), AVP is the actual vapour pressure (kPa), 

SVP is the saturated vapour pressure (kPa), and VPD is the vapour pressure deficits (kPa). 

 

Figure 1. Descriptive statistics of input and output parameters for China (left hand column) and 

India (right hand column). 
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The datasets the from the selected five global climate model (GCM) outputs were 

interpolated to generate a multi-model ensemble analysis based on the most recent cli-

mate projections so as to examine the spatial and temporal variability of the relevant en-

ergy variables over the 21st century, since most GCMs are likely to underestimate or over-

estimate climate datasets. This can be accomplished because different model outputs are 

accessible at different spatial resolutions (Table 2). The multi-model ensemble CMIP6 cli-

mate datasets generated in this study under different shared socioeconomic pathways 

(SSPs) such as SSP1-2.6 (hereafter SSP126), SSP2-4.5 (hereafter SSP245), and SSP5-8.5 

(hereafter SSP585) in the near future (2015–2049), far future (2050–2099), and all-future 

(2015–2099), with respect to the historical climate data (1984–2014), were employed to 

evaluate the impacts of climate change on PAR productivity. The five GCMs were chosen 

based on the availability of pertinent meteo-solar variables for all SSPs created by the Eu-

ropean Centre for Medium-Range Weather Forecasts (ECMWF, 

https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era5) (accessed on 14 

March 2023). The datasets were downloaded using latitudes that cut across North (38°) to 

South (8°), and West (68°) to East (98°) of India, as well as latitudes that cut across North 

(60°) to South (18°), and West (80°) to East (135°) of China under monthly time resolution.  

Table 2. Summary of the two Global Climate Model (GCM) from Coupled Model Intercomparison 

Project Phase 6 (CMIP6). 

  Grid Size (Long × Lat) /Spatial Resolution Temporal Reso-

lution Model Centre Historical Future 

GFDL-ESM4 

National Oceanic and Atmospheric 

Administration, Geophysical Fluid 

Dynamics Laboratory 

288 × 180 (1.25° × 1.00°) 288 × 180 (1.25° × 1.00°) Monthly  

HadGEM3-

GC31 

National Centre for Meteorological 

Research, France 

1024 × 768 (0.35° × 

0.23°) 
432 × 324 (0.83° × 0.55°) Monthly 

EC-Earth3 EC-Earth Consortium, Europe 
1024 × 512 (0.35° × 

0.35°) 

1024 × 512 (0.70° × 

0.70°) 
Monthly 

IITM-ESM4 

Centre for Climate Research, Indian 

Institute of Tropical Meteorology, In-

dia 

288× 180 (1.87° × 1.91°) 288× 180 (1.87° × 1.91°) Monthly 

BCC-CSM2 
Beijing Climate Center Climate Sys-

tem Model 
2.8125° × 2.8125° 2.8125° × 2.8125° Monthly 

2.2. Data Quality and Modeling 

The scattering technique developed by Khorasanizadeh et al. [52] was used to test 

and verify the quality of the NASA satellite datasets used in this work, since they were 

the main configuration factors of the input. Datasets outside the range 0–1 were discarded, 

as shown in Figure 1, and the PAR ratio (RPAR = PAR/H) in the range 0–1 was used to 

model PAR. The 0–1 range of values used to generate the Gumbel probabilistic model 

(GPM) and hybridize the GPM with the controlled ARIMA model (CARIMA) and the 

multilayer perceptron artificial neural network (MLP) models established in the following 

sections is also set to correspond to this. As shown in Table 3, the datasets for China and 

India that were used to create the models—six machine learning models and three phys-

ics-based models—included empirical, PAR coefficient ratio (PCR), and hybrid MLP-

CARIMA-GPM models that used a variety of input parameters and were implemented 

using IBM SPSS version 25 software. These datasets were split into two different groups.. 

The models were tested for fit using the remaining 25% of the datasets after they had been 

trained on 75% of the total datasets. Hundred and ten (110) models using boosting, bag-

ging, the multilayer perceptron artificial neural network model (MLP), and swapped 

ARIMA approaches were simulated in China and India using the same input and output 

https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era5
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configuration elements used for simulating controlled ARIMA (CARIMA) and empirical 

(44) models. 

Table 3. Input and output parameters of developed models for different configurations. 

# 
Input Element No-

tations  
Parameter Method 

Out-

put 

1 H Global solar radiation 
CARIMA, SARIMA, BAGGING, BOOSTING, MLP, RBF, and 

EMPIRICAL  
𝑃𝐴𝑅 

2 H, (H)1.1 Global solar radiation 
CARIMA, SARIMA, BAGGING, BOOSTING, MLP, RBF, and 

EMPIRICAL  
𝑃𝐴𝑅 

3 H, (H)1.1, (H)1.2 Global solar radiation 
CARIMA, SARIMA, BAGGING, BOOSTING, MLP, RBF, and 

EMPIRICAL  
𝑃𝐴𝑅 

4 RH Relative humidity 
CARIMA, SARIMA, BAGGING, BOOSTING, MLP, RBF, and 

EMPIRICAL  
𝑃𝐴𝑅 

5 RH, (RH)1.1 Relative humidity 
CARIMA, SARIMA, BAGGING, BOOSTING, MLP, RBF, and 

EMPIRICAL  
𝑃𝐴𝑅 

6 RH, (RH)1.1, (RH)1.2 Relative humidity 
CARIMA, SARIMA, BAGGING, BOOSTING, MLP, RBF, and 

EMPIRICAL  
𝑃𝐴𝑅 

7 VPD 
Vapour pressure defi-

cit 

CARIMA, SARIMA, BAGGING, BOOSTING, MLP, RBF, and 

EMPIRICAL  
𝑃𝐴𝑅 

8 VPD, (VPD)1.1 
Vapour pressure defi-

cit 

CARIMA, SARIMA, BAGGING, BOOSTING, MLP, RBF, and 

EMPIRICAL  
𝑃𝐴𝑅 

9 
VPD, (VPD)1.1, 

(VPD)1.2 

Vapour pressure defi-

cit 

CARIMA, SARIMA, BAGGING, BOOSTING, MLP, RBF, and 

EMPIRICAL  
𝑃𝐴𝑅 

10 H, VPD Hybrid  
CARIMA, SARIMA, BAGGING, BOOSTING, MLP, RBF, and 

EMPIRICAL  
𝑃𝐴𝑅 

11 H, VOD, RH Hybrid 
CARIMA, SARIMA, BAGGING, BOOSTING, MLP, RBF, and 

EMPIRICAL  
𝑃𝐴𝑅 

2.2.1. Empirical Approach 

Empirical modeling is a type of regression analysis used in statistical modeling to 

analyze and predict complex real-world phenomena based on observed data. Evolution-

ary machine learning models, along with their evolving hybrid counterparts, have out-

performed the performance of the earliest empirical method of predicting observed da-

tasets. However, the empirical approach is used in this study to develop an array of mod-

els for predicting PAR productivity and to contrast them with other techniques already in 

use in China and India. Table 4 displays the results of this method’s estimation, or coeffi-

cients for China and India. 

Table 4. Fitted empirical models for predicting PAR productivity in China and India. 

Country  Model Estimate 

China 1 𝑃𝐴𝑅 = −4.866 + 0.480(𝐻) 

China 2 𝑃𝐴𝑅 = −2.224 + 0.306(𝐻) + 0.094(𝐻)1.1 

China 3 𝑃𝐴𝑅 = −2.484 + 0.394(𝐻) + 0.0001(𝐻)1.1 + 0.025(𝐻)1.2 

China 4 𝑃𝐴𝑅 = −167.365 + 3.090(𝑅𝐻) 

China 5 𝑃𝐴𝑅 = −144.827 + 0.001(𝑅𝐻) + 1.812(𝑅𝐻)1.1 

China 6 𝑃𝐴𝑅 = −126.044 + 0.0001(𝑅𝐻) + 0.0001(𝑅𝐻)1.1 + 1.071(𝑅𝐻)1.2 

China 7 𝑃𝐴𝑅 = 11.140 + 32.654(𝑉𝑃𝐷) 

China 8 𝑃𝐴𝑅 = 17.833 + 0.001(𝑉𝑃𝐷) + 27.348(𝑉𝑃𝐷)1.1 

China 9 𝑃𝐴𝑅 = −298.135 + 878.540(𝑉𝑃𝐷) + 0.0001(𝑉𝑃𝐷)1.1 + 601.510(𝑉𝑃𝐷)1.2 

China 10 𝑃𝐴𝑅 = −1.767 + 0.484(𝐻) − 1.735(𝑉𝑃𝐷) 
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China 11 𝑃𝐴𝑅 = −114.736 + 0.439(𝐻) + 9.029(𝑉𝑃𝐷) + 1.2051(𝑅𝐻) 

India  1 𝑃𝐴𝑅 = 5.802 + 0.417(𝐻) 

India 2 𝑃𝐴𝑅 = 14.044 + 0.000(𝐻) + 0.221(𝐻)1.1 

India 3 𝑃𝐴𝑅 = 58.231 − 1.028(𝐻) + 0.000(𝐻)1.1 + 0.409(𝐻)1.2 

India 4 𝑃𝐴𝑅 = 174.176 − 1.219(𝑅𝐻) 

India 5 𝑃𝐴𝑅 = 166.880 + 0.000(𝑅𝐻) − 0.728(𝑅𝐻)1.1 

India 6 𝑃𝐴𝑅 = 487.448 − 30.699(𝑅𝐻) + 0.000(𝑅𝐻)1.1 + 10.665(𝑅𝐻)1.2 

India 7 𝑃𝐴𝑅 = 49.469 + 10.561(𝑉𝑃𝐷) 

India 8 𝑃𝐴𝑅 = 85.985 − 83.492(𝑉𝑃𝐷) + 73.477(𝑉𝑃𝐷)1.1 

India 9 𝑃𝐴𝑅 = 82.796 − 36.361(𝑉𝑃𝐷) + 0.000(𝑉𝑃𝐷)1.1 + 28.856(𝑉𝑃𝐷)1.2 

India 10 𝑃𝐴𝑅 = −6.792 + 0.552(𝐻) − 3.728(𝑉𝑃𝐷) 

India 11 𝑃𝐴𝑅 = −61.402 + 0.451(𝐻) + 3.590(𝑉𝑃𝐷) + 0.685(𝑅𝐻) 

2.2.2. Auto-Regressive Integrated Moving Average (ARIMA) Approach 

ARIMA is a type of machine learning model used for time series analysis, forecasting, 

and prediction. It uses statistical methods to identify patterns and trends in historical data 

and use those patterns to make predictions about future values in the series. However, 

they may not always provide accurate predictions if the data is too complex or unpredict-

able, and they require a significant amount of data cleaning and preprocessing in order to 

be effective. It is important for analysts to carefully evaluate the suitability of the model 

for their specific data before implementation, and to have a thorough understanding of 

the underlying statistical assumptions and limitations of the model when interpreting 

their results. ARIMA models are a useful starting point for time series analysis, but they 

are not suitable for all types of data and may require significant manipulation or transfor-

mation. Advanced modeling techniques such as neural networks or ensemble approaches 

may be necessary to achieve accurate predictions. ARIMA models assume that the time 

series data is stationary, but when the data is non-stationary, alternative models such as 

SARIMA can be used to address this issue. Non-stationary time series data can lead to 

inaccurate forecasts and predictions if not properly addressed. Proper pre-processing and 

transformation techniques can mitigate this issue and improve the performance of 

ARIMA or SARIMA models. In this study, the controlled ARIMA (CARIMA) and 

swapped ARIMA (SARIMA) approaches were used to predict PAR as described in our 

previous works [24,53–55]. The predictions are compared with the actual PAR values to 

evaluate the performance of the models. Table 5 displays the results of this CARIMA esti-

mation, with coefficients for China and India. 

