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Abstract: Improving the digital economy and environmental governance efficiency are important
methods for current high-quality economic development. Based on the panel data of 11 cities in Zhejiang,
on the eastern coast of China, fine particulate matter smaller than a 2.5 µm (PM2.5) environmental
efficiency (PMEE) was measured by the undesirable output Slack-Based Measure-Data Envelopment
Analysis (SBM-DEA) model. The fixed effect regression model, the divergences in the difference
model and other empirical methods were obtained to test the driving mechanism of social-economic
factors on the PMEE. The results showed that: (1) the concentration of PM2.5 was continually
decreasing, and environmental quality experienced a continuous improvement in Zhejiang province
in the observation period, although cities such as Hangzhou, Jiaxing and Shaoxing have relatively
severe PM2.5 pollution. (2) The total average value of PMEE in Zhejiang was 0.6430 over the observation
period, while there was still a lot of room for improvement when compared to the production frontier.
Additionally, PMEE in each city showed a fluctuating growth trend. Cities with a higher PMEE
were mainly Zhoushan, Hangzhou and Ningbo. (3) The level of the digital economy had a positive
role in promoting the PMEE, which was statistically significant. The level of pollution control and
technological innovation also had a significantly positive effect. However, the ratio of the industrial
output value to the gross domestic product (GDP) presented a negative effect on the PMEE. In the
future, it is suggested that the development of the urban digital economy should be accelerated in
an all-around way to improve the efficiency of government pollution control and to improve the
technical efficiency of PM2.5 via innovative technological progress.

Keywords: PM2.5; SBM-DEA; environmental efficiency; digital economy; Zhejiang province

1. Introduction

Improving the efficiency of environmental governance is a crucial measure in order to
fight a tough battle against environmental pollution and guarantee high-quality economic
development [1–3]. At present, China is facing a severe challenge in air pollution control [4,5].
According to the data announced by the Ministry of Ecology and Environment, in 2020,
about 33 percent of 337 cities in China did not meet the Class II national standard for the
concentration of fine particulate matter smaller than 2.5 µm (PM2.5), which is defined as a
fine inhalable particle with a diameter less than 2.5 µm. The ozone concentration fluctuated
and increased, and regional severe air pollution weather took place frequently. Thus, it is
of great practical significance to continually strengthen the control of air pollution and to
improve the efficiency of a reduction in PM2.5 emissions [6,7].

Meanwhile, the research on the socio-economic driving factors of air pollution pro-
vides an essential reference for environmental pollution control [8]. Many scholars have
discussed the causes of air pollution, smog, and pollution reduction paths from different per-
spectives, such as economic growth, foreign investment, industrial structure, environmental
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regulation, fiscal decentralization, population agglomeration, urbanization development,
and technological innovation [9–11]. At present, China’s economy has proceeded into the
era of Industry 4.0, and the digital economy has become a crucial propulsion power for
high-quality economic development, playing a vital role in transforming the economic
development mode and promoting the construction of ecological civilization [12,13]. How-
ever, existing research on the relationship between the digital economy and environmental
pollution is still in its infancy [14–18], especially since there is a lack of research on dis-
closing the relationship between the digital economy and atmospheric environmental
efficiency [19]. Taking into account natural conditions, the economy, technology and the
demographic scale of cities in different regions, it is necessary to examine scientifically and
systematically the efficiency of air pollution in various cities, the potential efficiency of the
effect of reducing emissions, and the factors affecting atmospheric environmental efficiency.
The results can put forward countermeasures and suggestions for regional air pollution
control and air quality improvement [20,21].

To account for these, this study selected a key area of air pollution prevention and
a typical area of digital economic development, Zhejiang province, as a case study. The
mass concentration values of PM2.5 and the relevant socioeconomic data of 11 cities in
Zhejiang province from 2006 to 2019 were obtained, and the PM2.5 environmental efficiency
(PMEE) was calculated with the undesirable output Slack-Based Measure-Data Envelop-
ment Analysis (SBM-DEA) model. In this study, we defined PMEE as the environmental
cost of PM2.5 pollution paid by regional producers over a period of time using various
factors to conduct economic activities. Subsequently, taking the digital economy as the
core explanatory variable, the panel fixed effect model, difference-in-differences (DID),
and other multi-dimensional systems were used to investigate the driving mechanism of
PMEE’s change. Finally, it proposed countermeasures and recommendations for improving
the PMEE and controlling PM2.5 pollution effectively.

The main contributions of this study were: (1) For coastal areas, the PMEE measure-
ment model was established at the city level, which was helpful in strengthening the control
and management of pollutants; (2) Taking the digital economy as the core explanatory
variable, the mechanism of the influence of PMEE was revealed, which was conducive to
the regulation of the digital economy with regard to environmental pollutants.

2. Literature Review

Environmental efficiency represents the environmental performance level of produc-
tion units through the ratio of economic output and environmental impact. Atmospheric
environmental efficiency provides a further focus on environmental efficiency in the field
of atmospheric environment, which can reflect the comprehensive performance level of
the regional atmospheric environment [21–23]. In recent years, as global air pollution
prevention and control work has received wide attention from academia and society, many
academics have conducted studies on the efficiency of the atmospheric environment, as
shown in Table 1.
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Table 1. Summary of application of Data Envelopment Analysis (DEA) in atmospheric environmental efficiency.

Author Scope of Study Period Input Indicators Desirable Output Undesirable Output Method

Lu et al., 2019 [22] 11 cities in Zhejiang 2006–2016 SO2, NOx, smoke and dust emissions,
total industrial exhaust emissions GDP IAQI Non-radial DEA

Malmquist Index

Wu and Guo, 2021 [24] 29 Chinese provinces 2012 SO2, NOx, soot, coal consumption,
car ownership, capital and labor GDP PM2.5 emissions The undesirable

output DEA model

Piao et al., 2019 [25] 30 Chinese provinces 2005–2014 Employment, energy and water
consumption, capital stock GDP CO2, SO2, etc. DEA, ML productivity

Song et al., 2019 [26] 30 Chinese provinces 2004–2015 Employees, consumption of standard
coal, capital stock GDP SO2

meta-frontier
non-radial angle DEA

Deng and Zhang, 2022
[27] 285 Chinese cities 2011–2018 Public service labor force,

environmental protection investment Green area SO2, smoke SBM-DEA

Zhang et al., 2016 [28] 30 Chinese provinces 2005–2011 Labor employment, capital
stock and energy consumption GDP CO2, SO2 SBM-DEA

