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Abstract: Surface ozone is usually measured in national networks, including the monitoring of
gaseous components important for determining air quality and the short-term forecast of surface
ozone. Here we consider the option of forecasting surface ozone based on measurements of only
surface ozone and several weather parameters. This low-cost configuration can increase the num-
ber of locations that provide short-term surface ozone forecast important to local communities. 24 h
prediction of the 1-h averaged concentration of surface ozone were presented for rural (Belsk,
20.79° E, 51.84° N) and suburban site (Raciborz, 18.19° E, 50.08° N) in Poland for the period
2018-2021 via simple statistical models dealing with a limited number of predictors. Multiple linear
regression (MLR) and artificial neural network (ANN) models were examined separately for each
season of the year using temperature, relative humidity, an hour of the day, and 1-day lagged sur-
face ozone values. The performance of ANN (with R? = 0.81 in Raciborz versus R? = 0.75 at Belsk)
was slightly better than the MLR model (with R? = 0.78 in Racibo6rz versus R? = 0.71 at Belsk). These
statistical models were compared with advanced chemical-transport models provided by the Co-
pernicus Atmosphere Monitoring Service. Despite the simplicity of the statistical models, they
showed better performance in all seasons, with the exception of winter.
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1. Introduction

Surface ozone (Os) is a secondary photochemical pollutant at the ground level of the
atmosphere [1]. The primary source of surface Os is photochemical production, including
nitrogen oxides (NOx), carbon monoxide (CO), and volatile organic compounds (VOC)
[2-4]. The other sources are the downward transport of stratospheric ozone into the
troposphere [5,6] and the long-range transport of surface Os from distant polluted areas
[7]. The dominant sink of surface Os are processes of photochemical destruction and the
mechanism of dry deposition on different surfaces [8]. Surface Os shows non-linear de-
pendence on the concentration of its precursors [9]. It could be classified into two chem-
ical regimes, NOx saturated, and NOx limited, which are determined by the sensitivity of
surface Os to anthropogenic precursors [10]. Surface Os can decrease as NOx decreases
under NOx saturated regime or as NOx increases under NOx limited regime. The increase
of VOC generally leads to an increase of surface Os regardless of the kind of regime. The
main sources of NOx and VOC are traffic and biogenic emissions, respectively. Hence, the
surface Os concentrations can vary significantly between rural and urban locations. Many
studies have shown higher surface Os concentrations in rural areas compared to urban
areas [11-13]. The chemistry of NOx, VOC, and Os in the troposphere and their relation-
ship is well known and extensively discussed in the literature [9,14].
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Surface Os plays an important role in the atmosphere. It is an important greenhouse
gas with a radiative forcing of 0.40 + 0.20 W/m? [15] and a major component of photo-
chemical smog [16]. High levels of surface Os have an adverse effect on human health and
vegetation [17-19]. Ozone photolysis processes play an important role in the troposphere
as a source of hydroxyl radicals (OH)—a dominant atmospheric oxidant [20].

Surface Os formation and transport are strongly influenced by meteorological con-
ditions. Temperature affects the rate of chemical reactions, the lifetime of polyacryloni-
trile (PAN) compounds (functioning as a reservoir of NOx) as well as affects the emission
of VOC [21,22]. Solar radiation initiates photochemical processes [23]. An increase in rel-
ative humidity promotes the formation of clouds [24] and affects the stomatal conduc-
tivity of the leaves. In response to the increase in humidity, the stomata open, which in-
creases the absorption of surface Os in the processes of dry deposition [25,26]. A detailed
description of the connection between particular meteorological parameters has been
broadly documented in the literature [1,27-29].

Surface O3 can be predicted with the use of statistical and deterministic methods
[30]. The ability of both methods to predict the surface Os variability as a result of changes
in precursor emissions and ambient meteorological conditions is very important, espe-
cially nowadays, in a changing climate. Quantifying surface Os response to meteorolog-
ical changes is a particular challenge [31]. The prediction of surface Os is further compli-
cated by its nature as a secondary pollutant [32].

Chemistry—transport models (CTM) are commonly used to forecast surface Os var-
iability [33,34]. However, their use is limited because they require huge computational
resources and suffer from a large bias resulting from the coarse resolution [35], especially
in urban areas with changing chemistry, varied topography, and uncertainty of emission
inventory [36]. Therefore, statistical models, e.g., multiple linear regression (MLR) and
artificial neural network (ANN), can be an additional tool supporting surface Os predic-
tion.

A number of works have compared MLR and ANN methods for surface Oz predic-
tion starting from the early 1990s. Yi and Prybutok [37] developed ANN, linear regres-
sion model, and Box-Jenkins ARIMA to predict the surface O3 maximum between
1993-1994 in Dallas. Comrie [38] investigated the potential of MLR and ANN to predict
daily surface Os concentration between 1991 and 1995 for eight cities around the United
States. Spellman [39] used MLR and ANN models to predict spring-summer surface Os
(from May to September) in the period 1993-1996 for five different sites (remote, rural,
and urban center) in the UK. Gardner and Dorling [40] used MLR, regression tree, and
ANN models to predict hourly surface Os values in the period 1994-1997 for five sites
(rural and urban) in the UK. Sousa et al. [41] examined MLR and ANN models to predict
next-day hourly surface Os concentration values in Oporto (Northern Portugal). Capilla
[42] used MLR and ANN models to predict surface Os for 1, 8, and 24 h in advance in an
urban area of Valencia (Spain). Yu et al. [43] used MLR and ANN models to predict the
maximum concentration of surface ozone. In all studies mentioned above, the ANN
methods gave better results; however, in most cases, improvement was marginal.