Table 5. Fitted CARIMA models for predicting PAR productivity in China and India. 

Country  Model Estimate 

China 1 𝑃𝐴𝑅 = −4.866 + 0.480(𝐻) 

China 2 𝑃𝐴𝑅 = −2.224 + 0.306(𝐻) + 0.094(𝐻)1.1 

China 3 𝑃𝐴𝑅 = −2.224 + 0.306(𝐻) + 0.094(𝐻)1.1 − 0.0000119(𝐻)1.2 

China 4 𝑃𝐴𝑅 = −167.365 + 3.090(𝑅𝐻) 

China 5 𝑃𝐴𝑅 = −167.371 + 3.090(𝑅𝐻) + 0.0001(𝑅𝐻)1.1 

China 6 𝑃𝐴𝑅 = −167.377 + 3.090(𝑅𝐻) + 0.00001688(𝑅𝐻)1.1 + 0.0001(𝑅𝐻)1.2 

China 7 𝑃𝐴𝑅 = 11.140 + 32.654(𝑉𝑃𝐷) 

China 8 𝑃𝐴𝑅 = −325.220 + 1719(𝑉𝑃𝐷) − 1416.354(𝑉𝑃𝐷)1.1 

China 9 𝑃𝐴𝑅 = −298.135 + 878.539(𝑉𝑃𝐷) + 0.001(𝑉𝑃𝐷)1.1 + 601.511(𝑉𝑃𝐷)1.2 

China 10 𝑃𝐴𝑅 = −1.767 + 0.484(𝐻) − 1.735(𝑉𝑃𝐷) 

China 11 𝑃𝐴𝑅 = −118.308 + 0.438(𝐻) + 9.109(𝑉𝑃𝐷) + 1.249(𝑅𝐻) 

India  1 𝑃𝐴𝑅 = 5.802 + 0.417(𝐻) 

India 2 𝑃𝐴𝑅 = 62.979 − 2.470(𝐻) + 1.529(𝐻)1.1 

India 3 𝑃𝐴𝑅 = 62.979 − 2.470(𝐻) + 1.529(𝐻)1.1 + 0.0000049(𝐻)1.2 
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India 4 𝑃𝐴𝑅 = 174.176 − 1.219(𝑅𝐻) 

India 5 𝑃𝐴𝑅 = 515.215 − 60.026(𝑅𝐻) + 35.228(𝑅𝐻)1.1 

India 6 𝑃𝐴𝑅 = 515.215 − 60.026(𝑅𝐻) + 35.228(𝑅𝐻)1.1 − 0.000023(𝑅𝐻)1.2 

India 7 𝑃𝐴𝑅 = 49.469 + 10.561(𝑉𝑃𝐷) 

India 8 𝑃𝐴𝑅 = 85.985 − 83.492(𝑉𝑃𝐷) + 73.477(𝑉𝑃𝐷)1.1 

India 9 𝑃𝐴𝑅 = 85.970 − 83.479(𝑉𝑃𝐷) + 73.491(𝑉𝑃𝐷)1.1 − 0.020(𝑉𝑃𝐷)1.2 

India 10 𝑃𝐴𝑅 = −6.792 + 0.552(𝐻) − 3.728(𝑉𝑃𝐷) 

India 11 𝑃𝐴𝑅 = −60.781 + 0.451(𝐻) + 3.556(𝑉𝑃𝐷) + 0.680(𝑅𝐻) 

2.2.3. Radial Basic Function 

Radial basic function is a neural network model which uses radial basis functions as 

activation functions. These functions are typically gaussian or inverse quadratic functions 

and have the advantage of good approximation properties for smooth input-output map-

pings. Other advantages of radial basis functions include their ability to handle noisy data 

and their computational efficiency when compared to other methods. They are versatile 

enough to be applied in both regression and classification problems and have the ability 

to interpolate functions, making them suitable for use in signal processing and image pro-

cessing applications. This makes them a popular choice for applications in finance, engi-

neering, machine learning, and climate-related forecasting or prediction, as applied in 

predicting PAR in this paper. The schematic diagram of the top-performing model (model 

11) generated with the radial basis function (RBF) method is shown in Figure 2. 

 

Figure 2. Schematic diagram of the best-performing model (model 11) using radial basis function 

(RBF). 
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2.2.4. The Multilayer Perceptron (MLP) Artificial Neural Network 

The multilayer perceptron (MLP) artificial neural network model is a type of feedfor-

ward neural network which includes multiple layers of nodes between the input and out-

put layers. It is commonly used for tasks such as classification, regression, and pattern 

recognition. MLPs have proven to be effective in a variety of applications, from image and 

speed recognition to financial analysis and natural language processing. A simpler model 

may be more suitable for some tasks where the computational resources are limited, while 

a more complex network architecture may be necessary for tasks that require a higher 

level of accuracy or deal with more complex data. Ultimately, the choice of network ar-

chitecture depends on the specific task and available resources. This makes them a popu-

lar choice for applications in finance, engineering, machine learning, and climate-related 

forecasting or prediction, as applied in predicting PAR in this paper. The schematic dia-

gram of the top-performing model (model 11) generated with the multilayer perceptron 

(MLP) method is shown in Figure 3. 

 

Figure 3. Schematic diagram of the best-performing model (model 11) using multi-layer perceptron 

(MLP). 

2.2.5. Boosting 

Boosting is a machine learning technique which enhances the accuracy of models by 

combining multiple weak models. It works by iteratively training weak learners on sub-

sets of the data and weighting their predictions based on their accuracy. It is commonly 

used in applications such as image classification, natural language processing, and pre-

dictive modeling, but can lead to overfitting if not properly tuned. Regularization tech-

niques such as early stopping and shrinkage are essential for preventing the boosted 

model from becoming overfit. These techniques are complementary and often used to-

gether to enhance model performance. Additionally, merging multiple methods can lead 
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to new and innovative insights that may not have been possible with just one approach. 

Details on the boosting technique can be found in Nwokolo et al. [24]. 

2.2.6. Bagging 

Bagging is a type of ensemble machine learning model which combines the predic-

tions of multiple base models to improve overall accuracy. It can be used in various appli-

cations such as image recognition, speech recognition, and natural language processing. 

It is particularly effective for high variance algorithms, where small perturbations to the 

training set could significantly affect the learned models. Bagging is a popular ensemble 

method commonly used in decision tree algorithms, where it randomly selects data sub-

sets and trains multiple decision trees with them, which are then combined to make a final 

prediction. It can also be used to reduce bias in models that are prone to underfitting. 

Bagging works well with both classification and regression problems, and it can be further 

improved by using techniques such as random forests or boosting. Bagging, also known 

as bootstrapping aggregating, is a popular ensemble learning technique which can im-

prove the stability and accuracy of machine learning models. It involves creating multiple 

variations of a model by training it on different subsets of the data. Details on the bagging 

technique can be found in Nwokolo et al. [24]. 

2.2.7. PAR Ratio (PCR) 

The PAR ratio is frequently calculated using a coefficient of 0.45 based on research 

from the global literature. This coefficient is used to estimate the amount of PAR that is 

absorbed by plants for photosynthesis. However, it is important to note that this coeffi-

cient may vary depending on the specific plant species and environmental conditions. As 

shown in the global review article [37], the regional review study [56], and the global PAR 

ratio analysis, this approach is frequently feasible where PAR measurement is not availa-

ble [57]. In order to compare the performance of this prediction approach to other ones 

used in this study, the authors listed it in the literature as the PAR prediction method. 

Mathematically, PCR can be written as: 

𝑃𝐴𝑅 = 0.45(𝐻) (2) 

2.2.8. Hybridization of MLP, CARIMA, and GPM (MLP-CARIAM-GPM) 

The Gumbel distribution is a type of probability distribution used in extreme value 

theory to model the distribution of the maximum or minimum of a large number of inde-

pendent and identically distributed random variables. It is commonly used in fields such 

as engineering, economics, and meteorology to model extreme events such as floods, 

earthquakes, and hurricanes. The Gumbel distribution is also known as the Type I extreme 

value distribution and is characterized by its shape parameter and location parameter. It 

has been found to be a useful tool for predicting rare events that have significant impacts 

on society and the environment. The Gumbel distribution approach offers a reliable way 

to predict solar fluxes in any given region, and its accuracy is useful for preparing plans 

related to solar flux production and other activities that require an understanding of po-

tential levels of solar radiation over a given time period. Our most recent publications 

discuss the Gumbel distribution approach’s (GPM) discovery, potential, and applications 

in predicting solar radiation [24,53–55]. However, as shown in Table 3, the method is uti-

lized in this study to predict the performance of PAR productivity. 