Wang et al., 2018 [29] Provincial thermal
power industry 2006–2014 Energy consumption, installed

capacity and employee Electricity generation CO2, SO2 NOX, soot
emissions

DEA-based materials
balance approach

Yang and Li, 2018
[30]

39 Chinese industrial
sectors 2003–2014 Capital, labor, energy

consumption
Industrial value

added
Industrial waste gas

emissions DEA model

Ma et al., 2021 [31] 30 Chinese provinces 2001–2018 employed persons, total energy and
water consumption, capital stock, GDP PM2.5 concentration SBM-Undesirable-VRS

model

Li et al., 2019 [32] 31 Chinese cities 2013–2017 Employees, fix assets and energy
consumption GDP PM2.5, SO2 and NO2

Resample SBM
DEA

Wu et al. 2016 [33] 29 Chinese provinces 2000–2010 Energy, labor and fixed asset
investment GDP PM2.5 emissions input-oriented

ZSG-DEA model

Zhang et al., 2021 [2] 112 Chinese cities 2003–2017 Labor, energy and water
consumption, fixed asset investment GDP PM2.5 concentration Super-SBM-DEA

GML productivity

Li et al., 2021 [34] 260 Chinese cities 2003–2018 Labor, energy consumption, fixed
asset investment GDP PM2.5 concentration Hybrid-Dynamic-DEA

Notes: GDP, gross domestic product. IAQI, urban environmental air quality index. ZSG-DEA, zero sum gains DEA model. ML productivity, the Malmquist and Luenberger productivity
index.
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(1) In terms of research methods, DEA is a non-parametric method that does not need
to set subjective weights and process dimension data. Therefore, it has been widely
used to measure atmospheric environmental efficiency [34,35]. From the traditional
radial framework to the non-radial model framework considering relaxation variables,
various academics have proposed the SBM-DEA model [28,31], super SBM model [2],
dynamic SBM-DEA [36], Hybrid-Dynamic DEA [34] and other improved models. The
limitation of the traditional DEA method is that it is difficult to analyze efficiency
accurately because it does not take into account the relaxation of output factors,
and it is difficult to grasp the factors that need to be considered first to improve
efficiency. The subsequently improved SBM-DEA model could avoid the deviation
caused by radial and angular measurements, which is favored by scholars. In the
empirical estimation, the combination of static efficiency and the dynamic efficiency
analysis is often adopted, and the Malmquist index and Luenberger productivity
index method are frequently selected to decompose detailed driving factors, including
the technical efficiency, technological progress, and scale efficiency index of dynamic
efficiency [2,22,25].

(2) For evaluation indicators, to make the DEA a reasonable method to estimate at-
mospheric environmental efficiency, different scholars have constructed different
input-output index systems for calculation. The first way is to take the air pollutant
emissions (SO2, NOx, smoke and dust, etc.) as the input indexes and GDP as the
economic output index to calculate the atmospheric environment efficiency or air
pollution emissions efficiency. Further, some scholars regard the air quality rate and
comprehensive index of IAQI to be the direct output factor that measures environ-
mental benefits [22,35]. However, this index system has limitations in considering the
impact of conventional production factor inputs (capital and labor) on atmospheric en-
vironmental efficiency and cannot reflect the socioeconomic background differences in
the study area. The second way is to take labor, capital, energy, and other production
factors as input indicators, while air pollutant emissions are an undesirable output
with weak disposability and introduce a directional distance function together with
the desirable output (GDP) for calculation. This method can evaluate atmospheric
environmental efficiency. In specific empirical research, CO2, SO2, NOx, smoke and
dust are often regarded as the research objects of pollutants [26,27], and particulate
matters smaller than 10 µm (PM10) (inhalable particles with diameters that are gen-
erally less than 10 µm), while PM2.5 are gradually being included in the undesirable
output indicators [18,34].

(3) From the research on the influence mechanism of atmospheric environmental ef-
ficiency, the ordinary panel regression model and Tobit model have often been
adopted [34]. To control the influence of endogenous problems on the estimation
results to the largest extent, the system Gaussian mixture model (GMM) estimation,
two-stage least squares approach (2SLS), panel threshold model, spatial Dubin model,
mediation effect model, DID model and instrumental variable analysis can be further
employed to test the robustness of the model [1,6,27]. The explained variables in the
regression model are mainly static atmospheric environmental efficiency. The level
of economic development and GDP are often selected as core explanatory variables.
Other explanatory variables mainly include a factor endowment structure, industrial
structure, scientific and technological innovation level, foreign direct investment, gov-
ernment environmental management ability, environmental regulation, population
density, industrial enterprise scale, investment scale, etc. [34]. At present, the develop-
ment of a digital economy has brought profound changes to government governance,
enterprise production, and the lives of residents, which not only directly affects
pollutant emissions but also plays a strong part in the environmental supervision
and technical efficiency of governments and enterprises [27]. However, few studies
have been conducted to analyze the effect of the digital economy’s development on
environmental efficiency from a theoretical and empirical perspective.
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To sum up, although existing studies have made explorations around the air pollution
efficiency and its influencing factors, there are still the following deficiencies: (1) for research
objects, most of the existing literature dedicated to the unexpected output of atmospheric
environmental efficiency is focused on conventional pollutants, such as SO2, NOx, smoke
and dust, while less attention has been paid to the variation characteristics of PMEE; (2) for
the mechanism research, in the analysis of driving factors for evaluating the reduction
effect of haze emissions, the main concern is the economic development level, industrial
structure, etc., while systematic research on impact mechanisms, including indicators such
as the digital economy and technological innovation has been lacking, and the endogenous
problems of the variables themselves not fully considered; (3) for the research scale, due
to the availability of data, most of the research samples in the existing literature focus on
the provincial level [26], while less detailed research focuses on the driving mechanism of
PMEE at the city level. Above all, this study focuses on PMEE, taking the coastal Zhejiang
province as an example, discussing the measurement level and socio-economic impact
mechanism of PMEE at the city level, and establishing an analytical framework with the
digital economy as the core explanatory variable. Finally, relevant policy recommendations
are put forward.

