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Abstract: The flood hazard risks and vulnerability in the urban areas alongside major rivers of India 

have been gradually increasing due to extreme climatic events. The present study is intended to 

assess flood hazard vulnerability and potential risk areas and aims to ascertain the management 

strategies in Nabadwip Municipality, a statutory urban area of West Bengal. The multi-criteria de-

cision making (MCDM) of selected criteria and geospatial techniques have been employed to deter-

mine the urban flood vulnerability in the study area. The study has been conducted using secondary 

datasets including relevant remotely sensed data and participant observation. The potential flood-

affected zones have been determined using the normalized difference flood index (NDFI) and flood 

vulnerability index (FVI). The analysis of the standardized precipitation index (SPI) of 20 years of 

monthly precipitation shows the variability of seasonal rainfall distribution in the study area. Fur-

thermore, the spatial distribution of the composite Ibrahim index of socio-economic development 

accents that the urban development of the study area was uneven. The municipal wards situated in 

the central and northeastern portions of Nabadwip Municipality were extremely vulnerable, 

whereas the western and southwestern wards were less vulnerable. It is also revealed from the 

strengths–weaknesses–opportunities–challenges (SWOC) of the principal management strategies of 

the flood situation analysis that the unplanned sewerage system is one of the most effective weak-

nesses in the area. All-embracing and integrative flood management strategies need to be imple-

mented in the study area considering the intra-regional vulnerability and development for the re-

silient and sustainable development of the study area. 
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1. Introduction 

Flood occurrences and their consequences present a challenging circumstance for ur-

ban dwellers worldwide, particularly in developing countries [1]. Several urban residents 

in newly developed flood-prone areas in developing countries are at risk of flooding as a 

result of rising urbanization and population growth [1]. The frequency and intensity of 

urban floods are influenced by many indicators. Urban areas’ flood vulnerability and risk 

are driven by the topography and several socio-economic indicators that are related to 

flood ‘exposure’, ‘sensitivity’, and ‘adaptive capacity’ [2]. In the era of climate change, 

human-induced activities and rapid urbanization are worsening the risk of flood vulner-

ability [1]. At present, climate change can transform the conditions of precipitation, which 
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changes the nature, extent, and affectivity of floods [3]. This is exemplified by the fact that 

a devastating flood occurred in the Chao Phraya and Mekong River basins of Thailand 

due to the heavy rainfall during the monsoon season in 2011 [3]. The projection of urban 

flooding indicated an increasing trend from 2020 to 2040 in the Hohhot region of Mongo-

lia, China [4]. The two interrelated aspects of vulnerability are ‘economic development’ 

and ‘urban flooding’ [5]. Economic prosperity in urban areas without any deliberate urban 

development negatively impacted the recurrent causes of flooding [5]. Bangladesh, China, 

and Vietnam are frequently at risk of flooding because of the intense monsoon rains [5]. 

The largest flood-prone countries in the world are China, India, the United States, and 

Indonesia [6]. Human activities in the planning and development of cities have a signifi-

cant impact on flood incidents [6]. Financial damage and the threat to human lives are the 

most disastrous effects of floods in urban areas [6]. In this context, previous literature has 

been thoroughly reviewed to conceptualize the nature, scope, indicators, vulnerability, 

and resilience of urban floods. One of the most catastrophic natural and man-made disas-

ters is flooding [7]. The natural land surface was converted into built-up areas as a result 

of the rising population, which increased the frequency of floods in urban areas and im-

paired 3.6 million people between 2010 and 2020 [7]. Assessment of flood risk and vulner-

ability in Mexico has been researched in the context of climate change [8]. In Nan Province 

of Thailand, where the elevation is low near the river, the municipal area has experienced 

the majority of the floods [9]. Urban amenities, employment, supply chains, and urban 

infrastructure in Bangladesh and Nepal have all been severely impacted due to flood in-

cidents [10]. In India, numerous floods had an impact on city dwellers’ livelihoods. Major 

Indian cities had been impacted by flood hazards and associated vulnerabilities. The ma-

jor urban flood incidents in India occurred in Hyderabad (2000), Kolkata (2007), Delhi 

(2010), Chennai (2015), and Mumbai (2017) [11–13]. The research presented in [13] re-

vealed the environmental and human-caused causes of urban flooding. Urban floods in 