In recent years, there have been many papers using more advanced machine learn-
ing methods. Freeman et al. [44] predicted an 8-h averaged concentration of surface Os
using deep learning techniques such as Long Short-term Memory (LSTM) and Recurrent
Neural Network (RNN). Ko et al. [45] forecasted the hourly concentration of surface Os
for the upcoming 24 h using ANN and bidirectional LSTM models with a limited number
of input data (surface Os, temperature, relative humidity, and height of the planetary
boundary layer). Oufdou et al. [46] compared the results of parametric (the Least Abso-
lute Shrinkage and Selection Operator (LASSO) and Saddle Point Least Squares (SPLS)
method) and non-parametric (Bagging, Classification and Regression Trees (CART) and
Random Forest (RF)) methods to forecast daily surface Os in Marocco. Jia et al. [47] used a
sequence-to-sequence deep learning model to predict surface Os for the next 6 h over the
Yangtze River Delta in China. Juarez et al. [48] employed eight machine learning ap-
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proaches (linear regression, Support Vector Machines (SVM), K-Nearest Neighbors
(KNN) algorithm, RF, Decision Trees, LSTM, AdaBoost, XGBoost) to forecast surface O3
for the next 24 h in Delhi.

The main objective of the work was a 24 h forecast of the hourly averaged surface O3

with steps every 3 h from 0:00 GMT for rural and suburban areas in Poland. We choose a
simple statistical approach (MLR and ANN) that is adapted to the case with a limited
number of predictors available for these locations. Two sets of predictors are examined.,
i.e., the meteorological data (temperature and relative humidity) plus an hour of the day,
and the set comprising in addition also 1-day lagged surface Os, and 3 h lagged temper-
ature and relative humidity. Section 2 presents the observing sites, examined data, and
models’ details. Performances of all examined models are shown in Section 3. Discussion
and conclusions are in Section 4.

2.

2

Materials and Methods

.1. Site Description

Concurrent measurements of surface Os concentrations (ppb) and meteorological

parameters: temperature (°C), and relative humidity (%) were carried out in the Belsk
observatory and Racibo6rz observatory from September 2018 to September 2021 (Figure 1,

Table 1).
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Figure 1. Location of the stations considered in the study. (source: nationsonline.org).
Table 1. Characteristics of the stations.
Altitude
Station Name Latitude Longitude Station Type
(m a.s.l.)
Belsk 176 51.837 N 20.792 E rural
Raciborz 193 50.083 N 18.192 E suburban

The first measuring station, Belsk, represents rural background conditions. It is lo-

cated in the central part of Poland in typical rural areas, 50 km south of Warsaw at the
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Central Geophysical Observatory Belsk. It is situated in the direct neighborhood of the
Modrzewina nature reserve, far away from potential sources of anthropogenic pollution.
The station is surrounded by coniferous forest and agricultural-horticultural lands. Belsk
station is included in the National Air Quality Monitoring Network managed by the
Main Inspectorate for Environmental Protection.

The second measuring station, Racibdrz, represents suburban background condi-
tions. It is located in the southern part of Poland, about 5 km from the Czech Republic
border. It is situated on the southwestern outskirts of the city, in the immediate vicinity of
single-family housing and agricultural areas from the west side and National Road No.
45 (about 150 m from the station) and typical urban infrastructure from the east site.

The selection of these locations, which represent rural and suburban conditions,
makes it possible to conduct comparative statistical analysis for places with different
chemical regimes.

2.2. Meteorological Conditions

In this work, only two meteorological parameters are considered, including tem-
perature [°C] and relative humidity [%]. The monthly variation of both parameters for
Racibérz (a) and Belsk (b) stations are presented in Figure 2.
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Figure 2. Monthly averaged values of temperature [°C] and relative humidity [%] in Racibérz (a)
and Belsk (b) for the period 2018-2021. Points display the mean value; the box shows the range:
mean + 1 standard deviation.

At both locations, a characteristic annual cycle of temperature with a maximum
during summer and a minimum during winter was noted. Generally, higher values of
temperature were observed in Racibdrz station. The differences for individual months
ranged from 1.5 °C in February to 0.4 °C in November. The highest values of the monthly
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mean temperature at both stations were noted in August (20.9 °C—Racibérz, and 20.2
°C—Belsk) while the lowest in January (0.7 °C—Racibérz and -0.3 °C—Belsk). The an-
nual cycle of relative humidity is characterized by spring-summer minimum and winter
maximum. The higher values for most of the year were recorded in Racibdrz. The highest
monthly mean relative humidity was observed in January (88% —Racibdrz) and in No-
vember (91% —Belsk), while the lowest values were found in April (67% —Racibdérz and
60% —Belsk).