The technical framework and research process of this study is displayed in Figure 1.
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3. Materials and Methods
3.1. Study Area

Zhejiang (Figure 2) is an economically developed province along China’s eastern coast
and is also one of the key areas of the Blue-Sky Protection Campaign [37–39].
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In 2020, the average concentration of urban PM2.5 in Zhejiang was 25 µg/m3, down
by 43.2% compared to 2015, while the ratio of days with excellent air quality was 93.3%,
an increase of 9.5% compared to 2015. Affected by the COVID-19 pandemic in 2020, along
with favorable weather conditions, ambient air quality in Zhejiang has greatly improved,
but the difficulty of further improvement is also increasing. In addition, a high proportion
of traditional industries with high energy consumption and air pollutant emissions, such
as the heavy chemical industry around Hangzhou Bay, which accounts for a relatively
high proportion, and the rapid increase in production capacity has greatly offset the
achievements of air pollutant emissions reduction in other industries in this region, which
poses challenges to the continuous improvement of air quality [22]. In recent years, to
continually optimize the industrial structure system and the environmental governance
efficiency, the Zhejiang government has vigorously implemented the “No. 1 Project” of
the digital economy [12]. This project has accelerated the digital, intelligent and green
transformation of the traditional manufacturing industry, comprehensively promoted the
industrial internet into clusters, parks and enterprises, and relies on the latest big data and
artificial intelligence technologies to enhance the level of the environmental regulatory
system and reduce atmospheric pollutant emissions [40,41].

It should be noted that the Hangzhou Bay urban agglomeration is an important part
of the southern wing of the Yangtze River Delta world-class urban agglomeration, which
is an important strategic embodiment of the comprehensive development of the region,
and the linkages between the cities in terms of economic activities and environmental
regulation have become closer. Hangzhou Bay urban agglomeration has led to the devel-
opment of a digital economy in the whole province. Therefore, in the following analysis,
we divided the 11 cities in Zhejiang into the Hangzhou Bay urban agglomeration (including
Hangzhou, Jiaxing, Huzhou, Shaoxing, Ningbo and Zhoushan) and non-Hangzhou Bay areas
for comparison.

3.2. Variables and Data

Referring to the existing literature [35,37], taking labor, capital and energy as input
indicators, regional GDP as a desirable output indicator, and PM2.5 with the annual average
concentration as an undesirable output indicator, this study built the PMEE evaluation sys-
tem in Zhejiang province, while the objective was to reduce the input of single production
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factors and achieve economic development and the improvement status of PM2.5 pollution.
The labor input index was expressed by the number of urban employees in each city at
the end of the year [42]. The capital investment index was expressed by the investment
amount of fixed assets in the whole society [32,43]. The energy input index adopted energy
consumption, which was expressed by the energy consumption of industries above the
designable size (104 tons of standard coal). The desirable output index was expressed by
GDP, and the GDP of each city was converted to a constant price in 2006 to eliminate the
influence of price factors [44,45]. The above indicators were obtained from the Statistical
Yearbook of Zhejiang Province [46] and the Zhejiang Natural Resources and Statistical
Yearbook on Environment [47] from 2007 to 2020. Linear interpolation can be used to fill in
some missing data. The undesirable output was the average PM2.5 annual concentration
(µg/m3) in each city, from the grid data of the annual mean of the global concentration of
PM2.5 based on satellite surveillance disseminated by the Socioeconomic Data and Applica-
tion Center of Columbia University, with a grid resolution of 0.1◦ × 0.1◦ [48]. Specifically,
the grid data of the annual average PM2.5 concentration was overlaid on the administrative
boundary of the 11 cities in Zhejiang and then converted to the annual average city-wide
PM2.5 concentration data.

The descriptive statistical results of the aforementioned variables are summarized in
Table 2.

Table 2. Descriptive statistics of variables from 2006 to 2019 in Zhejiang province.

Variable Indicator Variable
Name Sample Mean Standard

Deviation Min Max

Input variable
Employed persons Labor 154 327.43 177.90 55.84 720.00

Energy consumption Energy 154 987.98 687.76 83.78 3273.51
Investment in fixed assets Capital 154 1797.42 1484.54 210.17 7241.91

Desirable output GDP GDP 154 3318.48 2842.11 335.20 15,375.05
Undesirable output PM2.5 concentration PM2.5 154 48.33 12.51 20.10 70.90

Key explanatory
variable Digital economy level De 154 0.43 0.31 0.87 0.12

Control variable

Industrial structure level Ind 154 42.70 6.60 23.00 54.82
Pollution control level Reg 154 81,329.4 77,937.8 985.0 362,335.0

Technological innovation level Tec 154 1.72 0.71 0.21 3.29
Foreign direct Investment level Fdi 154 126,329.2 166189.3 1926 720,915

3.3. SBM-DEA Model with Undesirable Output

The DEA and its expanded models are widely used for efficiency measures or per-
formance evaluations [49]. The traditional Banker, Charnes and Cooper model (BCC)
and Charnes, Cooper and Rhodes model (CCR) are DEA models that evaluate perfor-
mance radially and angularly [22,50]. The radial means that the same proportional input
or output change is required when performing efficiency evaluation. When there is an
excessive input or insufficient output, the radial DEA will overestimate the efficiency of
the decision-making unit (DMU). Angular requires the selection of a model between input-
based performance evaluation (assuming the output remains unchanged) or output-based
performance evaluation (assuming the input remains unchanged). Therefore, changes in in-
puts or outputs are often ignored, and the efficiency value of DMU is overestimated [51,52].
To solve the above-mentioned problems of the traditional DEA model, Tone (2001, 2002)
proposed a non-radial, non-angular DEA model based on slack variables [53,54], such as
the SBM-DEA model with undesirable output. Compared with the traditional DEA model,
the SBM-DEA model with undesirable output is a more rigorous efficiency evaluation
method, which is not affected by index units. It not only avoids the deviation caused by
radial and angular measurements but also takes into account the influence of undesirable
output factors on the production process, which may better reflect the nature of efficiency
evaluation. In addition, in the SBM-DEA model, each DMU minimizes the input and
maximizes the output simultaneously to calculate efficiency, which brings a large clear
efficiency ranking benefit [30,33,45,48].
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Based on the undesirable output SBM-DEA model [36,54], we assumed that n denoted
the number of DMUs, and the input variables could be computed with X =

(
xij
)
∈ Rm×n.