India are primarily caused by extreme rainfall conditions, powerful thunderstorms, river 

course changes, and river bank erosion [13]. Deforestation, the concretization of the 

ground’s surface, and the encroachment of floodplains by rapidly expanding built-up ar-

eas were the main anthropogenic factors [13]. Other anthropogenic factors included poor 

drainage channel management, heavy water discharge from check dams, and a lack of 

preparedness for disasters [13]. Using the multi-criteria decision making method, several 

factors have been integrated to assess urban flood vulnerability. According to the defini-

tion of vulnerability given in the study [14], vulnerability is a potential risk measurement 

strategy that incorporates socio-economic factors to build disaster preparedness. Digital 

elevation models (DEMs), soil, rainfall, slope, drainage density, and land use and land 

cover (LULC) are among the common physical factors used by researchers [14–18]. Other 

physical factors include the following: topographic wetness index (TWI), normalized dif-

ference vegetation index (NDVI), modified normalized difference water index (MNDWI), 

normalized difference built-up index (NDBI), distance from the river, stream power index, 

and sediment transport index (STI) [14–18]. An established Multi-Criteria Decision Mak-

ing (MCDM) technique for creating a flood vulnerability index with the integration of 

geoinformatics is the analytical hierarchy process (AHP). In Kanyakumari, India, flood 

vulnerability was assessed using AHP [14]. The AHP method was used to analyze the 

flash flood susceptibility in Bangladesh’s northeast wetland [15]. To determine the flood 

risk and vulnerability in the Tapi River basin in India, integrated AHP and geographic 

information system (GIS) methods were applied [17]. To determine the degree of flood 

vulnerability in the Indian Western Ghat foothills, a comparison of the AHP and fuzzy-

AHP methods was introduced [18]. To determine flood vulnerability in the Indian district 

of Ernakulam, the methodological prediction of the AHP and Fuzzy Analytical Hierarchy 

Process (F-AHP) methods was also assessed [16]. Different socio-economic factors related 

to flood vulnerability identified in [18] were the total population, the number of house-

holds, the literacy rate, and the Scheduled Castes and Scheduled Tribes population in the 

foothill areas of the Western Ghat in India. The study [19], at Nabadwip Municipality in 
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West Bengal, India, identified various urban amenities associated with flood conditions. 

West Bengal experienced significant urban floods in 1956, 1959, 1978, 1995, 1999, and 2000 

as a result of heavy rainfall and high discharge in September and October [20]. A large 

number of populations in West Bengal were adversely affected by the flood in 2000 for an 

extended period due to inadequate management and a lack of planning and control struc-

tures [20]. Several damages and vulnerabilities are the major consequences of floods in 

Indian cities. There was a connection between urbanization and the frequency of floods. 

According to [21], flood risks in Nigeria’s Gombe metropolis significantly increased as 

drainage infrastructure deteriorated. In Shanghai, China, urban forestry significantly re-

duced flood conditions caused by substantial rainfall [22]. In-depth planning is required 

to lessen the flood vulnerability in urban areas. To reduce the risks of urban flooding in 

Indian cities, strategic protection of river ‘catchment’ areas, enhancement of ‘water dis-

posal systems’, land-use planning, ‘flood vulnerability mapping’, ‘watershed manage-

ment’, and construction of ‘flood walls’ are usually required [13]. The establishment of 

‘relief centers’ and early warning and recovery systems for floods are also part of the stra-

tegic planning and policies for mitigating and managing the effects of floods in Indian 

cities [23]. 

The present study has been conducted in the context of changing flood vulnerability 

and related factors in the study area. Based on the literature review and associated field 

observations, the study includes a framework of the trend of flood hazards and their rela-

tionship with urban development in the study area. The present study develops a com-

prehensive appraisal of flood hazard vulnerability in the study area based on prior re-

search on the flood hazards of developing countries such as India (particularly the state 

of West Bengal). Table 1 outlines the relevant literature that pertains to the contextual 

background of the study, such as analytical approaches to urban flooding, assessments of 

flood vulnerability, scenarios and occurrences of urban flood hazards in India and West 

Bengal, the relationship between flood vulnerability and urban development, and flood 

adaptation and resilience. 

Table 1. Literature regarding the conceptual background of the study. 

Conceptual Background Literature Review Sources 

Analytical approaches to urban 

flooding and the assessment of 

vulnerability 

The focus of current research is on 

measuring flood risk in urban areas 

around the world using remote 

sensing and GIS. 

Analytical hierarchy processes with 

geographic information systems are 

one of the methods most frequently 

used to assess flood hazard 

vulnerability. 

[24,25] 

Urban flood scenarios in India 

The urban areas were severely 

impacted by large urban floods that 

were primarily raised by heavy rain in 

Mumbai (on 26 July 2005), Kolkata (30 

June 2007), and Chennai (in November 

and December 2015). 