2.3. Data Description
2.3.1. Ground-Based Stations

Hourly-averaged meteorological parameters at Belsk were provided by the De-
partment of Physics of the Atmosphere, Institute of Geophysics, Polish Academy of Sci-
ences. Hourly-averaged surface Os concentrations were obtained from the Main Inspec-
torate for Environmental Protection. In Racibdrz, measurements of meteorological pa-
rameters were performed by the Institute of Environmental Engineering of the Polish
Academy of Sciences. The air pollution concentrations (including surface Os) were ob-
tained from the Department of Physics of the Atmosphere, Institute of Geophysics, Polish
Academy of Sciences.

Surface O3 concentrations were monitored by Thermo Scientific 49i (Belsk) and En-
vironment 42 (Racibérz) ozone analyzers, with the use of the UV absorption method and
reference to the norm PN-EN 14625. In both stations, the surface O3 monitors were regu-
larly calibrated with a certified standard photometer and certified gas mixtures. Detailed
checks of the surface Os data, i.e., verification and validation, as well as analysis of the
deviations of the concentrations measured at nearby stations with the same category
(rural or suburban), to ensure adequate data quality were performed. Meteorological
parameters were measured using Vaisala Milos m520 and Lufft WS510-UMB (Belsk), and
Meteo Davis Vantage Pro 2 (Raciborz). The 1 h averages of surface Os and meteorological
parameters constitute the basis for further statistical calculations, which were done using
the Statistica 12 package.

2.3.2. CAMS

The Copernicus Atmosphere Monitoring Service (CAMS) is a service implemented
by the European Center for Medium-Range Weather Forecasts (ECMWEF) that provides
continuous data and information on atmospheric composition. CAMS produces global
forecasts for atmospheric composition twice a day. The initial conditions of each forecast
are obtained by combining a previous forecast with current satellite observations through
a process called data assimilation. This best estimate of the state of the atmosphere at the
initial forecast time step called the analysis, provides estimates of the concentration of
atmospheric pollutants at sites where no direct observations are available. Surface O3
forecasts were downloaded from CAMS European air quality forecasts dataset. This da-
taset provides daily air quality analyses and forecasts for Europe.

CAMS produces specific daily air quality analyses for the European domain at high
spatial resolution (0.1 degrees, approx. 10 km). In parallel, air quality forecasts are pro-
duced once a day for the next four days. Both the analysis and the forecast are available at
hourly time steps at seven height levels, including the surface level. For this study, a set of
the following air quality models were used: Chimere, Emep, Ensemble, Mocage, Match, Lo-
tos, and Euradim. A detailed description of selected chemistry-transport models is availa-
ble in Colette et al. [49].

2.4. Models

MLR and ANN (with multiple the perceptron (MLP) approach) were used to predict
surface Os concentration using basic meteorological parameters (temperature and rela-
tive humidity) as explaining variables. Hour of the day and surface Os concentration in
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the previous day (24 h back) was also attached to the input list. Time of the day can be a
useful predictor, especially in urban environments where vehicular emissions are
strongly dependent on the time of day [50]. Additionally, the most important meteoro-
logical predictors (e.g., temperature, solar radiation) are characterized by a distinct daily
course with the maximum during noon hours and minimum during night. Predictors
used in the models have a 3 h time resolution since 00:00 UTC. Both models were de-
veloped separately for Belsk and Racibdrz for each season of the year: spring
(March-April-May), summer (June-July-August), autumn (Septem-
ber-October-November), and winter (December-January-February). MLR and ANN
models were chosen because they are tailored to the limited number of predictors avail-
able at the locations. These models can predict short-term surface ozone variability in
many places equipped only with an ozone meter and a simple weather station.

2.4.1. Multiple Regression Analysis

MLR is one of the most common tools used in surface Os prediction. It is based on
the relationship between the Os concentration, and a set of predictors (usually including
meteorological and chemical drivers) obtained by the least-squares method [51-53]. In
this work, the forward stepwise regression method was used. It consists of the next
(stepwise) adding a new variable included in the model to the predictor list, which at a
given step has the most significant influence on the dependent variable.

2.4.2. Artificial Neural Network

In recent years ANN, especially the MLP approach, has become an efficient alterna-
tive to traditional statistical techniques. A great advantage of ANN is the ability to model
the highly non-linear relationships between predictors and predictand variables. The
ANN system consists of a system of neurons interconnected by weights. The neurons are
divided into input, hidden, and output layers. Using a training set consisting of series of
input and related output data, it is possible to learn the network. During the process of
learning, the training data are repeatedly presented to MLP, and weights are adjusted
until the appropriate input-output matching is obtained and the resulting error of esti-
mation is minimal. ANN is based on the non-linear transformation of input data to ap-
proximate output value. A comprehensive description of ANN is in Gardner and Dorling
[54] and Spellman [39] and in the literature contained therein.

Comparative analysis of both methods could be helpful in indicating the depend-
ency of the surface Os concentration on selected explanatory variables. If the performance
of the ANN model is comparable with the MLR model, it can be stated that the relation-
ship between input and output variables is almost linear. When the performance of ANN
outperforms MLR, it will indicate possible interactions between variables [40].