The desirable output variable was calculated by Y =
(

ykj

)
∈ Rs1×n while the undesirable

variable was Z =
(

zl j

)
∈ Rs2×n. We assumed X > 0, Y > 0, and Z > 0 and that the

production possibility set would be P = {(x,y,z)|x ≥ XΛ, y ≤ YΛ, z ≥ ZΛ, Λ > 0} of which
Λ = (λ1, λ2, . . . , λn) ∈ Rn indicates the weight coefficient vector. x ≥ XΛ in the P set
denotes that the actual input was larger than the frontier input; y ≤ YΛ in the P set denotes
that the actual output was less than the frontier output. The undesirable output SBM model
can be listed as follows.

minρ =
1− 1

m ∑m
i=1

sx
i

xi0

1+ 1
s1+s2

(∑
s1
k=1

sy
k

yk0
+∑

s2
l=1

sy
l

yl0
)

s.t.



xi0 =
n
∑

j=1
λjxj + sx

i , ∀i;

yk0 =
n
∑

j=1
λjyj − sy

k , ∀k;

zl0 =
n
∑

j=1
λjzj + sz

l , ∀l;

sx
i ≥ 0; sy

k ≥ 0; sz
l ≥ 0; λj ≥ 0; ∀i, j, k, l;

(1)

where sx ∈ Rm and sz ∈ Rs2 represent the redundancy of DMU (x0, y0)’s input and
undesirable output; sy ∈ Rs1 refers to the shortage of a desirable output; ρ denotes the
PMEE in one particular city; m refers to the number of input variables; S1 and S2 are the
numbers of a desirable and undesirable output; λ denotes the weight matrix, and input
frontier and output frontier can be obtained via a λ multiplied input and output indicator
matrix [55].

Model (1) was under the assumption of constant returns to scale. Under the assump-
tion of variable returns to scale, the constraint condition ∑n

j=1 λj = 1 should be added. If
ρ = 1, sx = 0, sy = Sz = 0, it indicates that input redundancy and output shortage are 0
and the DMU is the most efficient. If ρ < 1, it indicates an excessive input, that the desirable
output was insufficient, or that the undesirable output was excessive. Additionally, this
indicates that the DMU was not of the highest efficiency and could be improved [22].

3.4. Econometric Regression Model

Based on empirical analysis and existing research [27,31,34,56], and taking into account
data availability, PMEE in Zhejiang province was used as the dependent variable, while the
level of the digital economy, industrial structure, pollution control, technological innovation
and foreign direct investment were used as independent variables to investigate the impact
mechanism. The five explanatory variables can be described as follows:

(1) Level of the digital economy. It is a core explanatory variable. Promoting the devel-
opment of the digital economy reinforces the intensive transformation of industrial
production methods through technological innovation, thereby improving the cur-
rent state of PM2.5 pollution and the PM2.5 environmental control efficiency. Refer-
ring to the estimate of the level of development of the digital economy at the city
level [18,27,57], this study comprehensively considered four dimensions of the digital
economy, including digital infrastructure, digital industry, digital technology, and
digital applications. Four indicators, including the proportion of internet users, the
proportion of mobile phone users, the employees’ proportion in the information trans-
mission and technology service industry, and the total per capita telecommunications
business, were used to build a digital economy indicator system. After standardiza-
tion, the entropy method was used to estimate the indicator’s weight, and the digital
economy’s comprehensive development index was calculated, which was denoted
as De.
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(2) Level of industrial structure. The proportion of the industrial output value in GDP
was used to measure this indicator. Industrial pollution is one of the important
sources of PM2.5 emissions. This indicator affects PMEE from the perspective of
source management [27,58].

(3) Level of pollution control. The yearly operating cost of industrial waste gas treat-
ment facilities was selected to measure this indicator. It affected the PMEE from the
perspective of waste treatment investment and technical capability [27].

(4) Level of scientific technological innovation. This was measured by the ratio of Re-
search and Development funds to GDP in each city. It reflected the impact of techno-
logical investment and technological progress on PMEE [27,31].

(5) Level of FDI. The ratio of actually used FDI to GDP in each city was used to measure
the level of FDI in each city. This indicator was mainly used to test the “Pollution
Shelter” hypothesis and analyze its impact on the PMEE [31,37].

Therefore, the causality between PMEE and the digital economy was calculated as
follows:

PMEEi,t = α1 + α2Dei,t + β1lnXi,t + µi + γt + εi,t (2)

where PMEEi,t denotes the PMEE in city i in time t; Dei,t denotes the digital economy level
(distributed in 0–1) in city i in time t; Xi,t denotes the vector of all the control variables,
and, in order to eliminate the difference in units of variables, logarithmic processing
was conducted here; µi denotes the fixed individual effect with the aim of controlling
the individual differences between cities; γ denotes the fixed time effect with the aim
of eliminating the time trend; εi,t denotes random disturbance; α1 denotes the constant;
α2 denotes the coefficient of the digital economy. If the coefficient α2 is still significantly
positive after the control of the above-mentioned control variables, the digital economy
could contribute to the improvement of PMEE.

Compared with the existing literature [20,31], the empirical model in this study had the
following distributions. (1) The indicator of the economic development level (GDP) was not
included in the regression model because when the DEA efficiency was decomposed, the
GDP indicator was used as one indicator of a desirable output. If the GDP were readopted
to explain the PMEE, it might increase the endogenous problem of the model. (2) The
digital economy level was added to the econometric model. The regional digital economy
level reflected the government’s effective use of resource allocation and the production
efficiency of enterprises. This indicator could reflect the impact of the technical efficiency
of PM2.5, which ensured the precision of the regression model.