[26] 

Studies on flood occurrences in West 

Bengal 

West Bengal has annual flood potential 

areas that constitute 29.84% of the 

state’s total geographical area. 

Bardhhaman (undivided), Birbhum, 

Murshidabad, Nadia, Hugli, and 

[27] 
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Midnapore (undivided) were the major 

flood-prone areas of West Bengal. 

Flood vulnerability assessment in West 

Bengal 

Studies using remote sensing data and 

GIS analysis revealed that the districts 

of Nadia and Bardhaman contained a 

high concentration of settlements that 

were extremely susceptible to flooding 

from 1991 to 2000. 

According to the micro-level 

administrative scale, Nabadwip in the 

Nadia district was situated in a high-

severity hazard-prone zone in 

Gangetic West Bengal. 

[28,29] 

Determinants of vulnerability and 

adaptation to floods in West Bengal 

In the Murshidabad district of West 

Bengal, one of the main border districts 

of Nadia, significant household-level 

determinants predicted livelihood 

vulnerability based on exposure to 

flood sensitivity and adaptive capacity. 

[30] 

Urban development and flood disaster 

in Kolkata 

The risks of flooding in Kolkata, the 

capital of West Bengal, have increased 

as a result of the legacy of poor 

planning and an uneven distribution of 

geographic elements. 

[31] 

Flood occurrences in Nadia district in 

West Bengal 

Over the past few years, the district of 

Nadia has experienced major floods 

(1995–2000). According to a report 

from August 20, 2015, the flood 

incident had an impact on 21508 

residents of Nabadwip city. The 

majority of them were engaged in 

agriculture and household industries. 

[32] 

Flood resilience in West Bengal 

A comprehensive and well-developed 

plan for flood recovery needs to be 

implemented while focusing on the 

flood mitigation strategies in West 

Bengal. 

[33] 

Source: A literature review by the authors. 

The concept of flood vulnerability, its relationship to climate change, flood contrib-

uting factors, the nature of geographical expansion efficacy, and mitigation measures for 

floods have all been separately explored in the previous literature. However, an integrated 

study is required to identify the physical factors of flood vulnerability and its occurrences 

in a region where rainfall varies seasonally. Additionally, a correlation between the flood 

vulnerability factors and the normalized difference flood index has to be established. Un-

derstanding the connection between urban development and flood vulnerability is imper-

ative to find out how to assess flood mitigation strategies in urban areas using a strengths–

weaknesses–opportunities–challenges analysis. The unique aspect of the present study is 

the use of physical and environmental factors to determine the flood vulnerability index 

and compare this index to the socio-economic development of the study area. Addition-

ally, the study measures the predicted value of the flood-related spectral index. A signifi-

cant aspect of managing quasi-natural disasters is measuring flood vulnerability by 



Atmosphere 2023, 14, 669 5 of 56 
 

 

considering the interconnection between physical and socio-economic factors. The study 

also highlights the challenges faced by the locals as a result of flood events, and it acts 

accordingly to mitigate floods as well as provide be�er opportunities for the livelihood of 

the urban dwellers. In this context, the aims of the present study are as follows: 

1. To identify the physical and environmental factors of flood hazard in the study area 

in 2000 and 2015; 

2. To delineate the flood vulnerability zones in the study area in 2000 and 2015; 

3. To analyze the relationship between flood vulnerability and urban development; 

4. To measure a flood mitigation strategy using strengths–weaknesses–opportunities–

challenges analysis. 

2. Hypothesis 

Based on the conceptual background of flood vulnerability analysis, the present 

study establishes a hypothesis as follows: 

Null Hypothesis (H0). There is no significant relationship between flood vulnerability and urban 

development in the study area. 

Alternative Hypothesis (H1). There is a significant negative relationship between flood vulner-

ability and urban development in the study area. 

The study tends to reject the statement that there is no significant relationship be-

tween flood vulnerability and urban development in the study area to establish a research 

hypothesis. Details of methods of hypothesis testing are discussed in Section 3.3. 