3. Results
3.1. Diurnal and Seasonal Cycles of Surface Os Concentration

Surface Os concentration in the suburban and rural regions has been analyzed sta-
tistically in terms of daily and annual variability in the period from September 2018 to
September 2021. The box plots presented in Figure 3 summarize the hourly surface Os
variations in Racibdrz and Belsk.
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Figure 3. Mean daily course of surface O3 from observations for the period from 2018 to 2021 in
Racibérz (a) and at Belsk (b). The point shows the mean value, and the box displays the range:
mean + 1 standard deviation.

At both stations, a characteristic daily course of surface Os was recorded with
maxima during the afternoon hours and minima in the early morning, just before sunrise.
From 06:00, there was a constant increase in surface Os lasting until early afternoon
(14:00), which is attributed to photochemical processes of ozone formation (involving
VOC and NOx species) and vertical transport from upper layers of the atmosphere that
develops during a day by convective activity in the atmospheric boundary layer [55].
Between 13:00 and 15:00, the highest values of surface Os were equal to 33.3 ppb and 34.5
ppb for Belsk and Racibdrz, respectively. There has been a continuous slow decline since
then until 05:00, when the daily minimum has been reached. Lowering surface Os levels
during evening and night is attributed to the reduction of photochemical processes and
processes of Os titration (Os + NO — NO: + Oz) [56,57].

The differences between rural and suburban surface Os are as follows:

e  The average surface Os concentration is slightly higher at the rural station (25.1 ppb)
than at the suburban (24.2 ppb). It is attributed to limited sinks of surface Os in rural
areas (especially lower NOx level results in less surface Os destruction through titra-
tion processes).

e The cycle of diurnal variability of surface Os is weaker (has lower diurnal amplitude)
at the rural station. The highest difference between surface Os concentration in
Racibérz and Belsk was noted at 05:00 (~3.6 ppb). Lower concentrations in the sub-
urban station during the night and morning hours are an indicator of the presence of
fresh NO in urban areas [58]. Higher diurnal surface Os maxima also indicate a high
concentration of surface Os precursors (NOx, VOC) at the site. The maximum of 1 h
averaged surface Os concentration was equal to 91.2 ppb in Racibérz (19 June 2021)
while 80.9 ppb at Belsk (1 July 2019).

Figure 4 presents the monthly averaged surface Os concentration at urban and rural
stations. At both stations, a characteristic annual cycle with a spring-summer maximum
and autumn minimum was recorded. The maximum was noted in April (38.3 ppb) at
Belsk while in Racibérz in June (35.8 ppb). The existence of a maximum peak in April
(Belsk) is probably related to the vertical transport of air from the upper atmosphere [59].
The existence of a broad spring-summer maximum (Racibérz) from April to August
seems to be associated with the photochemical surface Os formation by processes in-
volving NOx and VOC under the influence of solar radiation [43,50]. The annual mini-
mum at each station was noted in November (~13 ppb).
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Figure 4. Monthly average surface O3 concentrations in Raciborz (a) and at Belsk (b) for the period
September 2018-September 2021. The point displays the mean value; the box shows the range:
mean * 1 standard deviation.

The rural-suburban surface Os differences were examined for individual hours and
months. Results show that the differences (rural minus suburban) are much higher dur-
ing night and morning hours (Figure 5a) and during winter-spring months (Figure 5b).
During the afternoons and evenings (from 15:00 to 20:00), greater surface Os is noted in
Racibérz station, similarly as during summer months (from June to August) which indi-
cates the greater photochemical potential of surface Os formation.
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Figure 5. The differences between surface Os measured at Belsk and Raciborz (ppb), from 2018 to
2021, for diurnal (a) and monthly (b) scales.

The fit of the hourly and monthly surface Os values to a normal distribution was
performed using the Shapiro-Wilk test (significance level: a = 0.05). The test was applied
separately for all data from September 2018 to September 2021 separately for each hour
during the day. The same test was performed for daily averaged values separately for
each month (January—December) in the period 2018-2021. As the analyzed data were not
normally distributed, the nonparametric U Mann-Whitney test was applied to find out
whether the differences in surface Os concentrations between hours and months were
statistically significant.

The difference between surface Os concentration in Belsk and Raciborz was statisti-
cally significant at a 95% confidence level for all hours, with the exception of hours be-
tween 13:00 and 16:00 and 20:00 and for months from January to May and for July.
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3.2. Seasonal Cycle of Surface O3 Concentration from CAMS Simulations

Figure 6 presents averaged daily variations of surface Os from the measurements
and CAMS forecasts for both stations for the period September 2018-September 2021. For
each season, seven simulations: Chimere, Emep, Ensemble, Mocage, Match, Lotos, and Eur-
adim were shown for both sites. Comparative analysis was performed separately for each
location.
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Figure 6. Time series of diurnal variation of surface Os concentration for each season at Racibdrz (a)
and Belsk (b) station for the period 2018-2021. Colors of lines: blue-measurement, red-Chimere,
dark green-Emep, pink-Ensemble, black-Mocage, light grey-Match, brown-Lotos, light green-Euradim.
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The mean differences between the CAMS forecasts and measured surface Oz are
presented in Figure 7. All simulations show overestimation, especially during autumn
and winter. In Belsk, the over- and under-estimations were slightly lower. Small un-
der-estimations were noted during spring and winter for Emep, Match, and Euradim (up
to 2.6 ppb). The simulations show differences not only in comparison with measurements
but also when comparing CAMS pairs. More details on the CAMS-observation differ-
ences will be given in Section 3.3.