PAR ratio (RPAR) is mathematically expressed as: 

𝑃𝐴𝑅

𝐻
= 𝑅𝑃𝐴𝑅 (3) 

𝑃𝐴𝑅 = 𝑅𝑃𝐴𝑅(𝐻) (4) 
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where RPAR stands for the normalized PAR productivity parameter, H represents the 

global solar radiation. CARIMA and MLP approaches were used to fit Equations (5)–(8) 

using H, VPD, and RH parameters as follows: 

𝑅𝑃𝐴𝑅 = 0.126 + 0.0000638(𝐻) + 0.018(𝑉𝑃𝐷) + 0.004(𝑅𝐻) (5) 

𝑀𝐿𝑃(𝑅𝑃𝐴𝑅)

𝐶𝐴𝑅𝐼𝑀𝐴(𝑅𝑃𝐴𝑅)
= 1.00458 (6) 

 𝑀𝐿𝑃(RPAR) = 1.00458(𝐶𝐴𝑅𝐼𝑀𝐴(𝑅𝑃𝐴𝑅)) (7) 

Putting (5) into (7) yields (8)  

𝑅𝑃𝐴𝑅 = 0.1266 + 0.0000641(𝐻) + 0.0181(𝑉𝑃𝐷) + 0.00402(𝑅𝐻) (8) 

Putting (8) into (4) yields (9) 

𝑃𝐴𝑅 = (0.1266 + 0.0000641(𝐻) + 0.0181(𝑉𝑃𝐷) + 0.00402(𝑅𝐻) ) × 𝐻 (9) 

The time series stochastic function for a continuous distribution like is expressed as: 

𝐹 (
𝑃𝐴𝑅

𝐹𝑃𝐴𝑅
) = ∫ 𝑓 (

𝑃𝐴𝑅

𝑅𝑃𝐴𝑅
)

∞

−∞
  (10) 

The normal distribution for 𝑃𝐴𝑅/𝑅𝑃𝐴𝑅 is given as: 

µ =
𝑃𝐴𝑅/𝑅𝑃𝐴𝑅 − 𝛽

𝜆
 (11) 

where RPAR is the PAR ratio derived from global solar radiation, vapour pressure deficit, 

and relative humidity parameters simulated using CARIMA to normalize the PAR to con-

firm the Gumbel probabilistic range (0–1) expressed in (5), the mean of PAR/RPAR repre-

sents the standard deviation of PAR/RPAR, =0.4457, and for generalized datasets of PAR 

for India; the Gumbel’s reliability or cumulative distribution is given as follows: 

𝑅(𝑃𝐴𝑅/𝑅𝑃𝐴𝑅) = 1 − 𝑒𝑥𝑝[−𝑒𝑥𝑝(µ)] (12) 

Putting (11) into (12) yields (13)  

𝑅(𝑃𝐴𝑅/𝑅𝑃𝐴𝑅) = 1 − 𝑒𝑥𝑝 [−𝑒𝑥𝑝 (
𝑃𝐴𝑅/𝑅𝑃𝐴𝑅 − 𝛽

𝜆
)] (13) 

Let 𝑄 = 𝑅(𝑃𝐴𝑅/𝑅𝑃𝐴𝑅) (14) 

𝑄 = 1 − 𝑒𝑥𝑝 [−𝑒𝑥𝑝 (
𝑃𝐴𝑅/𝑅𝑃𝐴𝑅 − 𝛽

𝜆
)] (15) 

𝑃𝐴𝑅 = 𝑅𝑃𝐴𝑅[𝛽 + 𝜆𝐼𝑛[−𝐼𝑛(1 − 𝑄)]]  

𝑃𝐴𝑅 = 𝑅𝑃𝐴𝑅[0.4457 + 0.0157𝐼𝑛[−𝐼𝑛(1 − 𝑄)]] (16) 

Equating (16) and (4) yields (17) 

𝑅𝑃𝐴𝑅(𝐻) = 𝑅𝑃𝐴𝑅[0.4457 + 0.0157𝐼𝑛[−𝐼𝑛(1 − 𝑄)]]  

𝐻 = 0.4457 + 0.0157𝐼𝑛[−𝐼𝑛(1 − 𝑄)] (17) 

Putting (17) into (9) yields (18) 

𝑃𝐴𝑅 = (0.1266 + 0.0000641(𝐻) + 0.0181(𝑉𝑃𝐷) + 0.00402(𝑅𝐻) ) × 0.4457 + 0.0157𝐼𝑛[−𝐼𝑛(1 − 𝑄)] (18) 

From the best-performing CARIMA model (CARIMA11),  

𝑃𝐴𝑅 = −60.781 + 0.451(𝐻) + 3.556(𝑉𝑃𝐷) + 0.680(𝑅𝐻) (19) 

Equating (18) and (19) yields (20) 
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𝑃𝐴𝑅 = −60.781 + 0.451(𝐻) + 3.556(𝑉𝑃𝐷) + 0.680(𝑅𝐻)

= (0.1266 + 0.0000641(𝐻) + 0.0181(𝑉𝑃𝐷) + 0.00402(𝑅𝐻) ) × 0.4457

+ 0.0157𝐼𝑛[−𝐼𝑛(1 − 𝑄)] 

(20) 

Equation (20) transforms into (21) 

𝑃𝐴𝑅 = −60.781 + 0.451(𝐻) + 3.556(𝑉𝑃𝐷) + 0.680(𝑅𝐻) =1.00458(RPAR)×(𝐻) (21) 

Putting (21) into (4) yields (22) 

𝑃𝐴𝑅 = −60.781 + 0.451(𝐻) + 3.556(𝑉𝑃𝐷) + 0.680(𝑅𝐻) =1.00458(𝑃𝐴𝑅)  

𝑃𝐴𝑅 = −60.504 + 0.4489(𝐻) + 3.539(𝑉𝑃𝐷) + 0.677(𝑅𝐻) (22) 

A MLP-CARIMA-GPM model with evolutionary hybridization is used in Equation 

(22) to predict PAR productivity in India. The same procedure was used to obtain MLP-

CARIMA-GPM for China, as represented by Equation (23) and Table 6. 

𝑃𝐴𝑅 = −117.768 + 0.4360(𝐻) + 9.067(𝑉𝑃𝐷) + 1.243(𝑅𝐻) (23) 

Table 6. Fitted best performing models for predicting PAR productivity hybrid models for China 

and India. 

Country Approach Estimate 

China MLP-CARIMA-GPM 𝑃𝐴𝑅 = −117.768 + 0.4360(𝐻) + 9.067(𝑉𝑃𝐷) + 1.243(𝑅𝐻) 

India MLP-CARIMA-GPM 𝑃𝐴𝑅 = −60.504 + 0.4489(𝐻) + 3.539(𝑉𝑃𝐷) + 0.677(𝑅𝐻) 

2.2.9. Analytical Tools and Performance Evaluation 

The evaluation metrics used in this study were the coefficient of determination (R2), 

mean absolute percentage error (MAPE), root mean square error (RMSE), normalized root 

mean square error (nRMSE), and relative percentage error (RPE), as shown in Table 7. 

Table 7. Details of the statistical indicators. 

S/N Abbreviation Statistical Test Expression Idea Value 

1. R2 Coefficient of determination 𝑅2 = 1 − [
∑ (𝑂𝑖 − 𝑃𝑖)2𝑛

𝑖=1

∑ (𝑂𝑖 − 𝑂𝑎𝑣𝑒)2𝑛
𝑖=1

] One 

2. RMSE Root mean square error 𝑅𝑀𝑆𝐸 = √
1

𝑛
∑(𝑂𝑖 − 𝑃𝑖)2

𝑛

𝑖=1

 Zero 

3. nRMSE Normalized root mean square error 𝑛𝑅𝑀𝑆𝐸 =
𝑅𝑀𝑆𝐸

∑ (𝐻)𝑛
𝑖=1

 Zero 

4. RPE Relative percentage error 𝑅𝐸 = ∑ (
𝑂𝑖 − 𝑃𝑖

𝑃𝑖

) × 100

𝑛

𝑖=1

 Zero 

5 MAPE Mean absolute percentage error 𝑀𝐴𝑃𝐸 =
1

𝑛
∑|𝑂𝑖 − 𝑃𝑖|

𝑛

𝑖=1

 Zero 

2.3. Climate Change and Urban Expansion Impacts on PAR Productivity Evaluation 

2.3.1. Evaluation of the Impacts of Climate Change on PAR Productivity Using the MLP-

CARIMA-GPM Model 

The potential for seasonal and annual PAR productivity under various levels of emis-

sion scenarios (SSP126, SSP245, and SSP585) between 2015–2099 as well as the historical 

period (1984–2014) was evaluated using the MLP-CARIMA-GPM (Table 6). The model 

utilizes detailed information about global solar radiation, vapour pressure deficit, and 
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relative humidity parameters to accurately calculate the seasonal and annual PAR. Since 

the input parameters (global solar radiation, temperature, and relative humidity) are fitted 

into the European Centre for Medium-Range Weather Forecasts (ECMWF) as detailed in 

Section 2.1, future emission scenarios can be generated by a simple evaluation of the MLP-

CARIMA-GPM model mathematically for any location across the globe. Accordingly, the 

MLP-CARIMA-GPM model was employed to assess the PAR productivity potential in 

India and China under various emission scenarios and sequencing periods through the 

end of this century. The findings of this assessment highlighted the immense PAR produc-

tivity potential in these countries, with the study concluding that two countries have suf-

ficient PAR productivity potential to make them viable candidates for modern biomass 

production in the near future. As a result, the MLP-CARIMA-GPM model provides an 

invaluable resource for making informed decisions regarding the deployment of modern 

biomass production systems in developing countries and beyond. 

2.3.2. Evaluation of the Contribution of Urban Expansion to PAR Productivity 

According to data from Smith and Rothwell’s [58] publications, land use change in-

cludes all ecosystems, such as boreal forest, other forest, cropland, grassland, high latitude 

wetland, low latitude wetland, pasture land, primary other forest, rockice desert, shrub-

land, tundra, and urban land for China and India between the years of 1984–2099. This 

data was employed to evaluate the contribution of urban expansion to PAR productivity. 

3. Results 

3.1. Potential of PAR in China and India 

The annual mean photosynthetic productivity in China and India varies concur-

rently, with a range in India from 69.85 to 128.73 W/m2 and a corresponding range from 

40.88 to 122.50 W/m2 in China. China reported lower values than India, within a range 

from 40.88 to 122.50 W/m2 and a corresponding mean value of 82.67 W/m2 (Table 1 and 

Figure 1). This difference in PAR can be attributed to various factors such as climate, veg-

etation cover, and land use practices, which differ between the two countries. This indi-

cates that solar fluxes are typically greater than 43.76% in both China and India, indicating 

that crops and plants have the capacity to use their photosynthetic processes in those re-

gions for an extended period of time [55,59–61]. This highlights the potential for higher 

agricultural productivity in these regions, provided that other factors such as water avail-

ability and soil quality are favorable. However, it is important to note that excessive solar 

radiation can also lead to heat stress and damage to crops if not managed properly. To 

mitigate the risks associated with excessive solar radiation, farmers can adopt measures 

such as shading, irrigation, and crop rotation to maintain soil moisture and fertility. Ad-

ditionally, the use of heat-tolerant crop varieties and agronomic practices can help in-

crease resilience to extreme weather conditions. 

The annual mean of 94.82 W/m2 measured in India is comparable to the Nigerian 

value of 93.50 W/m2 reported in our most recent paper [55], while the annual mean of 

82.67 W/m2 measured in China is less than that measured in Nigeria [55]. The value of 

82.67 W/m2 found for China, however, is comparable to those found in Chinese literature. 

Wang et al. [62] unearthed an average monthly value of 80.60 W/m2 in China. Hu et al. 

[63] provided data for the North Chinese Plain and reported a value of 82.44 W/m2. In 

Lhasa, Haibai, and China, the same research team recorded values of 111.85 W/m2 and 

111.09 W/m2 for the lighting and dimming periods, respectively [64]. These findings sug-

gest that there is significant regional variation in the amount of direct solar radiation 

reaching the Earth’s surface, which may have important implications for local ecosystems 

and human populations. Further research is needed to better understand the drivers of 

this variability and its potential impacts. 