3. Materials and Methods 

3.1. Study Area 

Nabadwip Municipality, a statutory town of Nadia district in West Bengal, India, has 

been selected as the study area. The urban area is situated between 23 degrees 2 min north 

and 23 degrees 23 min north latitude and 88 degrees 2 min east and 88 degrees 23 min east 

longitude [19]. The municipality area is situated on the western bank of the river Bhagira-

thi-Hugli, and its elevation above mean sea level (M.S.L.) is 18 m (59.0551 feet) [19]. The 

area is a part of the mature delta of the Bhagirathi-Hugli River plain, which formed a slope 

from north to south. The surrounding floodplain areas are characterized by braided river 

channels, meandering, sand bars, oxbow lakes, and sca�ered water bodies [34]. Nabadwip 

Municipality is located in the region of India with a tropical monsoon climate, which is 

typically characterized by significant amounts of rainfall during the monsoon season. 

Based on the field observation, it was determined that the main river channel of Bhagira-

thi-Hugli is below its normal water-holding capacity, resulting in a high water level dur-

ing heavy rainfall and surface runoff. This is due to the dredging of water bodies and spill 

channels for the construction of built-up areas and a large amount of siltation in the river 

bed due to river bank erosion. Nabadwip Municipality is a Class-I city in India with 24 

municipal wards and a population of 125,543 in 2011 [35]. The city is internationally fa-

mous for the origin of Goudiya Vaisnabism, propounded by Sri Chaitanya Mahaprabhu [19]. 

To examine the dichotomy between urban development and flood vulnerability, the Nab-

adwip Municipality was selected as the study area. It was noted that during a flood, some 

of the municipal wards with dense populations and market concentrations close to the 

city center showed high water levels. The new river course of Bhagirathi-Hugli in the east 

and the old river course of Bhagirathi-Hugli in the west are the boundaries of the munic-

ipality area. In the study area, frequent flood hazards were observed in the late 20th and 

early 21st centuries. The socio-economic and urban amenity status is properly considered 

in the present study regarding the impact of flood vulnerability in the municipality area 
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because it is a culturally significant city in West Bengal. Figure 1 shows a representation 

of the location map and ward map of Nabadwip Municipality. 

 

Figure 1. Location map of the study area. 

3.2. Data Sources 

The study has been conducted using secondary data and field observations. Data 

have been collected from the Census of India (2011), the Bureau of Applied Economics 

and Statistics (2015), and the website of Nabadwip Municipality to ascertain the socio-

economic conditions and urban amenities in the study area. The website of Solar Radia-

tion Data (SODA), the MERRA Project’s collaboration with the National Aeronautics and 

Space Administration (NASA), has provided daily and monthly rainfall data (January to 

December of 1986–2016). The National Remote Sensing Center (NRSC) and the United 

States Geological Survey (USGS) websites were used to gather satellite images from 2000 

and 2015. The details of the database and its sources are mentioned in Table 2. Satellite 

imageries have been primarily used to develop the spectral indices of flood vulnerability 

indicators in 2000 and 2015. The monthly rainfall data from 2000 and 2015, the two years 

in which West Bengal experienced devastating floods, were used to calculate one-month, 

three-month, four-month, six-month, and twelve-month standardized precipitation indi-

ces (SPIs). To determine the long-term variation of precipitation in the study area, a 30-

year SPI has also been calculated using the monthly average data from 1986 to 2015. 

Strengths–weaknesses–opportunities–challenges analysis was implemented after partici-

pant observations were accomplished at Nabadwip during the 2015 flood incident to un-

derstand the issues arising from the flood and suggest further prospects for the develop-

ment of the study area.  
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Table 2. Sources and use of available data. 

Sl. No. Available Data Date Source(s) 
Methods and 

Techniques 
Web Links 

1 

(Shuttle Radar 

Topographic 

Mission)  

SRTM-DEM: 

SRTM1 Arc-

Second Global 

2 November 

2000 
[36] 

Digital 

elevation 

model (DEM), 

slope analysis, 

drainage 

analysis 

https://www.earthdata.nasa.gov/sensors/srtm 

(Accessed on 30 August 2022) 

2 

CARTOSAT 

DEM (Cartosat-

1) 

17 April 2015 

and 29 April 

2015 

[37] 

Digital 

elevation 

model (DEM), 

slope analysis, 

drainage 

analysis 

https://bhuvan-

app3.nrsc.gov.in/data/download/index.php 

(Accessed on 30 August 2022) 

3 

LANDSAT 

ETM+ 

(Enhanced 

Thematic 

Mapper Plus) 

17 November 

2000 
[38] 

Normalized 

difference 

spectral 

indices 

https://earthexplorer.usgs.gov/ 

(Accessed on 30 August 2022) 

4 

Resourcesat-

1/Resourcesat-2: 

LISS-III (Linear 

Imaging Self 

Scanning) 

28 November 

2015 
[39] 

Normalized 

difference 

spectral 

indices 

https://bhuvan-

app3.nrsc.gov.in/data/download/index.php 

(Accessed on 30 August 2022) 

5 Rainfall (mm) 

1986–2015 

(January to 

December) 

[40-42] 

Standardized 

precipitation 

index 

https://mausam.imd.gov.in/; 
Website of Solar Radiation Data (SODA): 
Modern-Era Retrospective Analysis for 

Research and Applications (MERRA) Project 

collaboration with NASA 

(https://gmao.gsfc.nasa.gov/reanalysis/MERRA

-2/) 

(Accessed on 30 May 2022) 
Source: Selected by the authors. 