4. Results
4.1. Regional Difference of PM2.5 Concentration in Zhejiang

The spatial distribution of the PM2.5 concentration in 11 prefecture-level cities in
Zhejiang from 2006 to 2019 is demonstrated in Figure 3. For comparison, this study chose
four different years from different time periods, which were 2006 (the starting year of
China’s 11th Five-Year Plan), 2011 (the starting year of China’s 12th Five-Year Plan), 2016
(the starting year of China’s 13th Five-Year Plan), and 2019 (the end year of this study).
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The PM2.5 concentration of Zhejiang was characterized by a continuous reduction in con-
centration and the continuous improvement in environmental quality. In 2006, only Zhoushan
reached the national Class II ambient air quality (35 µg/m3), which was 29.2 µg/m3. By 2019,
eight cities reached the national Cass II ambient air quality standard. Only Hangzhou,
Jiaxing and Shaoxing did not reach the Class II standard, but none of these 11 cities reached
the national Class I ambient air quality standard (15 µg/m3). The ranking of the average
PM2.5 concentration for 2006–2019 was Shaoxing > Hangzhou > Jinhua > Huzhou > Jiaxing
> Quzhou > Wenzhou > Ningbo > Taizhou > Lishui > Zhoushan. The PM2.5 concentration
in Zhoushan was the lowest. This was mainly due to the development of tourism and fish-
eries, which had a lower proportion of pollution-intensive industries and lower emissions
of air pollutants [33]. Subsequently, Zhoushan is an island-type city with strong sea-to-land
winds; the frequent exchange of land and sea winds at Zhoushan makes its airflow and
pollutant dispersal fine and the ability of self-purification strong. Thus, Zhoushan had the
lowest PM2.5 pollution. Lishui began to meet the national Class II ambient air quality after
2016. Overall, the concentration of PM2.5 in the urban agglomeration around Hangzhou
Bay was more serious than that in non-Hangzhou Bay areas.



Atmosphere 2023, 14, 672 11 of 21

4.2. Analysis of PMEE in Zhejiang

Through the aforementioned SBM-DEA model with an undesirable output, the PMEE
of 11 cities in Zhejiang was calculated by Equation (1). The specific results are presented in
Table 3 and Figure 4.

Table 3. Results of PMEE in 11 cities in Zhejiang province from 2006 to 2019.

Regions City 2006 2011 2016 2019 14-Year
Average Rank

Hangzhou Bay urban
agglomeration

Hangzhou 0.6302 0.5082 0.7037 1.000 0.7180 2
Ningbo 0.4303 0.6809 1.000 1.000 0.7175 3
Jiaxing 0.4064 0.4134 0.4618 0.5950 0.4534 11

Huzhou 0.4266 0.4368 0.5103 0.6578 0.4952 9
Shaoxing 0.5117 0.4746 0.5574 0.6519 0.6119 8
Zhoushan 1.0000 0.9316 0.8404 1.0000 0.9387 1

Non-Hangzhou Bay areas

Wenzhou 0.7375 0.5020 0.4879 0.6980 0.6479 7
Jinhua 0.5579 0.6657 0.5762 0.7288 0.6522 6

Quzhou 0.4288 0.4539 0.4787 0.5636 0.4704 10
Taizhou 0.6110 0.5919 0.5131 0.6710 0.6662 5
Lishui 0.5325 0.7773 0.6436 1.0000 0.7021 4

Total average 0.5702 0.6445 0.6293 0.7787 0.6430
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Over the past 14 years, the average PMEE value for the entire Zhejiang province has
been 0.6430, and there was an opportunity for an improvement of about 36% from the
production frontiers. There was still great potential for improving and controlling the PMEE.
In terms of the overall PMEE in each city, it showed a certain trend of fluctuating growth.
In 2019, four cities (Hangzhou, Ningbo, Zhoushan and Lishui) reached the production
frontiers, while the remaining seven cities did not reach the PM2.5 emission reduction
technology of the common frontier cities, which meant that these cities still had a certain
potential to improve the PMEE. It also revealed that there were some regional differences
in PMEE among different cities. From the 14-year average PMEE of each city, the PMEE
of 11 cities ranked as Zhoushan > Hangzhou > Ningbo > Lishui > Taizhou > Jinhua >
Wenzhou > Shaoxing > Huzhou > Quzhou > Jiaxing. Due to variations in different years,
the ranking of PMEE in different cities also changed considerably. The cities with high
PMEE values were mainly Zhoushan, Hangzhou and Ningbo, while the cities with low
PMEE were mainly Huzhou, Quzhou and Jiaxing. Among them, Hangzhou and Ningbo
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were the two most developed cities in Zhejiang in terms of economy and technology. Since
the 13th Five-Year Plan, relying on continuous technological innovation, the two cities’
key polluting industries were technologically transformed and controlled at the end of the
treatment period [22,37], effectively reducing air pollutant emissions such as nitrogen oxide
and particulate matter and effectively enhancing the PMEE.

Further, Zhejiang province was divided into Hangzhou Bay urban agglomeration and
non-Hangzhou Bay areas for comparison (Figure 4). The results show that the PMEE of the
Hangzhou Bay urban agglomeration increased from 0.5675 in 2006 to 0.8174 in 2019, with
a growth rate of 44.03%. The PMEE in non-Hangzhou Bay areas rose from 0.5735 in 2006
to 0.7323 in 2019, with a growth rate of 27.69%. At the same time, from 2006 to 2011, the
PMEE of the non-Hangzhou Bay area was higher than that of the Hangzhou Bay urban
agglomeration. At this stage, the air pollutant emissions and PM2.5 concentrations from
Hangzhou Bay urban agglomeration were higher, and the emission reduction pressure was
higher. After 2012, the PMEE of Hangzhou Bay urban agglomeration was significantly
higher than that of non-Hangzhou Bay areas, so the PMEE of the entire province had
a stable growth trend. This resulted from the fact that, after the 12th Five-Year Plan to
improve the ambient air quality effectively and strive to build a beautiful Zhejiang, the
provincial government increased investment in addressing PM2.5 pollution, accelerated
the adjustment of industrial structure and energy structure relying on scientific and tech-
nological innovations [22,37], and improved PMEE effectively, especially in Hangzhou,
Ningbo, Zhoushan and other cities around Hangzhou Bay. After 2012 (when PM2.5 was
included in the national key control object of air pollution prevention and control), Zhejiang
successively issued and implemented the 13th Five-Year plan for air pollution prevention
and control of Zhejiang Province (2016–2020) (2017) and the 14th Five-Year plan for air
quality improvement of Zhejiang Province (2021–2025) (2021). Especially after 2016, the
provincial government implemented extensive air pollution prevention and persistent
control measures, which were deployed to high standards, promoted the success of the
Blue-Sky Protection Campaign [41], and innovated the construction of fresh air demonstra-
tion areas (a key assessment index is PM2.5 concentration). Thus, the PMEE in the entire
province was obviously improved.