In Mainland China, Niu et al. [65] observed a value of 72.10 W/m2. Other regions of 

the world reported values of 94.83 W/m2 and 82.67 W/m2 that were comparable. For Fuji 
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Yoshida, Japan, Mizoguchi et al. [66] found 126.69 W/m2. Zhu et al. [67] measured 86.40 

W/m2 in the Sanya region of China, compared to 83.64 W/m2 on the Tibetan Plateau. The 

lowest values, from 82.09 to 85.98 W/m2 for southern Nigeria’s Delta, Bayelsa, Cross River, 

and Akwa Ibom, are similar to the value of PAR obtained for China, with Calabar produc-

ing the lowest solar PAR flux at 82.16 W/m2 [55]. The highest values, from 109.06 to 111.69 

W/m2 representing the states of Kastina, Borno, and Yobe in northern Nigeria, are compa-

rable to the PAR value obtained for India, with Kastina having the highest value of 111.70 

W/m2. 

3.2. Potential of PAR Ratio in China and India 

The PAR ratio’s minimum, maximum, range, and mean values for China and India 

are shown in Table 1. India’s PAR ranged from 0.4216 to 0.4753 with a corresponding mean 

value of 0.4457, and China’s PAR ranged from 0.4234 to 0.4695 with a corresponding mean 

value of 0.4514. These results suggest that there is a similar level of photosynthetic activity 

in both countries, with China having slightly higher PAR values on average. However, 

further analysis is needed to determine the factors contributing to these differences and 

their implications for plant growth and productivity. These were assessed by dividing the 

observed photosynthetic productivity (PAR) with global solar radiation (H). In cases 

where there is no instrumentation network to measure the solar fluxes, this value, which 

is also in the range of 0.45 and 0.47, is frequently used to estimate the PAR value [37,57,68–

71]. This method of estimating PAR can be useful in areas where there is no access to 

instrumentation, but it is important to note that the accuracy of the estimation may vary 

depending on factors such as cloud cover and atmospheric conditions. As a result, care 

should be taken when using this technique for exact measurements. It is recommended to 

use this method in conjunction with other methods of measuring PAR for more accurate 

results. Additionally, regular calibration of the estimation technique may be necessary to 

ensure consistent and reliable measurements. 

These values are comparable to various experimental findings made worldwide. Ac-

cording to our most recent publication from various parts of Nigeria, the PAR ratio there 

ranged from 0.4377 to 0.4539. Additionally, we discovered that from the northeastern re-

gion of Nigeria to the primarily coastal region in the south, the general distribution of the 

PAR ratio increases. The global PAR ratio varied from 0.4714 in the coastal region of Cal-

abar to 0.4377 in the interior region of Kastina. This suggests that, as predicted by Akitsu 

et al. [57], the PAR ratio is likely to rise in areas with higher relative humidity and vapor 

pressure. This suggests that coastal regions or locations which are nearer to open water 

bodies have higher PAR ratio productivity compared to inland region.  

Numerous studies also favorably compare the values of the PAR ratio obtained in 

China and India. The PAR ratio was recorded at 0.46 by Tsubo and Walker [72] in Bloem-

fontein, South Africa; Aguiar et al. [73] obtained 0.42 and 0.444 in pasture and forest areas 

of Brazil; Finch et al. [74] recorded 0.44 in Lusaka, Zambia; [59,60] scored 0.46 for Ilorin, 

Nigeria; Howell et al. [75] reported 0.45 for California, USA; and Ituen et al. [76] reported 

0.46 for California, USA. These findings suggest that the PAR ratio in China and India is 

comparable to or even higher than that of other countries, indicating a potential for high 

photosynthetic efficiency in these regions. Overall, the PAR ratio varies across different 

regions and ecosystems, but it is generally consistent within a particular ecosystem type. 

These variations in PAR ratio can be attributed to differences in vegetation structure, cli-

mate, and other environmental factors. For example, in tropical rainforests, the PAR ratio 

is typically lower due to the dense canopy cover, while in grasslands and savannas, it is 

higher due to the lack of vertical vegetation structure. Understanding these variations in 

PAR ratio can help us better understand ecosystem functioning and productivity. How-

ever, further research is needed to fully understand the factors contributing to these dif-

ferences in PAR ratios across different regions. 

Papaioannou et al. [77] scored 0.44 for Athens, Greece. Rao [78] recorded 0.46 in Ore-

gon, USA. These results suggest that air pollution levels in Athens and Oregon were 
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relatively similar during the time periods studied. However, it is important to note that 

direct comparisons between the two locations may not be entirely accurate due to differ-

ences in measurement methods and environmental factors. For instance, Athens is a 

densely populated city with high traffic congestion, while Oregon is a state with varying 

levels of urbanization and industrial activity. These contextual differences may impact the 

interpretation of the data and should be taken into consideration when drawing conclu-

sions. 

3.3. Simulation Model Performance 

The results of the monthly mean PAR productivity’s prediction performance are pre-

sented in Figure 4 and Table 8, which show the input combination parameters and their 

corresponding machine learning models (MLP, RBF, BOO, BAG, CARIMA, SARIMA), the 

indirect method of PAR estimation (PCR), empirical approaches, and the MLP-CARIMA-

GPM hybridization approach using five error metrics. Boosting and bagging ensemble 

approaches, neural network approaches (MLP and RBF), physics-based approaches, and 

two statistical machine learning approaches (CARIMA and SARIMA) are used to study 

the shared effects of various input-combination parameters (PCR, empirical, and MLP-

CARIMA-GPM). It was evident that the SARIMA model outperformed its CARIMA coun-

terpart, MLP outperformed RBF, and MLP-CARIMA-GPM outperformed PCR and em-

pirical approaches. By contrast, boosting and bagging, which are members of the ensem-

ble family, had comparable performance capacities. 

In order to predict the PAR productivity, the input combination parameters of global 

solar radiation (H), relative humidity (RH), and vapour pressure deficit (VPD) showed 

varying capacities in China and India. The six machine learning models (MLP, RBF, BOO, 

BAG, CARIMA, and SARIMA) and the three physics-based models (PCR, empirical, and 

MLP-CARIMA-GPM), on the other hand, showed similar variation, according to the re-

sults of the error metrics shown in Figure 5. The performance capabilities of each input 

parameter on the nine methods used were generally evaluated using the coefficient of 

determination (R2), mean absolute percentage error (MAPE), root mean square error 

(RMSE), relative percentage error (RPE), and relative root mean square error (nRMSE). 

According to Figure 4 and Table 8, the hybridized model using MLP, CARIMA, and 

the Gumbel probabilistic model (MLP-CARIMA-GPM) produced the highest R2 and the 

lowest MAPE, RMSE, RPE, and nRMSE of all the nine approaches used. It should be noted 

that all of the top-performing models from each of the nine different approaches are 

shown in Table 8 and did well in both the training and testing categories; R2, MAPE, RPE, 

RMSE, and nRMSE are all within the range of reliability of 0.9670 < R2 < 0.999 for R2, 0.001 

< MAPE < 0.0028 for MAPE, −0.048 < RPE < 0.014 for RPE, 0.001 < RMSE < 0.0768 for RMSE, 

and 0.0001 < nRMSE < 0.060 as shown in Table 8 and Figure 4. From one simulated ap-

proach to the next, different error metrics are obtained. 

Overall, all machine learning algorithms and empirical approaches in China and In-

dia reported the best-performing hybrid parameter-based model using global solar radi-

ation, vapor pressure deficit, and relative humidity (Model 11), with the exception of RBF, 

which produced the best-performing model using global solar radiation parameter-based 

Model 2 in China. This implies that the chosen input variables are accurate at predicting 

PAR in both countries. As shown in Table 8 and Figure 4, the MLP algorithm produced 

the best-performing models for all the models developed in China and India using the 

input combination parameters shown in Table 3, while the RBF algorithm performed the 

worst in terms of predicting performance. 

Consequently, when performing PAR prediction analysis using various machine 

learning and empirical approaches, the R2-values ranged from: 0.997 to 0.999% for India 

and 0.999 to 0.999% for China when using the MLP algorithm; 0.983 to 0.991% for India 

and 0.995 to 0.999% for China when using the SARIMA algorithm; 0.981 to 0.990% for 

India and 0.996 to 0.998% for China when using the CARIMA algorithm; 0.981 to 0.990% 

for China and 0.996 to 0.998% for India when using both bagging and boosting ensemble 
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algorithms; 0.968 to 0.975% for India and 0.921 to 0.948% for China using the RBF algo-

rithm; and finally 0.981 to 0.990% for India and 0.996 to 0.998% for China using the em-

pirical approach. When RMSE, MAPE, nRMSE, and RPE error metrics were taken into 

account using various machine learning algorithms along with an empirical approach, the 

same pattern was seen. 

The small changes shown by these models in the two countries were triggered by 

using the same input configuration parameters on six machine learning algorithms and 

an empirical approach on the various geographical and climatic features of China and 

India. The MLP algorithm, denoted by the yellow color in the plot’s legend, clearly 

demonstrated higher performing capacity using input combination model M1, M4-M11 

(described in detail in Table 3) in China and India compared to other machine learning 

algorithms (RBF, CARIMA, SARIMA, BOT, and BAG) as well as empirical approaches, as 

shown by Figure 4, which compares the performance of error metrics for various ap-

proaches. This explains why the MLP algorithm outperforms other prediction techniques. 

However, using the input combination models M2 and M3 for bagging and boosting al-

gorithms led to the best-performing algorithm as well as the empirical approach in both 

China and India. These models are described in detail in Table 3. This suggests that while 

the ensemble algorithm family has a high capacity for predicting PAR productivity in 

China and India, the MLP algorithm outperforms them, making it the best-performing 

method of non-hybridized models. 

As seen in Figure 4, both the input combination model (M4–M6) and the model (M7–

M9) underperformed in China and India. This explains why fitting PAR productivity 

models in both China and India cannot be done using a single parameter-based relative 

humidity or vapor pressure deficit. However, India’s use of CARIMA, SARIMA, BAG, 

BOT, and empirical approaches led to more accurate prediction outcomes when compared 

to China. However, models using global solar radiation (M1–M3) produced appreciable 

performance but were not as viable as their hybrid counterparts (M10–M11) fitted using 

all the input parameters (H, RH, and VPD) in China and India. 

For all input combination-based models that were simulated, the MLP algorithm pro-

duced higher predictive performance in both countries due to the lower performance of 

BAG, BOT, RBF, CARIMA, SARIMA, and empirical approaches in China compared to 

India (M1–M11). Due to their best results in this study, MLP seems to be the most highly 

recommended algorithm-based approach for fitting PAR productivity in both China and 

India. 