RACIBORZ BELSK
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Figure 7. Mean bias error (see Equation (2) for definition), CAMS forecasts minus observed surface
Os, for the period 2018-2021, separately for each season for Racibo6rz (a) and Belsk (b) station.

In order to determine whether the differences between CAMS forecast, and obser-
vations were statistically significant, the non-parametric U Manna-Whitney test was
performed. The test was carried out using all hourly averaged data for individual seasons
from 2018 to 2021 for each location. In almost all cases (with the exception of the spring
season at Belsk for Emep), the differences between CAMS forecasts and observed surface
Os data were statistically significant.

3.3. Quality of CAMS Forecasts

CAMS model performance is determined by standard measures of goodness of fit of
the model to the measurements, including coefficient of determination (R?), mean bias
error (MBE) [ppb], mean absolute error (MAE) [ppb], and root mean squared error
(RMSE) [ppb](Table 2). These measures (so-called comparative statistics) are given by
Equations (1)—(4), respectively.

R2 — % s =@ —9) (1)
SDy SD,,

MBE = ~3IL,(y; — x;) )

MAE = =31, |y; — x| 3)

RMSE = E S —x)? (4)

where: xi—observed variable, yi—predicted variable, —mean of x variable, y —mean of y
variable, SD,—standard deviation of observed variable, SD, —standard deviation of the
predicted variable.
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Table 2. Summary of comparative statistics of surface Os concentrations between measured and
CAMS forecasts. MBE, MAE and RMSE are in ppb.

Index Raciborz Belsk
CH EM EN MO MA LO EU CH EM EN MO MA LO EU
Spring
R2 048 052 054 042 040 036 022 049 052 057 024 047 0.40 0.35
MBE 7.49 458 464 252 575 460 470 245 010 049 261 -0.18 041 -0.48
MAE 912 752 729 765 912 930 939 6.00 545 501 7.84 6.83 6.91 6.84
RMSE 1146 963 942 983 1159 1177 1230 771 718 6.71 1016 8.69 9.03 8.99
Summer
R2 061 053 070 061 056 056 041 054 042 0.60 0.40 0.49 0.45 0.41
MBE 158 137 189 449 250 412 178 212 183 310 9.34 2.93 5.36 2.69
MAE 8.04 866 734 876 849 880 966 702 7.62 682 1139 7.65 8.85 8.11
RMSE 10.01 10.83 9.21 1095 1066 11.14 1212 9.04 970 8.84 1425 9.78 1145 10.35
Autumn
R2 049 058 040 046 053 046 037 055 0.63 067 0.39 0.55 0.49 0.52
MBE 1093 635 1213 884 812 732 6.63 695 323 445 9.29 3.83 5.47 2.27
MAE 1158 8.03 1254 999 962 998 912 835 577 6.11 10.66 6.82 8.00 6.16
RMSE 13.67 10.01 16.18 1253 11.77 12.16 11.58 982 729 752 1281 8.57 9.85 7.85
Winter

R2 039 051 034 020 036 023 025 045 058 053 0.26 0.44 0.22 0.38
MBE 10.79 210 7.69 9.07 502 356 271 684 -062 217 7.02 -054 127 -2.60
MAE 1142 559 9.01 1046 802 933 729 812 486 542 9.27 6.27 8.40 6.43
RMSE 1354 736 12.09 1325 10.19 11.78 951 986 6.30 693 1156 7.80 1046 8.15

CH-Chimere, EM-Emep, EN-Ensemble, MO-Mocage, MA-Match, LO-Lotos, EU-Euradim. For each sta-
tion, the maximum value is denoted in bold, but the minimum is in bold italics.

The R? values show considerable variation depending on the season of the year. The
highest values were found in summer and autumn, while the lowest were in winter. The
R? values in Raciborz ranged from 0.22 (Euradim-spring) to 0.70 (Ensemble-summer). For
Belsk, these values were correspondingly lower, ranging from 0.22 (Lotos-winter) to 0.67
(Ensemble-autumn). All R? values were statistically significant. The MBE values indicate a
general tendency to overestimate observed values. The highest values were noted during
autumn and winter. The MBE values in Racibdrz varied between 1.37 ppb
(Emep-summer) and 12.13 ppb (Ensemble-autumn). Lower values of MBE were noted in
Belsk and ranged from 0.10 ppb (Emep-spring) to 9.34 (Mocage-summer). The MAE values
in Raciborz ranged from 5.59 ppb (Emep-winter) to 12.54 ppb (Ensemble-autumn). For
Belsk, these values were correspondingly lower and ranged from 5.01 ppb (Ensem-
ble-spring) to 14.25 ppb (Mocage-summer). The RMSE values in Racibérz varied from 7.36
ppb (Emep-winter) to 16.18 ppb (Ensemble-autumn) while in Belsk from 6.30 ppb
(Emep-winter) to 14.25 ppb (Mocage-Summer). The higher RMSE values compared with
MAE values were noted for each season and for both locations, which indicates an ap-
pearance of large residual values. Both MAE and RMSE show the better statistical per-
formance of CAMS forecasts in spring (Belsk) and summer (Racibdrz).
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3.4. Performance of MLR and ANN Models

Various models for predicting surface Os are possible, ranging from the MLR model
to sophisticated artificially intelligent ones such as XGBoost, based on many predictors
containing chemical and weather components. Here we use two types of forecast model.
i.e., MLR and ANN, which are adapted to a limited number of input variables available at
the sites. The former aims to model the linear input-output relationship, and the latter
one is to account for the possible nonlinearity effects between input variables and output.