3.3. Research Design 

The study’s four main segments were designed for the fulfillment of the objectives. 

Selected indicators of the composite flood vulnerability index have been analyzed using 

the analytical hierarchy process of multi-criteria decision analysis based on the construc-

tion of various spectral indices and the standardized precipitation index. Furthermore, 

some urban development indicators have been composited using the Ibrahim index of 

socio-economic development. The correlation–regression model has been used to deter-

mine the normalized difference flood index prediction values by the indicators of flood 

vulnerability and the relationship between the composite flood vulnerability index and 

the composite Ibrahim index of socio-economic development. Finally, the validation of 

the composite flood vulnerability index model has been investigated using the reclassifi-

cation method and the analysis of the area under the receiver operating characteristic 

curve. The present study also includes hypothesis testing and an analysis of the strengths, 

weaknesses, opportunities, and threats. Spreadsheets and statistical software were used 

to develop the mathematical and statistical analyses, as well as the charts and diagrams. 

The representation of the spatial distribution of the indices, the zonation map of the 
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composite flood vulnerability index, the composite Ibrahim index, and the area under the 

receiver operating characteristic curve were all assembled using GIS software. Figure 2 

highlights the general methodological framework of the present study. 

 

Figure 2. A general methodological framework of the present study. 

3.4. Methods and Techniques 

3.4.1. Standardized Precipitation Index (SPI) Analysis 

The standardized precipitation index is a standardized way to measure anomalies in 

precipitation [43]. Based on a specific time scale, it indicates the dry or wet state of a region 

or river basin [44]. SPI has been more consistently analyzed to measure rainfall variability. 

In [45], SPI was used to measure the spatio-temporal variability of rainfall in China’s Fuhe 

Basin. The Tejo River basin in Portugal underwent an earlier study on flood conditions 

based on SPI [46]. In the South African city of Durban’s eThekwini metropolitan area, SPI 

was used to evaluate and forecast flood risk [47]. The SPI method had also been used to 

identify flood risks in Argentina’s southern Cordoba Province [48]. The following formula 

was used to calculate the standardized precipitation index (SPI), which measures precip-

itation anomalies, using monthly rainfall data (in millimeters (mm); 1 mm = 0.0393701 

inches) from the Nabadwip Municipality (1986–2015) based on Krishnagar, the district 

headquarters of Nadia in West Bengal. 

The SPI has been calculated following the formulae [49]. 

The formula of the mean of the precipitation is 

Mean (X̄) = 
∑ �

�
 (1)

where N is the number of precipitation observations. 

The formula for the standard deviation of precipitation is 

Standard Deviation (SD) =  ∑ �
(���� )

�
 (2)

The skewness of the precipitation has been calculated using the following formula: 

Skew =  
�

(���)(���)
× ∑ �

���̄

�
� (3)

The formulae of conversion of precipitation into lognormal values, Unbiased Statis-

tics (U statistics), and shape and scale parameters of the gamma distribution are as fol-

lows: 
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Log mean = �īn = In (�̄) (4)

U = �̄in – 
∑ �� (�)

�
 (5)

Shape parameter = � =  
�����

��

�

��
 (6)

Scale parameter = � =  
�̄

�
 (7)

The cumulative probability of an observed precipitation event has been calculated by 

using the output parameters [50]. The cumulative probability is calculated by 

G (x) = 
∫ �

���� 
��
�

 ���
�

�� ɼ(�)
 (8)

The formula for the calculation of cumulative probability is 

H (x) = q + (1-q) G (x) (9)

where q is the probability of zero. 