The MLP algorithm is compared to the PAR coefficient ratio model (PCR) and hy-

bridization of the MLP, CARIMA, and GPM (MLP-CARIMA-GPM) approaches because 

it produced the best-performing models using all the input combination predictive pa-

rameters shown in Table 4 in China and India. Table 8 makes it clear that in terms of error 

metric performance in China and India, the MLP algorithm outperformed the PCR model. 

However, based on the assessment of error metrics in both the training and testing cate-

gories, the super MLP-CARIMA-GPM hybrid model completely outperformed the MLP 

algorithm in both China and India. 

This suggests that the H, RH, and VPD input combination parameter values in China 

and India are more sensitive to and appropriate for the MLP-CARIMA-GPM model. The 

predicted datasets are nevertheless reliable even in this era of climate change externalities, 

as shown by the tested dataset’s high R2-value and low MAPE, RPE, RMSE, and nRMSE 

error metrics. 

This demonstrates that the MLP-CARIMA-GPM fitted approach for predicting PAR 

in China and India is deserving of recommendations for various environmental and re-

newable energy resource predictions, subject to the constraints confronted during the 

modeling. The Gumbel probabilistic interval is confirmed by normalizing predicted PAR 

to fall within a range of 0–1. 

There is a dearth of literature evaluating the effects of climate change on solar PAR 

fluxes in China and India using the Gumbel probabilistic model (GPM) in conjunction 
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with machine learning techniques like CARIMA and MLP. As a result, it is necessary to 

compare the evolution MLP-CARIMA-GPM model’s performance to that of fitted models 

that have already been tested in the past using a single algorithm, as well as to their hy-

bridization counterparts, which are shown in Table 9. Table 9 demonstrates that when 

compared to empirical, machine learning, and hybridizations of various algorithms in the 

literature, the proposed hybridized MLP-CARIMA-GPM produced the highest R2-value 

and lowest RMSE error metrics.  

The empirical model reported by Akitsu et al. [57], who used vapour pressure and 

clearness index (kt) to obtain an R2-value of 0.763 and an RMSE-value of 0.0109 in Tateno, 

Japan, was surpassed by the proposed MLP-CARIMA-GPM model. Additionally, the pro-

posed MLP-CARIMA-GPM outperformed the multilinear regression models fitted in Bur-

gos, Spain, and Sioux Falls, South Dakota, USA, by Garcia-Rodriguez et al. [79]. In com-

parison to the proposed hybrid model, which produced an R2-value of 0.999 and an RMSE-

value of 0.0002–0.0061 W/m2 in China and India, Foyo-Moreno et al.’s [80] empirically 

established model recorded lower error metrics performance R2-values of 0.994 and 0.993, 

as well as 0.047 W/m2 and 0.050 W/m2, respectively, for Granada, Spain. Wang et al.’s [81] 

multilinear regression model in Changbaishan, China had an R2 value of 0.985 and an 

RMSE value of 0.1330. The proposed MLP-CARIMA-GPM model outperformed them.  

Sustainable machine learning and numerical model hybridization fitted in this study 

outperformed a number of empirical multilinear regression best-performing models for 

evaluating PAR potential in Burgos, Spain [82] and Thessaloniki, Greece [83]. This is in 

line with a number of experimental and review reports on empirical and multilinear re-

gression for predicting PAR [37], for predictions of global solar radiation in Africa [12], 

West Africa [84], and Nigeria [15], and for diffuse solar radiation in Africa [13], and North 

Western Africa [85]. 

This suggests that using empirical or multilinear regression approaches to fit solar 

PAR fluxes is inefficient in the current era of global sustainability, global warming, and 

climate change, because the MLP-CARIMA-GPM model, which is more cost effective, 

clean, efficient, reliable, and sustainable, can quantify the potential of solar PAR fluxes in 

accordance with SDG prescriptions and requirements. The proposed MLP-CARIMA-

GPM model, however, outperformed all of the few studies that used machine learning 

and hybridization models to predict PAR fluxes. Wang et al. [86] found R2 values of 0.996, 

0.993, and 0.995 for the MLP, GRNN, and RBNN models, respectively, in addition to 

RMSE-values of 0.065 W/m2 and 0.068 W/m2 in various Chinese ecosystems. Similar 

ranges of R2 and RMSE values were reported by Ferrera-Cobbs et al. in 2020 [87]. 

According to the results of this study, the Gumbel probabilistic model is used to help 

the proposed MLP-CARIMA-GPM model accurately predict the solar PAR fluxes even 

though it was developed using commonly measured global solar radiation (H), relative 

humidity (RH), and vapour pressure deficit (VPD). As a result, the new prediction method 

used in this study is crucial for mapping the monthly mean prediction of solar PAR fluxes 

in China and India and represents a fresh direction for future global research.  

Table 8. Best-performing models for China and India. 

Country Model # 
Training Model Fit statistics Testing Model Fit Statistics 

R2 MAPE RPE RMSE nRMSE R2 MAPE RPE RMSE nRMSE 

India MLP11 0.999 0.0004 −0.022 0.0127 0.0001 0.929 0.0008 −0.015 0.010 0.0001 

India RBF11 0.953 0.0027 −0.001 0.0854 0.0010 0.967 0.0048 −0.001 0.060 0.001 

India CARIMA11 0.990 0.0010 0.011 0.0321 0.0004 0.969 0.0019 0.008 0.023 0.0003 

India SARIMA11 0.991 0.0010 −0.034 0.0331 0.0004 0.969 0.0028 −0.024 0.023 0.0005 

India BAG11 0.990 0.0011 0.010 0.0325 0.0004 0.969 0.0018 0.007 0.023 0.0003 

India BOT11 0.990 0.0011 0.010 0.0325 0.0004 0.969 0.0021 0.007 0.023 0.0004 

India EMP11 0.990 0.0011 0.014 0.0332 0.0004 0.969 0.0031 0.010 0.023 0.0004 

India PCR 0.974 0.0025 0.000 0.0768 0.0009 0.968 0.0020 0.000 0.054 0.0007 
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India 
MLP-CARIMA-

GPM 
0.999 0.0002 0.000 0.0061 0.0001 0.970 0.0001 0.000 0.004 0.0001 

China MLP11 0.999 0.0003 −0.048 0.0066 0.0001 0.970 0.0081 −0.034 0.005 0.0001 

China RBF2 0.990 0.0018 0.000 0.0480 0.0006 0.969 0.0016 0.000 0.034 0.0007 

China CARIMA11 0.998 0.0008 0.007 0.0193 0.0003 0.970 0.0011 0.005 0.014 0.0003 

China SARIMA11 0.997 0.0010 −0.017 0.0243 0.0003 0.970 0.0014 −0.012 0.017 0.0003 

China BAG11 0.998 0.0008 0.006 0.0197 0.0003 0.970 0.0019 0.004 0.014 0.0003 

China BOT11 0.998 0.0008 0.006 0.0197 0.0003 0.970 0.0018 0.004 0.014 0.0003 

China EMP11 0.998 0.0008 0.008 0.0204 0.0003 0.970 0.0013 0.006 0.014 0.0006 

China PCR 0.995 0.0019 0.002 0.0508 0.0007 0.969 0.0012 0.001 0.036 0.0005 

China 
MLP-CARIMA-

GPM 
0.999 0.001 0.001 0.0002 0.0001 0.970 0.0018 0.001 0.000 0.0001 
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Figure 4. Performance analysis based on the error metrics of machine learning and empirical model 

fittings for China (left column) and India (right column). 
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Figure 5. Impacts of climate change (represented by changes in PAR (in percent)) on PAR produc-

tivity under various global warming scenarios, seasons, and annual time scales in China (left col-

umn) and India (right column). 
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Table 9. A comparative analysis between developed hybrid models with various techniques in pre-

vious studies. 

Studies Model Place/Country R2 RMSE 

Akitsu et al. [57] Empirical Tateno, Japan 0.763 0.0109 

García-Rodríguez et al. [79] MLR Burgos, Spain 0.994 0.0437 

García-Rodríguez et al. [79] ANN Burgos, Spain 0.994 0.0422 

García-Rodríguez et al. [79] MLR Sioux Falls, South Dakota USA 0.995 0.0684 

García-Rodríguez et al. [79] ANN Sioux Falls, South Dakota USA 0.995 0.0634 

Proutros et al. [5] Empirical Mt Oiti, Greece 0.993   

Wang et al. [81] MLR Changbaishan, China 0.985 0.1330 

Foyo-Moreno et al. [80] Empirical Granada, Spain 0.994 0.047 

Foyo-Moreno et al. [80] ANN Granada, Spain 0.993 0.050 

López et al. [88] ANN Brazil  0.998 0.026 

Jacovides et al. [89] ANN Eastern Mediterranean  0.972 0.079 

Zhang et al. [90] ANFIS China 0.970 0.748 

Zhang et al. [90] M5Tree China 0.967 0.799 

Zhang et al. [90] LSSVM China 0.961 0.903 

Janjai et al. [91] Empirical Chiang Mai 0.970 0.073 

Escobedo et al. [92] Empirical Botucatu, Brazil 0.998 0.033 

Jacovides et al. [89] Empirical Anthens, Greece 0.904 0.268 

García-Rodríguez et al. [82] MLR Burgos, Spain 0.976 0.078 

García-Rodríguez et al. [82] ANN Burgos, Spain 0.992 0.038 

Ferrera-Cobos et al. [87] ANN Santiago EOAS, Spain 0.993 0.106 

Zempila et al. [83] ANN Thessaloniki, Greece 0.998 0.063 

Zempila et al. [83] MLR Thessaloniki, Greece 0.998 0.066 

Zempila et al. [83] Empirical Thessaloniki, Greece 0.998 0.068 

Yu and Guo [93] ANN BON 0.998 0.027 

Yu and Guo [93] ANN SXF 0.999 0.019 

Yu and Guo [93] Empirical BON 0.969 0.034 

Yu and Guo [93] Empirical SXF 0.978 0.023 

Wang et al. [86] MLP LSA 0.996 0.065 

Wang et al. [86] GRNN LSA 0.993 0.068 

Wang et al. [86] RBNN LSA 0.995 0.068 

Nwokolo et al. [55] CARIMA-PCM Nigeria 0.999 0.562 

Hao et al. [34] EPIC-based  Globe 0.85 16.80 

Hao et al. [35] Random Forest Globe 0.890 14.09 

Present study MLP-CARIMA-GPM China  0.999 0.0002 

Present study MLP-CARIMA-GPM India 0.999 0.0061 

3.4. Climate Change’s Effects on Changes in PAR Productivity 

3.4.1. Effects of Climate Change on Variations in PAR from the Interpolation Line Plots 

According to the interpolation line in Figure 5, changes in photosynthetic productiv-

ity in China are generally expected to increase every year, in all seasons, and for various 

emission scenarios (SSPs). In contrast, it is anticipated that changes in photosynthetic 

productivity in India will decline annually, across all emission scenarios, and during all 

seasons. This suggests that, compared to its Chinese counterparts, India is more suscepti-

ble to decreased photosynthetic productivity as a result of climate change. The decline in 

photosynthetic productivity in India can be attributed to factors such as increasing tem-

peratures, changing rainfall patterns, and soil degradation. These findings highlight the 

urgent need for India to implement effective measures to mitigate the impact of climate 

change on its agricultural sector. The decline in photosynthetic productivity in India can 
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have significant implications for food security and the livelihoods of millions of people 

who depend on agriculture. Therefore, it is crucial for India to implement effective adap-

tation strategies to mitigate the adverse effects of climate change on its agricultural sector. 