Prediction of 1 h mean of surface Os every 3 h from 0:00 GMT for each season of the
year was based on observed meteorological data measured (every 3 h) at the stations.
Using Statistica 12, ANN package, the models were developed for 2 independent sets of
input data. The former one consisted of the following predictors: the hour of the day,
temperature [°C], and relative humidity [%]. The latter one additionally takes into ac-
count: temperature 3 h back, relative humidity 3 h back, and surface Os concentration 24
h back [ppb]. Particular data sets were implemented for the automatic network designer
function. The input data set was divided into training (70%), test (15%), and validation
(15%) subsets. Participants for each subset were selected randomly. Testing three-layer
MLP with different functions of activation and different number of neurons in the hidden
layer, the most appropriate topology of network structure was found. Table 3 presents the
architecture of ANN for the validation subset used in the prediction.

Table 3. Structure of ANN networks selected for surface Os prediction.

Activation F tion Activation F tio
Season ANN Structure Error Function ciivation Function Activation Function

(Hidden Layer) (Output Layer)
Racibérz
Sori 3-5-1 BFGS Tanh Linear
pring 6-7-1 BFGS Tanh Linear
Summer 3-8-1 BFGS Tanh Exponential
6-8-1 BFGS Tanh Linear
Autumn 3-10-1 BFGS Tanh Logistic
6-4-1 BFGS Logistic Linear
Winter 3-8-1 BFGS Logistic Exponent%al
6-7-1 BFGS Tanh Exponential
Belsk
. 3-5-1 BFGS Logistic Exponential
Spring — —
6-8-1 BFGS Logistic Logistic
Summer 3-8-1 BFGS Exponential Exponential
6-7-1 BFGS Exponential Linear
Autumn 3-4-1 BFGS Logistic Linear
6-10-1 BFGS Exponential Tanh
Winter 3-8-1 BFGS Tanh Tanh
6-9-1 BFGS Tanh Tanh

Depending on the number of input data sets, the best architecture of ANN models
consisted of 3 or 6 neurons in the input layer, from 4 to 10 in the hidden layer, and 1
neuron in the output layer. The models used the gradient quasi-Newton BFGS (Broy-
den-Fletcher-Goldfarb-Shanno) learning algorithm. The selection of the best networks
was performed considering the same statistical measures (evaluative statistics) used for
quality checking of the CAMS forecasts (see Table 2). Table 4 presents the values of
evaluative statistics using MLR and ANN for both sets of input data, for each season of
the year separately for Raciborz and Belsk stations. Both kinds of models were developed
based on two sets of input data, including three predictors (hour of the day, temperature,
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relative humidity) or six predictors (hour of the day, temperature, relative humidity,
temperature 3 h back, relative humidity 3 h back, previous day’s surface Os concentra-
tion). Performance indexes for ANN models were calculated for the validation data sub-
set. The visual reference of results from Table 4, presenting the relative ranking of indi-
vidual models, is shown in Figures 8-11.

Table 4. Comparative statistics for MLP and ANN models for validation subset (MLR 3 = multiple
linear regression with an input data set consisting of three predictors, ANN 3 = artificial neural
network with an input data set consisting of three predictors, MLR 6 = multiple linear regression
with an input data set consisting of six predictors, ANN 6 = artificial neural network with an input
data set consisting of three predictors). MBE, MAE and RMSE are in ppb.

MLR3 ANN3 MLRe6 ANNG6 MLR3 ANN3 MLRe6 ANNG6
Index o
Raciborz Belsk
Spring
R2 0.52 0.54 0.62 0.66 0.58 0.67 0.64 0.70
MBE 0.04 -0.74 -0.01 -0.46 0.00 -0.31 -1.23 0.22
MAE 6.55 5.91 5.85 5.12 5.01 4.09 4.75 4.01
RMSE 8.38 7.72 7.49 6.61 6.31 5.24 6.04 5.18
Summer
R2 0.71 0.77 0.78 0.81 0.65 0.71 0.71 0.73
MBE -0.02 0.12 -0.02 -0.15 -0.16 -0.57 0.00 -0.43
MAE 6.62 5.49 5.68 5.08 5.76 5.31 5.32 5.21
RMSE 8.39 7.29 7.27 6.54 7.48 6.87 6.81 6.65
Autumn
R2 0.65 0.65 0.68 0.69 0.68 0.71 0.68 0.75
MBE -0.04 -0.10 -0.02 -0.09 0.03 0.69 0.02 0.69
MAE 5.64 5.41 5.30 5.18 4.75 4.26 4.52 4.07
RMSE 7.03 6.75 6.57 6.43 6.04 5.54 5.98 5.19
Winter
R2 0.38 0.32 0.43 0.45 0.19 0.30 0.37 0.48
MBE 0.13 0.07 0.40 0.04 -0.16 -1.13 0.13 -0.68
MAE 6.48 6.34 5.94 5.84 6.96 6.74 6.00 5.86
RMSE 8.05 7.69 7.37 7.23 8.49 8.28 7.49 7.16

For each station, the maximum value is denoted in bold, but the minimum is in bold italics.