When the gamma function is undefined for x = 0 and a precipitation distribution may 

contain zeros [50], the SPI values are calculated following [49] the transformation of the 

cumulative probability H (x) into the standard normal random variable Z with a mean of 

0 and variance of 1 [50]. An alternative equation of the approximate conversion [51] is 

Z = SPI = − �� −
��������

� ��

�� �������������
� 0< H(x) ≤0.5 (10)

Z = SPI = + �� −
��������

� ��

�� �������������
� 0.5 <H (x) ≤ 1 (11)

where 

t = ��� �
�

�(�)�� 0 < H(x) ≤ 0.5; 

t = ��� �
�

{�.���(�)}�� 0.5 < H(x) ≤ 1.0; 

c0 = 2.515517; 

c1 = 0.802583; 

c2 = 0.010328; 

d1 = 1.432788; 

d2 = 0.189269; 

d3 = 0.001308. 

In Equations (10) and (11), the values of c0, c1, c2, d1, d2, and d3 are constants that are 

extensively used to enumerate SPI [51]. 

Thus, SPI values that indicate the four categories of drought [52] are I, Mild Drought; 

II, Moderate Drought; III, Severe Drought; and IV, Extreme Drought. 

3.4.2. Digital Elevation Model (DEM) and Raster Analyses 

Layouts for DEM and raster analyses of the selected flood vulnerability indicators 

have been prepared using geoinformatics. The DEM analysis has measured the relief in 

meters (1 m = 3.28084 feet), slope in percentage, flow direction, length, and density of the 

flow length lines. Spectral indices, such as the normalized difference vegetation index 

(NDVI), the normalized difference water index (NDWI), the modified normalized differ-

ence water index (MNDWI), the normalized difference built-up index (NDBI), the nor-

malized difference flood index 2 (NDFI2), the normalized difference turbidity index 

(NDTI), and the normalized difference soil index (NDSI), have been measured using raster 
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analysis of extracted band compositions of satellite images. The details of the formulae are 

mentioned in Table 3. 

Table 3. Details of the parameters and indicators used in the present study. 

Indicators Measurement Source(s) 
Justification for 

Selection 

Standardized Precipitation 

Index (SPI) 

The detailed formula has been mentioned in 

the Materials and Methods section. 
[49] 

Standardized 

precipitation index for 

analyzing monthly/ 

annual drought 

conditions. 

Relief (R) in m (1 m = 3.28084 

feet) 

Derived from Digital Elevation Model 

(DEM) 
[53,54] 

Terrain analysis and 

relief aspect of the 

morphometry of 

drainage basin.  

Slope (S) in % 

S = (Z × (Ctl/H))/(10 × A), basin area (A), total 

basin relief (H), the maximum height of the 

basin (Z) and total contour length, the 

average angle of slope (tanÕ) = Average No. 

of contour crossings per mile (A) × contour 

interval (I) 3361 (constant) 

[55] 

Terrain analysis and 

relief aspect of the 

morphometry of 

drainage basin. 

Flow direction (Fdir) Derived from DEM [56,57] 

The linear aspect of the 

flow of the drainage 

basin.  

Flow distance (Fdist) in km 

(0.621371 miles) 
Derived from DEM 

Spatial analyst in 

GIS 

The linear aspect of the 

flow of the drainage 

basin. 

Flow length in km (Fl) 

(0.621371 miles) 
Derived from stream raster [56] 

The linear aspect of the 

flow of the drainage 

basin. 

Flow length line density (Fld) 

in km/square km (0.621371 

mile/0.38610191964 square 

mile) 

Derived from stream raster using line 

density feature in GIS analysis 

Spatial analyst in 

GIS 

The areal aspect of the 

flow of the drainage 

basin. 

Normalized Difference 

Vegetation Index 

(NDVI) 

NDVI = 
��� (���� ��������) ����

���(���� ��������) ����
 [58] 

Satellite imagery-based 

spectral index of 

vegetation conditions. 

Normalized Difference Water 

Index (NDWI) 
NDWI = 

���������

���������
 [59] 

Satellite imagery-based 

spectral index of 

surface water 

conditions. 

Modified Normalized 

Difference Water Index 

(MNDWI) 

MNDWI = 
����������

����������
 [60] 

Satellite imagery-based 

spectral index of 

surface water 

conditions. 

Normalized Difference Built-

Up Index (NDBI) 
NDBI = 

���� – ���

���� � ���
 [61] 

Satellite imagery-based 

spectral index of 

habitation conditions. 

Normalized Difference 

Turbidity Index (NDTI) 
NDTI = 

���������

���������
 [62,63] 

Satellite imagery-based 

spectral index of the 
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relative clarity 

conditions of rivers. 

Normalized Difference Soil 

Index (NDSI) 

NDSI = 
(�����������)

(�����������)
 

(For ETM+ Band7 = SWIR2 and Band2 = 

Green.) 