From Figure 5, it is clear that the photosynthetic productivity in China is expected to 

rise between 2025 and the end of this century under the best-case emission scenario (when 

the global temperature is projected to rise to 1.5 °C, (SSP126)). Photosynthetic productivity 

is anticipated to rise in China during the Boreal Winter (DJF) season from 2070 to 2099 and 

decrease from 2015 to 2069 under the moderate-case (SSP245) and worst-case (SSP585) 

emission scenarios, when the global temperature rises to 2.5 °C (SSP245) and 3.5 °C 

(SSP585), respectively. Under the moderate-case and worst-case emission scenarios, re-

spectively, the photosynthetic productivity is predicted to increase during the boreal 

spring (MAM) and summer (JJA) seasons from 2030–2099 and decrease from 2015–2030. 

The photosynthetic productivity in the boreal autumn season is projected to increase from 

2025 to 2099 and decline from 2015 to 2024. Under the moderate-case (SSP245) and worst-

case (SSP585) emission scenarios, the changes in photosynthetic productivity are expected 

to rise from 2050 to 2099 and decrease from 2015 to 2049 in China. These changes in pho-

tosynthetic productivity are likely to have significant impacts on the carbon balance and 

ecosystem services in China, particularly as the country is one of the world’s largest emit-

ters of greenhouse gases. Therefore, it is crucial to implement effective measures to miti-

gate climate change and promote sustainable land use practices. 

This shows that if the warming of the Earth’s circulation system is kept at 1.5 °C by 

the end of this century, changes in the potential of photosynthetic productivity in China 

are estimated to rise by 0.001 to 2.077%. However, China’s potential changes in photosyn-

thetic productivity are projected to decline by 0.001 to 0.917% as a result of climate change 

if the global warming temperature exceeds 1.5 °C and moves towards 2.5 °C or 3.5 °C as a 

result of the inability to control the warming Earth system. This suggests that the effects 

of climate change on photosynthetic productivity have had only a minor negative impact 

(less than 1% on the solar PAR fluxes in China) both seasonally (short-term) and annually 

(long-term).  

Despite the small adverse impact on photosynthetic productivity, it is important to 

note that any decline in productivity can have significant consequences for food security 

and the overall health of ecosystems in China. Thus, these findings highlight the im-

portance of taking action to limit global warming to 1.5 °C in order to minimize the nega-

tive impact on China’s photosynthetic productivity. It also emphasizes the need for effec-

tive climate change policies and strategies to mitigate the potential decline in productivity 

if global warming exceeds 1.5 °C. 

On the other hand, if the Earth’s circulation system is kept warm by an average in-

crease of 1.5 °C from now until the end of this century, the potential of PAR productivity 

in India is anticipated to increase by 0.002 to 6.737%, respectively, on a seasonal and an-

nual basis. If global warming exceeds 1.5 °C, India’s potential changes in PAR productivity 

could decline by 0.127 to 2.007%. This shows that both seasonally (short-term) and annu-

ally, India is predicted to experience more severe adverse effects of climate change (greater 

than 2% on the solar PAR fluxes) compared to China. These findings highlight the urgent 

need for India to implement effective climate change mitigation and adaptation strategies 

to minimize the negative impacts on its agricultural productivity. Failure to do so could 

have significant implications for food security and economic stability in the country. 

3.4.2. Climate Change’s Effects on Changes in PAR under Various Emission Scenarios 

Table 10 displays the percentage changes in photosynthetically active radiation 

productivity relative to the historical period (1984–2014) for various shared socio-eco-

nomic pathways (SSP126, SSP245, and SSP585) in China and India for the near future 

(2015–2049), the far future (2050–2099), and the all future (2015–2099). India, when com-

pared to China, showed an increase in photosynthesis for all four seasons on an annual 

basis and for the three sequencing periods. China, on the other hand, produced 
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contradictory results, showing either an increase or a decrease in changes in photosynthe-

sis under the same scenarios. India outperformed China in terms of annual, three sequenc-

ing period, and all four seasons of the year results under the SSP126 and all emission sce-

narios due to the effects of climate change. It is imperative that India and China take action 

to mitigate climate change as soon as possible in order to protect their agricultural produc-

tivity, which is a major factor in determining agricultural yields and food security. The 

results of this study suggest that India may have seen more significant increases in PAR 

productivity during the earlier stages (2015–2049) and far future (2050–2099) of this cen-

tury as a result of the impacts of climate change. However, China may surpass India by 

the end of the century due to its increased capacity to respond to climate change-related 

effects. This suggests that India may benefit from short-term gains, but may struggle to 

keep up with China’s long-term performance due to the size of its land area and shorter 

growing season. To ensure sustainable agricultural productivity and food security in both 

India and China, action must be taken to reduce the impact of climate change and improve 

the resilience of agricultural systems. India may be able to better handle short-term fluc-

tuations in photosynthetically active radiation productivity, but will not be able to com-

pete with China’s long-term performance due to its smaller land area and shorter growing 

season. This limitation may prevent India from ever achieving the level of sustained agri-

cultural productivity that China has been able to attain over the long term. This could 

have important implications for India’s ability to feed its population in the coming dec-

ades and beyond. To ensure food security for its population, India must capitalize on these 

benefits in the short term to ensure sustainable food security over the course of a century. 

Table 10. Impacts of climate change on photosynthetically active radiation output in China and In-

dia. 

 Scenario Period PAR (W/m2) Change in PAR (%) 

Country   DJF MAM JJA SON ANN DJF MAM JJA SON ANN 

China SSP126 2015–2100 56.19 99.32 105.82 69.27 82.65 1.338 1.012 1.221 1.260 1.186 

 SSP126 2015–2050 55.45 97.82 104.40 67.57 81.31 0.658 0.290 0.646 0.125 0.434 

 SSP126 2051–2100 56.71 100.41 106.84 70.50 83.62 1.827 1.533 1.635 2.077 1.727 

 SSP245 2015–2100 54.75 97.60 103.95 68.19 81.12 −0.001 0.187 0.464 0.537 0.328 

 SSP245 2015–2050 54.43 96.16 102.79 67.27 80.16 −0.295 −0.507 −0.004 −0.075 −0.210 

 SSP245 2051–2100 54.97 98.65 104.78 68.85 81.81 0.210 0.687 0.800 0.978 0.716 

 SSP585 2015–2100 54.74 96.47 103.29 67.86 80.59 −0.006 −0.355 0.196 0.322 0.031 

 SSP585 2015–2050 54.43 95.30 102.36 67.20 79.82 −0.292 −0.917 −0.183 −0.116 −0.399 

 SSP585 2051–2100 54.96 97.32 103.96 68.33 81.14 0.199 0.050 0.469 0.637 0.341 

India SSP126 2015–2100 92.99 127.37 101.53 92.67 103.64 −1.092 −1.158 0.231 −1.311 −1.628 

 SSP126 2015–2050 91.57 125.76 100.72 91.51 102.39 0.178 −0.127 0.829 −0.354 −0.637 

 SSP126 2051–2100 94.02 128.54 102.11 93.51 104.55 −2.007 −1.899 −0.200 −2.000 −2.342 

 SSP245 2015–2100 88.45 105.04 119.18 128.49 127.28 0.866 0.946 2.034 0.935 0.420 

 SSP245 2015–2050 88.45 105.04 119.18 128.49 127.28 1.668 1.734 2.952 1.956 1.303 

 SSP245 2051–2100 88.45 105.04 119.18 128.49 127.28 0.289 0.380 1.374 0.199 −0.216 

 SSP585 2015–2100 90.58 123.65 99.30 88.65 100.54 1.022 1.198 1.877 1.998 0.755 

 SSP585 2015–2050 89.26 122.73 98.23 88.62 99.71 2.184 1.776 2.660 2.024 1.408 

 SSP585 2051–2100 91.53 124.30 100.06 88.68 101.14 0.185 0.782 1.313 1.979 0.285 

Contrarily, as shown in Table 10, India produced an increase in PAR productivity 

under the three sequencing periods, seasons, and on an annual basis, whereas changes in 

PAR productivity as a result of the impacts of climate change are expected to result in 

higher cases of decrease rather than an increase in PAR productivity in China as the im-

pacts of climate change intensify under the moderate and extreme scenarios. The results 

from India suggest that its agricultural sector could benefit from the climate change 
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scenarios, where the increase in PAR productivity will create more favorable conditions 

for crop growth and could even help mitigate the effects of the climate change. This is 

likely attributed to the fact that India is located in the subtropics, where climate change is 

expected to cause an increase in atmospheric water vapor, leading to a higher availability 

of moisture and allowing more PAR productivity in India than in China, where the im-

pacts of climate change will be much more severe. India’s results demonstrate that under 

a changing climate, agricultural sectors could benefit from increased PAR productivity, 

whereas in China and other parts of the world where decreases are expected, mitigating 

strategies and sustainable practices should be implemented to minimize the negative ef-

fects of climate change on agricultural production and food security.  

This research shows that the effects of climate change on photosynthetically active 

radiation productivity vary significantly by location, with countries located in the sub-

tropics likely to experience more favorable conditions due to increased moisture and 

higher PAR productivity. India has the potential to reap benefits from increased PAR 

productivity, while other countries may need to implement strategies to protect their 

crops and food security from the damaging effects. This study highlights the need for tai-

lored strategies and sustainable practices to ensure adequate food production and secu-

rity. Climate change can lead to a decrease in PAR productivity, impacting not only farm-

ers and producers but also consumers across India. This could lead to a crisis for food 

production and a greater risk of hunger and malnutrition among the population. 

To mitigate the effects of climate change on food production, steps should be taken 

to implement climate-smart agricultural practices, such as reduced tillage and cover crop-

ping, improved irrigation and water management strategies, and increased investment in 

renewable energy sources. Additionally, research and development should be conducted 

into crop varieties that are tolerant of drought or heat, as well as a shift to more plant-

based diets and improved access to nutrition-rich foods. 