MLR model that was trained by a set of three input data (MLR3) explains up to 71%
of the variance in surface Os in Raciborz (summer) and up to 68% at Belsk (autumn). In
turn, the ANN models trained by the same set of input data (ANN3) explains up to 77%
in Racibdrz (summer) and up to 71% at Belsk (summer and autumn). The use of a larger
set of six input data results in improved model performance. The MLR6 model explains
up to 78% in Racibdrz and up to 71% at Belsk, while the ANN6 model explains up to 81%
in Raciborz and up to 75% at Belsk. Generally, high R? values are for summer and autumn
but the lowest for winter. It's worth noting that during summer, distinctly higher R? val-
ues were noted for Racibdrz station. During other seasons the R? values between both
stations were comparable.
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Figure 8. Coefficient of determination (R?) for Raciborz (a) and Belsk (b) by model and season.
MLR3—MLR based on a set of 3 input data, ANN3—ANN based on a set of 3 input data,
MLR6—MLR based on a set of 6 input data, ANN6—ANN based on a set of 6 input data.
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Figure 9. The same as Figure 8 but for mean bias error (MBE) for Racibérz (a) and Belsk (b).
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Figure 10. The same as Figure 8 but for mean absolute error (MAE) for Racibérz (a) and Belsk (b).
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Figure 11. The same as Figure 8 but for root mean square error (RMSE) for Racibérz (a) and Belsk

(b).

The MBE values are small, ranging between -0.74 ppb (ANN3-spring) and 0.40 ppb
(MLR6-winter) in Raciborz and between -1.23 ppb (MLR6-winter) and 0.69 ppb
(ANN3-autumn) at Belsk. It shows great variation depending on the season and the kind
of models. All models tend to slightly overestimate surface Os concentrations. When
comparing stations, higher absolute values of MBE were noted in Belsk.

Analyzing MLR3 models, the MAE value ranged between 5.64 ppb (autumn) and
6.62 ppb (summer) in Raciborz and between 4.75 ppb (autumn) and 6.96 ppb (winter) at
Belsk. For ANN3 models, the MAE value ranged from 5.41 ppb (autumn) to 6.34 ppb
(winter) in Racibérz and from 4.09 ppb (spring) to 6.74 ppb (winter) at Belsk. Addition of
lagged ozone data and two lagged meteorological predictors reduced the MAE value by
MLR6 models to 5.30 ppb (autumn) in Racibérz and to 4.52 ppb (autumn) at Belsk and of
ANNG6 models to 5.08 ppb (summer) in Raciborz and to 4.01 ppb (spring) at Belsk. For
both models, the highest MAEs were noted for the winter months.

The results of RMSE follow a similar pattern to MAE, although its value in all cases
is slightly higher than MAE because of higher sensitivity to outliers. For MLR3 models,
trained with a set of three input data, RMSE ranged between 7.03 ppb (autumn) and 8.39
ppb (summer) in Racibdrz and between 6.04 ppb (spring) and 8.49 ppb (winter) at Belsk.
ANNS3 models perform slightly better with RMSE between 6.75 ppb (autumn) and 7.69
ppb (winter) in Racibdrz and between 5.24 ppb (spring) and 8.28 ppb (winter) in Belsk.
Minimum RMSE for MLR6 models (trained with a set of 6 input data) were equal to 6.57
ppb (autumn) in Racibérz and 5.98 ppb (autumn) in Belsk. RMSE for ANN6 models re-
duced to 6.43 ppb (autumn) in Racibérz and to 5.18 ppb (spring) at Belsk.

Comparing model performance in terms of the number of input data (three or six), it
appears that ANN, in all cases, is somewhat better than MLR. It seems that the inherent
element of nonlinearity in ANN models provides a more accurate surface Os forecast
compared with MLR. The inclusion of additional input data, e.g., lagged surface Os val-
ues (24 h back) and meteorological variables (temperature and relative humidity 3 h
back), resulted in better performance of both kinds of models. However, improvement is
slightly better for MLR than for ANN models.

3.5. Comparison of Performance of MLR and ANN with CAMS Simulations

The architecture of the MLR and ANN model was built using the meteorological
variable measured in stations. Figures 12-15 present the results of the best CAMS forecast
(blue), ANN3 (orange), and ANNG6 (green) in terms of R?, MBE, MAE, and RMSE for
Raciboérz and Belsk stations. Depending on the season, the best CAMS forecast was: Emep
(50% of cases), Ensemble (40%), Mocage (3.3%), Match (3.3%), and Euradim (3.3%).
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Figure 12. R? for the best CAMS forecast, ANN3 and ANNG6 for Racibdrz (a) and Belsk (b).
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Figure 15. RMSE for the best CAMS forecast, ANN3 and ANNG6 for Racibérz (a) and Belsk (b).