[64] 

Satellite imagery-based 

spectral index of soil 

conditions. 

    

Normalized Difference Flood 

Index 3 (NDFI2) 
NDFI2 = 

��������

��������
 [65-67] 

Satellite imagery-based 

spectral index of flood 

conditions. 

Normalized Difference Flood 

Index 3 (NDFI3) 
NDFI3 = 

���������_�

���������_�
 [65,67] 

Satellite imagery-based 

spectral index of flood 

conditions. 

Source: Selected by the authors. 

The normalized difference flood index is one of the significant spectral index meas-

urements. In the aftermath of the floods in Malaysia’s Kelantan Province in December 

2014, land use estimation was directed using NDFI3 [65]. The Piemonte–Lombardia re-

gions of Italy, the West Godavari of India, the Mekong Delta of Vietnam, and Siem Reap 

in Cambodia all had flood conditions that were analyzed using NDFI1 and NDFI2 [66]. 

Using Earth observation datasets, the construction of the NDFI was used to map the 

flooded areas in Southern Malawi (2015); Veneto, Italy (2010); and Northern Uganda 

(2015) [67]. Concerning this, the following formula has been used to calculate the normal-

ized difference flood index 2 (NDFI2) and normalized difference flood index 3 (NDFI3) 

[65,67]. 

NDFI2 = 
��������

��������
 (12)

and NDFI3 = 
���������_�

���������_�
 (13)

where SWIR is shortwave infrared. 

3.4.3. Flood Vulnerability Index (FVI) 

The analytical hierarchy process (AHP), a method of statistical decision making un-

der the multi-criteria decision making (MCDM) process, has been used to calculate a sta-

tistical measure of the flood vulnerability index (FVI). The previous studies [68,69] used 

this method to calculate the flood vulnerability index. Measurement based on “the de-

pendence within and between the group of the elements” is the analytical hierarchy pro-

cess [70]. There are four steps combined to complete the entire process. The following are 

the subsequent steps: 

First, the hierarchy of the criteria, sub-criteria, a�ributes, and decision alternatives is 

derived [71]. Second, a 9-point scale measuring preference for the pairwise comparison of 

individual criteria based on [72] is constructed. The formulation of the pairwise compari-

son matrix, A = �����
�×�

 is wri�en as 

A = 

⎣
⎢
⎢
⎢
⎡
���

���

⋮
⋮

���
… … ���

���
… … ���

⋮ … … ⋮
⋮ … … ⋮

��� ���
… … ���⎦

⎥
⎥
⎥
⎤

 (14)

where ��� �� ����� �� 1 and ���  is equal to 1
���.�  In this study, the correlation of determi-

nants of the variables is used to construct this matrix. 

After that, the vector of weights, w = [��, ��, ��, … , ��] is calculated based on Saaty’s 

eigenvector [71]. 
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The normalization method is applied to normalize the eigenvector using the follow-

ing formula: 

���  = 
���

∑ ���
�
���

 (15)

Thereafter, the weights are computed using the following formula: 

�� =  
∑ ���

�
���

�
 (16)

where i, j = 1,2, 3, …, n. 

A consistency ratio (CR) of the pairwise comparison in the AHP process has been 

determined by dividing the consistency index (CI) by the random index proposed in [70]. 

The following formula is mentioned: 

CI = 
������

���
 (17)

where CI is the consistency index, n is the number of elements being compared in the 

matrix, and ����  is the largest or principal eigenvalue of the matrix. The consistency ratio 

(CR) is calculated using the following formula: 

CR = 
��

��
  (18)

where CR = consistency ratio (acceptable consistency ratio is ≤0.10 and inadequate con-

sistency ratio is ≥0.10; [70]), CI = consistency index, and RI = random index. 

In the present study, 1.54 is considered as a random index (RI) comprising 12 ele-

ments that have been measured and referenced in [73,74]. 

The composite flood vulnerability index (CFVI), based on [75], of the wards in the 

study area, is obtained in the final step by adding the ratings of each alternative to the 

weights of the sub-criteria to calculate the flood vulnerability index. Five categories—very 

high, high, moderate, low, and very low flood vulnerability—have been recognized for 

the CFVI of the selected study area. 

3.4.4. Composite Ibrahim Index (CIb) of Socio-Economic Development 

The Ibrahim index [76,77] has been used to standardize the data for calculating the 

socio-economic status of urban development. 