3.4.3. The Impact of Climate Change on Seasonal Variations in PAR Productivity 

As shown in Table 10 for India, the percentage changes in photosynthetically active 

radiation productivity over the near-future period (2015–2049) relative to the historical 

period (1984–2014) are typically more prominent for boreal summer than for boreal win-

ter, spring, and autumn, and on an annual basis for all the scenarios (SSPs). This suggests 

that, in the near future period (2015–2049), changes in PAR productivity as a result of cli-

mate change are expected to produce a commensurate increase in food production. How-

ever, toward the end of this century (2050–2099), changes in PAR productivity as a result 

of climate change impacts are expected to reduce food production in India. These findings 

are consistent with the recent scientific evidence that indicates that the most significant 

climate change impacts will occur in the later part of this century and will have a greater 

effect on boreal summer than winter, spring, and autumn under the most extreme scenar-

ios. In general, this research has shown that while there is potential for increased food 

production as a result of PAR productivity in the near-future period (2015–2049), by the 

end of this century (2050–1999) the impacts of climate change are expected to cause a de-

crease in food production in India.  

Climate change could have serious implications for India, both in terms of food se-

curity and socio-economic development. To minimize the potential effects of climate 

change on food production, it is essential to develop robust and effective adaptation strat-

egies that take into account the projected changes in climate and food production systems 

in India, as well as the challenges posed by existing and future population growth, pov-

erty levels, and food insecurity. To be successful, all stakeholders must work together to 

develop and implement climate change adaptation strategies, which take into account lo-

cal context and resources while also focusing on long-term, sustainable solutions. Re-

search and innovation are also essential to develop evidence-based policies and interven-

tions to mitigate and address the risks posed by climate change to food production and 

food security in India. 
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Conversely, the percentage changes in PAR productivity during the far-future period 

(2050–2099) with respect to the historical period (1984–2014) are more prominent for bo-

real autumn as compared to other seasons and on an annual basis for all the SSPs in China, 

as shown in Table 10 and Figure 5 In particular, the best-case emission scenario (SSP126) 

shows the largest change, with an average increase of 2.077% in PAR productivity in bo-

real autumn compared to the historical period. These results indicate that, for China, bo-

real autumn has the highest potential for PAR productivity change. This could be at-

tributed to the higher levels of PAR productivity during boreal autumn due to warmer 

temperatures and longer daylight hours, which help in biomass accumulation.  

Overall, the results from Table 10 suggest that the areas in China with the greatest 

potential for productivity increase are those located in boreal autumn, due to their higher 

levels of PAR and increased biomass accumulation relative to other seasons. Moreover, 

the effects of climate change and increasing levels of atmospheric CO2 have a greater im-

pact on PAR productivity during boreal autumn than any other season. This result is sup-

ported by previous studies showing that increased temperatures and longer day length 

during boreal autumn could provide more favorable conditions for photosynthesis [94,95] 

and, consequently, higher biomass accumulation compared to the other seasons [96,97]. 

As a result, this combination of climatic and biophysical factors can have a positive 

effect on agricultural productivity in China during boreal autumn in comparison to other 

seasons. However, it is important to remember that these results are based on limited ob-

servations and that further research is needed to confirm the potential of boreal autumn 

for increased photosynthetic productivity in China. Therefore, while boreal autumn may 

present a beneficial environment for increased photosynthetic productivity in China, fur-

ther research is necessary to confirm this potential and ensure the long-term viability of 

agricultural production in the region. 

However, towards the beginning of this century (2015–2049), changes in photosyn-

thetic productivity as a result of the impacts of climate change are expected to reduce food 

production in China. Additionally, many of the environmental and biophysical factors 

discussed above are predicted to be affected by climate change in the upcoming decades. 

These impacts include rising temperatures, water scarcity, and extreme weather events 

such as droughts, floods, and windstorms. As climate change begins to take hold, certain 

seasonal patterns that may have been beneficial for crop production in the past could be-

come unreliable or even detrimental to agricultural productivity in China.  

China must invest in research and development to advance the adaptation of sustain-

able agricultural practices and provide farmers with advanced farming techniques to re-

duce the environmental impacts of climate change. It should also focus on developing 

strategies to increase resilience among rural communities, such as strengthening disaster 

preparedness plans and training farmers in climate-smart agricultural practices. Finally, 

it should prioritize investing in agricultural extension services to provide farmers with 

training and information on climate-resilient agricultural practices to protect their liveli-

hoods and food security. 

The boreal summer seasons were reported to have experienced the largest changes 

in photosynthetic productivity, with an increase of about 3% under SSP245 in the near-

future sequencing period in India. In contrast, the Indian boreal winter showed the lowest 

changes in photosynthetic productivity, with an increase of only 0.2% under the SSP585 

scenario for the long-term sequencing period (2050–1999). While in the boreal autumn, 

with near and far future sequencing periods, respectively, the effects of climate change 

were found to result in an increase in photosynthetic productivity of between 0.125% and 

2.077%. These changes in photosynthetic productivity in India due to climate change were 

found to be greater in the summer months but still significant in the autumn and winter 

months as well.  

These results suggest that climate change is likely to have a wide-reaching impact on 

photosynthetic productivity in India, with both short- and long-term effects across all sea-

sons leading to an increase in productivity during the summer and a decrease during the 
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winter months, as well as a more subtle increase in productivity during the autumn and 

winter months. This indicates that while climate change is likely to have a negative effect 

on photosynthetic productivity in the boreal winter, it is also likely to result in an overall 

increase in productivity in India over time due to its positive effects in the spring, summer, 

and autumn seasons. This could have long-term implications for India’s agricultural out-

put, with increases in photosynthetic productivity potentially leading to higher crop 

yields and greater food security across the country over the long term. These changes in 

photosynthetic productivity could potentially have a significant impact on the agricul-

tural industry in India overall, leading to a more secure and stable food supply for its 

citizens in the years to come. 

3.4.4. Climate Change Effects Based on the Scale of the Impact 

On the other hand, the boreal spring under the best-case scenario (SSP126) within the 

near-future sequencing scenario in India showed the highest changes in photosynthetic 

productivity, with a decrease of productivity of about 0.127%. The opposite is true in the 

case of China, where boreal spring reported the highest decrease in photosynthetic 

productivity under the near-future sequencing period under a moderate-case scenario 

(SSP 245), whereas the lowest decrease under the same conditions was recorded under the 

all-future sequencing period at 0.001% (2015–1999). 

Despite this discrepancy between the two countries, it is important to note that these 

changes in photosynthetic productivity still have the potential to significantly impact In-

dia’s agricultural industry and food supply, as an increase of even 0.127% can result in an 

increase in crop yields, providing much-needed relief to farmers and food security for the 

entire nation. Moreover, the changes in photosynthetic productivity have implications 

that go beyond agricultural production and into the realm of climate change. As global 

temperatures continue to rise, photosynthetic productivity is likely to suffer further in 

both China and India. India saw an increase in photosynthetic productivity of 1.38%, 

while China experienced a decrease of 0.127% during the same period.  

In India, the changes in photosynthetic productivity were even greater, with an in-

crease of 0.127% from 2015 to 2049, a period of time that saw significant global warming 

and climate change initiatives from both countries. Despite this discrepancy between the 

two countries, the changes in photosynthetic productivity have much wider implications 

than just crop yields, and these impacts may be even more severe if global temperatures 

continue to rise due to the increasing CO2 concentration in the atmosphere. As a result, it 

is essential to consider the potential impacts of climate change on photosynthetic produc-

tivity in both India and China, as they are likely to be far-reaching and have consequences 

on both countries’ long-term agricultural and economic stability. 

3.5. Contributions of Urbanization, Climate Change, and the Photosynthetic Residual Factor on 

Changes in PAR  

To separate the relative contributions of climate change (CLC), urban expansion 

(URE), and the photosynthetic residual factor (PRF) from the changes in potential photo-

synthetic productivity, the team developed a relationship between these three variables. 

The impacts of each parameter are more explicitly and objectively reflected in Table 11. 

Table 11 demonstrates that urban expansion significantly influenced changes in PAR 

productivity when compared to the contribution of climate change in China and India, as 

well as in all emission scenarios and sequencing periods. 
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Table 11. Impacts of land use change on photosynthetically active radiation output in China and 

India. 

Country Period Contribution of Each Factor Scenario 
   SSP126 SSP245 SSP585 Average 

China 2015–2099 Climate change 1.19 0.85 0.62 0.89 

China 2015–2099 Land use change  50.18 48.13 50.11 49.47 

China 2015–2099 Residual factor 48.63 51.02 49.27 49.64 

India 2015–2099 Climate change 7.248 18.416 15.71 13.79 

India 2015–2099 Land use change  11.753 35.700 37.79 28.41 

India 2015–2099 Residual factor 80.999 45.88 46.50 57.79 

3.5.1. Contributions of Urban Expansion to Changes in PAR under Various Scenarios 

First, urban expansion contributed 50.18%, 48.13%, 50.11%, and 49.47%, to China’s emis-

sions in the best-case scenario (SSP126), the moderate-case scenario (SSP245), the worst-case 

emissions scenario (SSP585), and the entire case emission scenarios, respectively. For India, it 

contributed 11.75%, 35.700%, 37.79%, and 28.41%, respectively. In contrast to India, which has 

a moderate level of urbanization, China has experienced rapid urbanization [98]. Given the 

current rate of urbanization and growth in both countries toward the end of this century [99], 

it is clear from Table 11 that urban expansion may have had a significant impact on potential 

photosynthetic productivity in both China [98] and India if the global temperature is limited 

to a 1.5 °C rise. This trend is also likely to continue in the future. 

The contribution of urban expansion to PAR productivity has been substantial in both 

China and India over the last two decades [100], with a higher relative contribution in China 

due to its more rapid rate of urbanization and growth [101]. This indicates that Indian devel-

opment is more ecologically conservative than Chinese development, and that there is a need 

for more sustainable and ecologically conscious urban expansion policies in India if it wants 

to match the level of economic growth seen in China. India must ensure that its urban expan-

sion policies are ecologically conscious and take into account the long-term impacts of such 

policies on the environment and local ecosystems, and should look to the Chinese model for 

guidance and inspiration when formulating its own urban expansion policies. Urban expan-

sion has been an important part of the development and growth of both China and India over 

the past two decades. It is important for policymakers in both countries to ensure that policies 

are implemented that foster continued urban expansion while also creating a sustainable and 

equitable urban environment that balances the interests of both rural and urban populations.  

To maximize the benefits of urban expansion, both countries need to ensure that cities 

are designed in such a way that they can accommodate population growth while also provid-

ing quality services such as adequate housing [102], sanitation [103], education, and transpor-

tation infrastructure [104]. Additionally, they must have a strong regulatory framework in 

place to ensure that urban expansion is managed in an efficient manner and that the interests 

of all citizens are taken into account when creating and implementing policies [105]. 

3.5.2. Contributions of Climate Change to Changes in PAR under Various Scenarios 

Secondly, the climate change in the best-case emission scenario, the moderate-case 

scenario (SSP245), and the worst-case emissions scenario (SSP585), as well as the entire 

case emission scenarios, contributed 1.19%, 0.85%, 0.62%, and 0.89%, respectively, in 

China, as well as 7.248%, 18.416%, 15.71%, and 13.791%, respectively, in India. It is obvious 

that the contribution of climate change to changes in PAR productivity may decrease un-

der the best-case emission scenario (SSP126) to the worst-case emission scenario (SSP585), 

ranging from 0.19 to 0.62% in China with correspondingly lower impacts in terms of mag-

nitude compared to India, which registered an increase in the impacts of climate change 

on changes in PAR productivity with a commensurately increased magnitude.  