4.3. Influencing Factors of PM2.5 Environmental Efficiency
4.3.1. Benchmark Regression Results

The fixed-effect model is able to overcome the errors caused by missing variables. This
study employed the fixed effect for benchmark regression estimations (Table 4) and the
method of gradually increasing control variables to estimate column (1). To eliminate the
individual fixed effect and time trend of the city, the dummy variables reflecting individual
city characteristics and the yearly dummy variables reflecting temporal characteristics
were added to the model. The results of the regression estimation of the two-way fixed
effect model illustrated that the impact coefficient of the development level of the digital
economy on urban PMEE was 0.932, with a positive significant level at 1%, showing that
the development level of the urban digital economy significantly promoted an improve-
ment in PMEE, which was in line with theoretical expectations. The results of columns
(2)–(5) displayed a significant positive correlation between the level of development in
the digital economy and PMEE, which still existed after the control variables were added.
PM2.5 emissions could be reduced effectively by digital economy development through
green innovation and the optimization of resource allocation. Previous studies have also
illustrated that improving digital economy development could promote the intensive in-
dustrial transformation production mode by enabling technological innovation to combat
the current situation of environmental pollution [27]. With the economic society of Zhejiang
entering the digital era, the proportion of the digital economy in the total economic volume
is expanding year by year, and Zhejiang has become fertile soil for achieving regional
high-quality innovation and sustainable development. Firstly, the digital economy im-
proves the efficiency of resource distribution and decreases air pollutant emissions from
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inefficient production. Another important aspect is that the integrative development of
the digital economy and real economy promotes innovation output and efficiency and
reduces innovation costs. As a consequence, digital economy development has become an
important solution to atmospheric environmental problems [59].

Table 4. Benchmark regression estimation results.

Variables (1) PMEE (2) PMEE (3) PMEE (4) PMEE (5) PMEE

lnDe 0.932 ***
(3.731)

0.947 ***
(3.835)

0.835 ***
(3.429)

0.846 ***
(3.501)

0.908 ***
(2.537)

lnInd −0.043 **
(1.362)

−0.055**
(1.279)

−0.048 **
(1.318)

−0.052 **
(1.294)

lnReg 0.142 ***
(0.921)

0.133 ***
(0.844)

0.107 ***
(0.832)

lnTec 0.065 **
(0.736)

0.058 **
(0.694)

lnFdi −0.052
(0.481)

Constant −8.593 ***
(−5.621)

−7.548 ***
(−4.342)

−5.361 **
(−3.107)

−4.781 **
(−2.329)

−9.382 ***
(−6.218)

Urban fixed effect Yes Yes Yes Yes Yes
Time fixed effect Yes Yes Yes Yes Yes

R2 0.642 0.663 0.675 0.741 0.694
Number of

samples 154 154 154 154 154

Number of cities 11 11 11 11 11
Note: **, *** denoted significance level of 5%, and 1%, respectively. The above model adopted the clustering
standard error, and the number in brackets is the t value.

From the regression results of the control variables, (1) the increase in the share of the
industrial output value had a significant negative effect on the improvement in PMEE. This
was primarily because the fossil energy consumption of industrial enterprises was closely
related to PM2.5 emissions. Thus, reducing the proportion of high energy-consuming indus-
trial sectors such as steel and cement and optimizing the industrial structure could benefit
the efficiency of PM2.5 environmental governance. (2) The improvement in pollution control
level took an obvious positive effect on PMEE improvement. Improving industrial exhaust
gas treatment plants and end treatment technologies could effectively reduce relevant waste
gas emissions. (3) The improvement of scientific and technological innovation levels had a
significant positive effect on PMEE improvement, which was significant at the 5% level.
The increase in enterprise research and development (R&D) investment could promote
the technological upgrading of production equipment and the output of new products
and then eliminate traditional production lines with high pollution emissions. (4) There
was no significant impact between the level of foreign investment and PMEE, indicating
that the production process and technology of foreign-invested industries in Zhejiang did
not significantly improve the fight against PM2.5 pollution, so the hypothesis of “Pollution
Shelter” was not tenable here. Considering that Zhejiang is a major foreign trade province,
in the future, it should closely combine the influx of foreign capital and local enterprises in
technological innovation and the transformation and upgrading of production processes to
control the output of pollutants at the source.

4.3.2. Endogenous Regression Results

To control the impact of endogenous problems on the estimation results to the largest
extent, most of the existing literature used a dynamic panel data model or system mo-
ment estimation to alleviate the endogenous issues, but a more efficient instrumental
variable method needs to be employed instead of using only the system matrix estimation
method [20,27]. Therefore, the following strategies were employed. Firstly, as the proxy
index of PMEE, PM2.5 concentration was used to solve the potential measurement error
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problem. Generally, the lower the concentration of PM2.5 in a city, the higher the PMEE.
Secondly, the lag period of the core explanatory variable was used as its instrumental
variable to alleviate the endogenous problem. The corresponding estimated results are
demonstrated in Table 5.

Table 5. Endogenous estimation results.

Variables (6) lnPM2.5 (7) PMEE
First Stage of 2SLS Second Stage of 2SLS

lnDe (8) PMEE

lnDe −0.451 ***
(−1.028)

0.914 ***
(2.032)

1.038 ***
(7.841)

L. lnPM2.5
0.051 ***
(1.424)

L. PME 0.231 ***
(4.782)

0.175 ***
(3.951)

Controls Yes Yes Yes Yes
Urban fixed effect Yes Yes Yes Yes
Time fixed effect Yes Yes Yes Yes

R2 0.583 0.728 0.622 0.498
Number of samples 154 154 154 154

Number of cities 11 11 11 11

Note: *** denoted the significance level of 1%. The above model adopted the clustering standard error, and the
number in brackets is the t value.