Comparing the performance of these three models in terms of R? value, it can be
stated that for spring, summer, and autumn, the R?> was higher for ANN3 and ANNG6
models, while for winter, the CAMS simulation (Emep) was better. MBE values indicate
the over-estimation by CAMS simulations for both locations during all seasons, with the
exception of winter at Belsk, when small (below 1 ppb) under-estimation by Match fore-
cast was recorded. In terms of MAE and RMSE, for spring, summer, and autumn, the
forecast by ANN3 and ANNG6 were better than those taken from the best CAMS forecast.
In the winter season, the CAMS forecast reached a better fit for the measured data. It
suggests that ANN with the MLP structure could be an effective tool supporting the
prediction of surface Os during spring-summer-autumn when there is a real risk of epi-
sodes of high surface Os.

4. Discussion

This study presents the performance of MLR and ANN (with an MLP approach) in
forecasting surface Os in rural and suburban locations in Poland. Both models were built
using two separate sets of input data containing a limited number (three or six) of pre-
dictors. Because surface Os is mainly formed by photochemical reactions, the combina-
tion of basic meteorological parameters (temperature and relative humidity) with addi-
tional variables, including an hour of the day and lagged surface Os data, were used as an
explanatory variable. Similarly, to Yi and Prybutok [37], Comrie [38], Spellmann [39],
Gardner and Dorling [40], Sousa et al. [41], and Yu et al. [43], the results showed that the
use of ANN models performs better than linear models what indicate possible interac-
tions and non-linear relationships between predictors and surface Os. MLR explained up
to 78% of the variance in surface O3 in Racibdrz and up to 71% in Belsk, while the ANN
model explained up to 81% in Racibdrz and up to 75% at Belsk.

The use of three additional input data, including the surface Os concentration from
the previous day, improves the quality of the estimation of both models. The gain is up to
18 percentage points for MLR and up to 13 percentage points for ANN models). It is
worth noting that statistical models presented in this work used only the basic set of pa-
rameters determining surface Os formation. Other meteorological parameters or in-situ
surface Os precursor concentrations (NOx, VOC) were not included in the presented
analysis. We can suggest that the inclusion of these predictors into a set of input data
might further improve the results of modeling. MLR and ANN models provided better
forecasts for the rural station (Belsk). It is probably related to the greater uniformity and
representativeness of non-urban areas.

Surface Os forecasts using ANN models were also performed based on CAMS me-
teorological data. The R? values ranged up to 0.61 in Racibdrz (summer) and up to 0.52 in
Belsk (autumn), while RMSE values ranged up to 10.35 ppb in both locations. These re-
sults, in most cases, were better compared to results obtained by CAMS surface Os fore-
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casts but worse when compared with results obtained using measured meteorological
data (R2 up to 0.81, RMSE up to 6.43 in Racibérz and R2 up to 0.75 and RMSE up to 5.18
ppb in Belsk). The performance of statistical models depends crucially on the quality of
the forecast of the meteorological field. Using observed parameters is equivalent to using
the perfect meteorological forecast.

Furthermore, this study investigates the efficiency of surface Os prediction obtained
by selected CAMS simulations. Statistical analysis of differences between measurements
and CAMS forecasts showed significant overestimations of CAMS results, especially for
Racibérz during the autumn season. Comparative analysis indicates better performance
of MLR and ANN models trained by a set of six input data compared to CAMS simula-
tions for both locations for all seasons with the exception of winter. Forecasts by MLR and
ANN for the cold part of the year are less accurate, with an R? value below 0.5 for both
models. It is worth noticing that ANN, with three predictors (temperature, relative hu-
midity, and the hour of the day) provided an even better forecast (except winter) than the
best CAMS forecast. Such a simple forecast can be used for any place in Poland, and
measurements of surface Os are not necessary for the such forecast.

The results of the machine learning algorithm using different categories of predic-
tors (including CAMS surface Os simulations) for predicting surface Os in Munich
(Germany) were presented in the work of Balamurugan et al. [60]. In contrast to the pre-
sent study, the results concerned the diurnal maximum (from 13:00 to 14:00) of surface Os
for the whole year without division into seasons. The Extreme Gradient Boosting
(XGBoost) approach trained only on meteorology parameters (temperature, relative hu-
midity, boundary layer height, wind speed, and wind direction) explained 77% of the
variance of measured surface Os with RMSE value ~8 ppb. These results are comparable
with MLR6 and ANN3 achieved in the present study. XGBoost trained only on CAMS
data showed worse performance. It explained 75% of the variance in surface Os with
RMSE ~8.5 ppb. The results obtained for the best CAMS simulations in the present study
explained up to 70% of the variance in surface Os with RMSE equal to 9.21 ppb
(Racibérz—Summer). It is worth noticing that the performance of our statistical models
in all seasons except winter was clearly better than CAMS alternatives (see Figures
11-14). Balamurugan et al. [60] found that the differences between R? and RMSE for their
models based on meteorology and CAMS O:s forecasts were rather marginal.

5. Conclusions

Surface ozone has been measured in the Polish national network involving moni-
toring of other gaseous components important for the determination of air quality. This
study shows that effective forecasting of surface ozone for rural and suburban sites in
Poland is possible using only surface Oz, temperature, and humidity. Monitoring of these
weather variables can be carried out even by simplified weather stations, i.e., with no
wind measurements. This low-cost configuration increases the number of locations
providing short-term surface Os predictions important to local communities.
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