This indicates that in spite of the rapid urbanization currently taking place in China as a 

result of industrialization and the economic revolution [106], as seen in Table 11 compared to 
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India, artificial greening [107], such as the cultivation of exotic high-productivity species and 

applications of scientific irrigation [108], fertilization [109], and pest control to vegetation in 

the urban areas of China [107], could be a major contributor that curtailed the impacts of cli-

mate change on PAR productivity. In order to maximize the benefits of urbanization while 

minimizing its risks, both countries must develop comprehensive plans that will ensure the 

protection and conservation of rural resources while enabling balanced urban expansion and 

development while mitigating the effects of climate change on agricultural productivity.  

China and India must implement strategies to reduce the impacts of climate change on 

agricultural productivity, particularly in areas vulnerable to such changes. This can be done 

through investing in infrastructure development and sustainable agricultural techniques, 

providing incentives to farmers, and promoting agroforestry practices. Additionally, both 

countries must develop and implement effective adaptation strategies to ensure the resilience 

of rural communities in the face of climate change. Finally, it is important to foster public 

awareness and engagement regarding the importance of climate-smart agriculture and adap-

tation. Governments should develop and promote collaborative efforts to promote the use of 

climate-smart agriculture and adaptation practices, such as diversifying crop production, ag-

roforestry, sustainable land management, and improved irrigation systems. 

These initiatives should be coupled with improved social policies to ensure the well-be-

ing of farmers and their families. To reduce the impact of climate change, both countries must 

take steps to reduce emissions and increase resilience through adaptation measures. Policies 

should include the development and deployment of renewable energy sources, the promotion 

of energy efficiency, and the reduction of greenhouse gas emissions through carbon pricing 

and other market-based instruments. 

3.5.3. Contributions of Photosynthetic Residual Factor to Changes in PAR under Various Sce-

narios 

Thirdly, the contribution of the photosynthetic residual factor (PRF) in the best-case emis-

sion scenario, moderate-case emission scenario, worst-case emission scenario, and the entire 

case-emission scenario to the changes in photosynthetic productivity were 48.63%, 51.02%, 

49.27%, and 49.64%, respectively, in China, as well as 80.99%, 45.88%, 46.50%, and 57.79%, 

respectively, in India, as presented in Table 11. In contrast to the contribution of climate 

change, the contribution of the photosynthetic residual factor decreased from the best-case 

emission scenario to the moderate-case emission scenario and slightly increased in the worst-

case emission scenario in India; however, the reverse is true in the case of China. In India, 

under the best-case emission scenario, the contribution of the photosynthetic residual factor 

(PRF) reached its highest level (80.99%), whereas China registered its highest PRF of 51.02% 

under the moderate-case emission scenario.  

Overall, the photosynthetic residual factor was found to have a significant influence on 

photosynthetic productivity in both India and China. Therefore, the difference in PRF between 

China and India is significant, indicating that the photosynthetic residual factor had a greater 

impact on photosynthetic productivity in India than it did in China. This discrepancy indicates 

that the photosynthetic residual factor may be a more important determinant of photosyn-

thetic productivity in India than in China. These findings suggest that the photosynthetic re-

sidual factor plays an important role in driving photosynthetic productivity in both India and 

China and that further study of the photosynthetic residual factor should be conducted in or-

der to gain a better understanding of its influence on photosynthetic productivity in both 

countries. The results of this study suggest that the photosynthetic residual factor should be 

taken into account when assessing the overall productivity of photosynthetic systems in both 

India and China. The photosynthetic residual factor (PRF) measures the amount of light en-

ergy that remains after photosynthesis and is an important determinant of photosynthetic 

productivity in both India and China. This discrepancy between India and China indicates 

that the PRF is an important factor influencing photosynthetic productivity in both countries 

and should be taken into account when assessing photosynthetic productivity in order to gain 

an accurate understanding of the photosynthetic productivity of both countries  
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Climate-sensitive factors such as temperature and precipitation play a greater role in gen-

erating photosynthetic productivity in India than in China, while non-climate sensitive factors 

such as investment in infrastructure, technology, and agricultural practices play a larger role 

in China. Despite the differences, both countries have managed to capitalize on these factors 

to improve their productivity growth significantly in the present and future. The contribution 

of PRF is dependent on both the type of emission scenario and the country under considera-

tion, with India more dependent on the reduction of non-climate-sensitive factors than the 

reduction of climate-sensitive factors. 

The contribution of PRF to photosynthetic productivity growth is different between India 

and China due to their differing levels of exposure to climate-sensitive and non-climate sensi-

tive factors. In India, climate-sensitive factors such as temperature and precipitation play a 

greater role than in China. In China, investment in infrastructure, technology, and agricultural 

practices play a larger role than in India. These findings suggest that PRF interventions need 

to be addressed differently in India and China, as India’s economy is more heavily dependent 

on agriculture and China’s is more diversified. PRF interventions can potentially increase pho-

tosynthetic productivity in India and China, but their effectiveness is likely to depend on the 

country’s level of exposure to climate-sensitive or non-climate sensitive factors and the degree 

to which interventions are tailored to address these factors. 

India’s higher level of exposure and more heavily agrarian economy make it more likely 

that PRF interventions will have a greater impact than China if they are designed to target 

climate-sensitive factors specifically. However, a one-size-fits-all approach is not feasible due 

to the differences between India and China in terms of their level of exposure. Therefore, it is 

important for the development of effective PRF interventions to take into account the contex-

tual and climate-sensitive factor of the country in order to maximize their potential. PRF inter-

ventions should be tailored to the unique needs and conditions of both India and China in 

order to maximize their potential for increasing PAR productivity. In India, interventions 

should focus on specific climate-sensitive factors such as technology and infrastructural de-

velopment, while in China, interventions should take into account the country’s level of expo-

sure to both climate-sensitive and non-climate sensitive factors. 

PRF interventions have demonstrated success in improving PAR productivity, but their 

effectiveness is ultimately contingent upon the degree to which they are tailored to each coun-

try’s distinct set of circumstances. In this way, PRF interventions can have a real and lasting 

impact on PAR productivity if implemented in a way that is able to capitalize on their unique 

strengths and address their unique challenges in unprecedented ways. 

3.5.4. Contributions of Climate Change, Urban Expansion, and Photosynthetic Residual Fac-

tor to Changes in PAR under Various Scenarios 

Last but not least, in China and India, respectively, the entire emission scenarios, climate 

change, urbanization, and residual PAR factors contributed 0.89%, 49.47%, and 49.64% of the 

total respectively. Overall, India’s contribution to PAR productivity from climate change is 

higher (13.79%) than China’s (0.89%), while China’s (49.47%) impacts from urbanization out-

weigh India’s (28.41%). However, India (57.79%) and China (49.64%) both contribute signifi-

cantly more to the residual PAR factor, which could be thought of as the unperturbed inter-

cepted surface downwelling PAR. 

This demonstrates unequivocally that while factors such as climate change, urbanization, 

and the residual PAR factor have affected PAR productivity in both China and India, their 

effects are very different in each nation. Therefore, it is important to consider the unique con-

tributions of climate change, urbanization, and the residual PAR factor to each country’s re-

spective PAR productivity figures in order to comprehend the complexities and implications 

of PAR productivity between China and India. 

Researchers and policymakers in India and China need to gain a better understanding of 

the complex interactions between climate change, urban expansion, and residual PAR factors 

on the two countries’ respective PAR productivity figures in order to develop strategies that 

would effectively address the discrepancies between India and China in terms of PAR 
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productivity. Overall, the contribution of climate change to PAR productivity is higher in India 

than China, while the contribution of urban expansion impacts is greater in China compared 

to India. This could be attributed to India’s position relative to the sun, its latitude, and other 

terrestrial ecosystem carbon cycles that favor India in terms of climate change and urban ex-

pansion impacts. Both countries should strive towards developing policies that reduce these 

discrepancies and ensure equitable growth across the two countries in order to ensure a pros-

perous future for the citizens of both countries.  

4. Conclusions 

According to the predictions of PAR fluxes obtained in China and India, the MLP-

CARIMA-GPM model with the input configuration combination elements H, RH, and VPD 

is better suited for predicting more accurate PAR data. However, when time and resource con-

sumption are taken into account, particularly in this era of global sustainability, the PAR coef-

ficient ratio model (PCR) may be suggested to be the best balance of performance, resources, 

and time utilized in China and India, as well as other locations with comparable geographical 

and climatological characteristics to China and India. China reported an annual average PAR 

flux range of 40.89–122.50 W/m2 with a corresponding mean value of 82.67 W/m2, while India 

reported an annual average PAR flux range of 69.85–128.73 W/m2 with a corresponding mean 

value of 94.83 W/m2. Additionally, China’s annual average PAR ratio had a mean value of 

0.4514 and a range of 0.4234 to 0.4695. India was reported to have a range from 0.4215 to 0.4753 

and a corresponding mean value of 0.4457. 

The results of the analysis of the effects of climate change on the PAR fluxes in China and 

India indicate that these fluxes could change under all scenarios, at all sequencing times, and 

on an annual basis, depending on whether the effects of climate change on the PAR fluxes are 

positive or negative. For instance, the potential of PAR productivity in China and India is ex-

pected to increase by 0.001 to 2.077% and 0.002 to 6.737%, respectively, on a seasonal and an-

nual basis if the Earth’s circulation system is kept warm by 1.5 °C from now until the end of 

this century. The potential changes in PAR productivity for China and India could decrease 

by 0.001 to 0.917% and 0.127 to 2.007%, respectively, if the global warming temperature ex-

ceeds 1.5 °C. This indicates that, both seasonally (short-term) and annually (long-term), the 

effects of climate change on PAR fluxes are predicted to have had only a moderately negative 

impact (less than 1% on the solar PAR fluxes in China), whereas India is predicted to experi-

ence more severe negative impacts of climate change (greater than 2% on the solar PAR fluxes 

in India) under the same conditions.  

Last but not least, under the average emission scenario, China’s climate change, urbani-

zation, and residual PAR productivity factors contributed 0.89%, 49.47%, and 49.64%, respec-

tively, of the total. Overall, India’s contributions to PAR fluxes from climate change were 

higher (13.79%) than China’s (0.89%), while China’s (49.47%) impacts from urban expansion 

outweigh India’s (28.41%). However, India’s (57.79%) and China’s (49.64%) both contributed 

significantly more to the PAR residual factor, which could be thought of as the unperturbed 

intercepted surface downwelling PAR. Overall, India and China have different contributions 

from climate change to PAR fluxes, with China having a larger impact from urbanization than 

India. 
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