Column (6) uses the logarithm of PM2.5 concentration as the explaining variable for
estimation. The development of the digital economy had a negative impact on PM2.5
concentration, which was significant at the level of 1%. Thus, the digital economy could
inhibit PM2.5 emission reduction and improve air quality, which is in line with the results
issued by Li et al. [20]. Column (7) represents the systematic GMM Estimation with the
lag period of the core explanatory variable as the instrumental variable [60]. It indicates
that the coefficient for estimating the level of development of the digital economy was
significantly positive at the 1% level. Column (8) presents 2SLS estimation using the lag
phase of the core explanatory variable as the instrumental variable. It illustrates that at
the first stage of regression, the coefficient of the instrumental variable was significantly
positive, while the Anderson LM test was significant at the 1% level, and the F statistic value
of the weak instrumental variable test was 20.56, which is larger than the empirical value
of 10. It indicates that it was reasonable to select this instrumental variable [61]. Compared
with columns (8) and (7), the estimated coefficient of the development level of the digital
economy exceeds the significance test of 1%. It shows that the above estimation results were
robust. This means that, with the digital economy’s increasing development, the application
of new technologies, such as artificial intelligence, big data, and blockchain, provided
technical support for government environmental regulation and enterprise production
could be implemented. The continually improved environmental monitoring system
provides data and a support platform for environmental governance and enhances the
accuracy and effectiveness of PM2.5 governance.

4.3.3. Exogenous Impact Test

To further overcome the possible reverse causality problem, referring to relevant
studies [20,62], this study adopted the network infrastructure upgrading of the “Broadband
China” pilot as the proxy for exogenous policy impact and used the DID method to evaluate
the digital economy’s impact on the PMEE. The Chinese government selected 120 cities
(clusters) as the demonstration plots of the “Broadband China” strategy in three batches in
2014, 2015, and 2016. Jinhua, Jiaxing and Hangzhou in Zhejiang were involved, and the
digital economy development was inseparable from the support of network infrastructure.
The “Broadband China” strategy pilot provided a quasi-natural experience to explore the
pollution reduction effect of the digital economy [27].
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A multi-period double difference model with the following formula was built:

PMEEi,t = α1 + α2Policy + β1lnXi,t + µi + γt + εi,t (3)

where Policy is a dummy variable for the policies of the “Broadband China” policy, indi-
cating whether city i is a pilot city of “Broadband China” in year t. If yes, the value of the
dummy variable was 1; otherwise, it was 0. Other variables were consistent with Equation (2).

Meeting the hypothesis of the parallel trend was one of the basic conditions for
establishing the multi-stage DID method, which is in line with the method of Ren et al. [63]
and Jacobson et al. [64] and was tested by the event analysis method. Specifically, taking
the implementation time of “Broadband China” as the base year, DID estimation was
performed for the dummy variables of each year before and after the implementation of
the policy. Figure 5 shows the estimated results of the dummy variable (Policy) coefficient
under the 95% confidence interval.
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In the eight years before the pilot started, the coefficient of the dummy variable fluctu-
ated around 0 insignificantly. This means that, before the implementation of “Broadband
China” in Zhejiang, there was no significant difference in the changing trend of PMEE
between the pilot cities and non-pilot cities, which is consistent with the parallel trend
assumption. After the pilot began, especially after Hangzhou became a pilot city in 2016,
the coefficient value of the dummy variable was significantly positive, and the positive co-
efficient value increased, indicating that the PMEE of the “Broadband China” pilot tended
to increase. Afterward, the DID method was used to estimate the average treatment effect
of the “Broadband China” pilot on the PMEE of Zhejiang. The regression model estimation
results are shown in Table 6. As a reference, the impact of the “Broadband China” pilot on
the PM2.5 concentration in Zhejiang was added. It was found that the impact coefficient
of the “Broadband China” dummy variable on the PMEE of Zhejiang was significantly
positive, while the impact coefficient on the PM2.5 concentration was significantly negative.
It also meant that the urban digital economy development represented by the implementa-
tion of the pilot policy had not only reduced PM2.5 emissions but also improved the level
of PMEE, which confirmed the stability of the empirical results.
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Table 6. Double-difference estimation results of PMEE of “Broadband China” strategy in Zhejiang
pilot cities.

Variables (9) PMEE (10) PMEE (11) lnPM2.5 (12) lnPM2.5

Policy 0.294 ***
(0.472)

0.251 ***
(0.148)

−0.359 ***
(−0.241)

−0.304 ***
(−0.172)

Constant −2.813 ***
(−1.458)

−2.454 ***
(−1.029)

4.216 ***
(1.382)

3.892 ***
(0.722)

Controls No Yes No Yes
Urban fixed effect Yes Yes Yes Yes
Time fixed effect Yes Yes Yes Yes

R2 0.459 0.508 0.421 0.466
Number of samples 154 154 154 154

Number of cities 11 11 11 11
Note: *** denoted the significance level of 1%. The above model adopted the clustering standard error, and the
number in brackets is the t value.

5. Discussion and Policy Implications
5.1. The Influence Mechanism of Digital Economy on PMEE

Through the above regression analysis and exogenous impact test, the development of
the digital economy could improve the level of PMEE and produce certain emission reduc-
tion effects on PM2.5 concentration. Compared with the existing research results [20,27], we
have seen the positive effect of the development of an urban digital economy represented
by the implementation of pilot policies such as “Broadband China” on PMEE. The two
pilot cities, Hangzhou and Jiaxing in Zhejiang, belonged to the Hangzhou Bay urban
agglomeration, which was relatively better developed in the digital economy.

As regards the specific path of influence, the improvement in the level of pollution
control and the level of scientific and technological innovation had a significantly positive
effect on the improvement of PMEE. These two factors may be the two major ways in
which the development of the digital economy can affect PMEE. Therefore, the digital
economy should first promote an improvement in industrial waste gas treatment facilities
and end-treatment technologies to effectively reduce particulate matter emissions. In terms
of building an enterprise green production mode, enterprises, as the main part for pollu-
tion prevention and control, can rely on technical support from virtual reality, databases,
the Internet of Things and other technologies, to effectively integrate diverse information
resources in production decision-making and alleviate information fragmentation and asym-
metry issues in data collection and development. In this way, data on products, processes, and
resources can be analyzed, decided upon, planned and reorganized to realize the efficient
promotion of the production process and improve the productivity of enterprises [58,63].
Then, polluting enterprises could make full use of digital platforms to obtain information
linked to technological innovation, develop cleaner production methods, optimize produc-
tion processes, and actively realize the digital transformation of enterprises and reduce
particulate matter emissions.

5.2. Regional Differences in PM2.5 Environmental Efficiency Promotion

Previous studies have pointed out that different cities have different levels of PM2.5
pollution and PMEE. Therefore, different cities need to adopt differentiated governance
strategies based on their own realities.

First of all, it should strengthen the measures of zoning governance, especially for the
Hangzhou Bay urban agglomeration. Taking the overall average value of the province-wide
PM2.5 concentration with PMEE as the boundary, meaning that those above the average
value were recorded as H and those below the average value were recorded as L. The
advantages and disadvantages of PM2.5 pollution performance in 11 cities in Zhejiang
can be classified into the following four types (see Figure 6): Type I, High pollution High
efficiency, i.e., urban PM2.5 pollution was relatively severe, but the value of PMEE was high.
Type II, Low pollution High efficiency, i.e., with light urban PM2.5 pollution and high PMEE,
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which was the state that achieved the best performance in the atmospheric environment.
Type III, Low pollution Low efficiency, i.e., urban PM2.5 pollution was relatively low, while
the PMEE was also low. Type IV, High pollution Low efficiency, i.e., urban PM2.5 pollution
was relatively serious, and the PMEE was also low, which was the worst state for the
performance of the atmospheric environment.
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As seen in Figure 6, there were two Type I cities, namely Hangzhou and Jinhua, which
were also the pilot cities of the “Broadband China” strategy. The number of Type II cities was
the greatest, with five cities including Zhoushan, Lishui, Ningbo, Wenzhou, and Taizhou.
There was no Type III city. There were four cities belonging to Type IV, namely Quzhou,
Shaoxing, Jinhua, and Huzhou. The primary task for Type I and IV cities was to reduce
PM2.5 emissions and PM2.5 concentration in the process of economic development. Type IV
cities could also cooperate to improve the efficiency of PM2.5 governance. Cities in Type
II needed to maintain the current development trend and reflect the PM2.5 environmental
governance efficiency while reducing air pollutant emissions.

In addition, Hangzhou, Ningbo, and other digital economy-developed cities should
encourage enterprises to invest in green technology research and development and could
play a role in the spillover effect of technology to stimulate the enhancement of PMEE in
Huzhou, Shaoxing, Quzhou, and other cities. In addition, cities with low PMEE need to
strengthen technology introduction or technological transformation further and moderately
increase the pressure on environmental assessments such as energy conservation and
emissions reduction.

5.3. Other Necessary Policy Recommendations

For other regions confronted with environmental governance and high-quality eco-
nomic development, the following suggestions are proposed:

The digital economy plays an indispensable role in integrating various information
resources in the production of decision-making, alleviating information fragmentation and
asymmetry in data collection and development.

1. It is necessary to accelerate the development of the digital economy and improve
the efficiency of government pollution control. The digital economy can effectively
integrate all kinds of information resources in production decision-making, alleviate
information fragmentation and asymmetry issues in data collection and development,
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and conduct decisional analysis and reorganize product data, process data, and resource
data. Therefore, it can realize the efficient promotion of the production process, improve
the productivity of enterprises, and support PMEE improvement by reducing resource
waste and pollutant emissions.

2. It is necessary to implement precise pollution control and improve the technical
efficiency of PM2.5 treatment. Environmental digital management can be taken as a
means to highlight PM2.5-governance in key areas, key periods, key fields, and key
industries and promote the in-depth governance of volatile organic compounds in
petrochemical, chemical, industrial coating, and other industries [65]. Relying on
the continually advanced environmental data monitoring network, the ability to
provide an early warning, the perception of pollution sources, and the ability of
government environmental supervision can be improved. The level of PM2.5 pollution
control can be upgraded by improving the accuracy and effectiveness of government
environmental supervision.

3. It is vital to rely on innovation and technological progress to accelerate industrial
transformation and upgrading. The methods include increasing investment in re-
search and development funds in air pollution prevention and control technology,
encouraging industrial enterprises to develop low-carbon and green technologies,
promoting technological change in the field of energy and the environment, as well
as reducing fossil energy consumption and pollution emissions at the source. More-
over, traditional industries can be phased out and replaced by green environmental
protection industries, and the emission intensity of atmospheric pollutants in tradi-
tional manufacturing sectors will be gradually reduced. Future areas of industrial
development include clean energy vehicles, cloud computing, big data, 5G, medical
installations, and aviation and satellite applications.

6. Conclusions

Based on the concentration of PM2.5 and the relevant socio-economic indicators of 11
cities in Zhejiang province from 2006 to 2019, this study first measured PMEE by adopting
the unexpected output SBM-DEA model. Then, the impact of the digital economy on
the PMEE and its internal mechanism was empirically tested by using multi-dimensional
empirical methods. The conclusions are as follows:

(1) During the study period, the PM2.5 pattern of Zhejiang province indicated the charac-
teristics of a continuous reduction in the concentration and continuous improvement
in environmental quality. PM2.5 pollution was relatively serious in Hangzhou, Jiaxing,
Shaoxing and other cities around Hangzhou Bay.

(2) The average value of PMEE in Zhejiang province was 0.6430, and there was about a
36% possibility for improvement in production frontiers, and the PMEE of each city
showed a certain fluctuating growth trend. The cities with high PMEE were mainly
Zhoushan, Hangzhou, and Ningbo.

(3) The results of benchmark regression and endogenous regression estimation indicated
that the development level of the digital economy had a crucial effect on promoting
urban PMEE. At the same time, the level of pollution control and scientific and
technological innovation also had a significantly positive impact. By contrast, the
proportion of the industrial output value had a certain negative effect on PMEE. The
positive impact of the development of the digital economy on urban PMEE was still
tenable after the robustness test through the use of methods that replaced explanatory
variables. The results of the exogenous impact test indicated that the development of
the urban digital economy, represented by the implementation of a pilot policy, not
only reduced PM2.5 emissions but also improved the level of PMEE governance. This
means that the results of the empirical analysis were reliable.

Limited by the availability of the sample data, the research area of this paper focused
on Zhejiang: a typical province on the eastern coast of China. With the continuous develop-
ment of artificial intelligence, blockchain technology, and digital economy, as well as the
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improvement of relevant indicators, researchers should continue to expand the scope and
samples of the research area and explore the driving mechanism and internal transmission
mechanism of the digital economy on PMEE and air pollution further in the future.
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PM2.5 fine particulate matter smaller than 2.5 µm
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PMEE PM2.5 environmental efficiency
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ZSG-DEA Zero sum gains DEA model
DID Difference-in-differences
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