Here, 

Ibrahim Index (Ib) = 
��~��� (�)

��� (�)���� (�)
 × 100 (19)

where Xt = the actual value of a particular indicator for the socio-economic status of urban 

development in the wards of Nabadwip Municipality in the year t, and Min (X) and Max 

(X) = the minimum and maximum values for the particular indicator of socio-economic 

status of urban development throughout the entire period of all the wards in Nabadwip 

Municipality area. 

The composite Ibrahim index (CIb) has been calculated to measure the level of the 

socio-economic status of urban development in the wards of Nabadwip Municipality in 

2015. For calculating the composite Ibrahim index, the following formula has been used: 

CIb = 
(�������������⋯����)

��
 (20)

where CIb = composite Ibrahim index and �� = Ibrahim index. 

The selected indicators [19] are as follows: 

��� is the total household/1;000;000 population; 

��� is the total Scheduled Caste (SC) population/1000 population; 

��� is the total Scheduled Tribe (ST) population/1000 population; 

��� is the total literates/1000 population; 

��� is the total workers/1000 population; 
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��� is the number of secondary and higher secondary schools/1000 population; 

��� is the number of nursing homes/1000 population; 

��� is the road length/square km (1 square km = 0.386102 square mile); 

��� is the dumping sites/square km; 

��� is the pumping stations/square km; 

��� is the water-holding capacity of pumping stations/square km; 

��� is the number of waterbodies/square km; 

��� is the height of waterlogging/square km; 

��� is the number of banks/square km; 

��� is the number of ATMs/square km 

��� is the number of temples/square km; 

��� is the number of hotels/square km; 

��� is the distance of the center of the municipal ward from the station; 

��� is the distance of the center of the municipal ward from the bus stand; 

��� is the distance of the center of the municipal ward from the Municipality Office; 

��� is the distance of the center of the municipal ward from the Police Station; 

��� is the distance of the center of the municipal ward from the Post Office; 

��� is the distance of the center of the municipal ward from the State General Hospital. 

Based on the calculated composite Ibrahim index, the wards of Nabadwip Munici-

pality have been categorized into five zones of the composite Ibrahim index: notably high, 

moderately high, moderately low, and low socio-economic status of urban development. 

3.4.5. Correlation, Regression, Hypothesis Testing, and Model Validation 

A multiple linear regression model has been used in the present study to predict the 

NDFI based on the selected flood vulnerability factors. To clarify the nature of autocorre-

lation among independent variables and the validity of the model, autocorrelation values 

are also extracted in the regression model. In addition to the coefficients of determinants, 

significance tests and analysis of variance (ANOVA) have been adopted in the analysis of 

the multiple linear regression model. 

The formula of the multiple linear regression model [78] is based on [79,80] and is 

Y = �0 +�1 X1+… +�n Xn+ et (21)

where Y is the dependent variable (here, normalized difference flood index (NDFI)), X1 is 

the independent variable, �1 is a parameter, and et is the error. 

Here, the correlation coefficient (r) and coefficient of determinants (r2) values are cal-

culated using Pearson’s formula. 

The formula of ‘R’ (multiple correlation coefficient) [79,80] is 

R = �
[(�.���)��(�.���)�]�(�×�.���×�.���×�.�� × �)

��(�.����)�  (22)

where R is the value of the correlation coefficient, x1 is one independent variable, x2 is 

another independent variable, and y is the dependent variable. 

Autocorrelation has been determined using the ‘Durbin–Watson test’ [81] with 99% 

and 95% confidence intervals [82]. The formula of the Durbin–Watson test adopted by [83] 

is 

d = 
∑ (ȇ��ȇ���)��

���

∑ (ȇ�)��
���

 (23)

where d = Durbin and Watson statistic (DW statistic) and et = error term. 

To identify the f-statistics, ANOVA has been run using the following formula. 

The ‘F’ value in the ‘jth‘one-way ANOVA’ [84] is calculated using the following for-

mula: 

F = 
��������� ��������

����������� ��������
 (24)
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or, F = 
������������� �����������

������������ �����������
 (25)

The ‘explained variance’ or ‘between-group variability’ is 

� ��(Ȳ�. −Ȳ)2/(� − 1)
�

� � �
  (26)

where Ȳ�. denotes the sample mean in the ith group, ni is the number of observations in 

the ith group, Ȳ denotes the overall mean of the data, and K denotes the number of groups 

The ‘unexplained variance’ or ‘within-group variability’ is 

∑ .�
� � � � (��� − Ȳ�. )2/(� − �)

��

� � �
  (27)

where Yij is the observation in the ith out of K groups and N is the overall sample size. 

This F-statistic follows the F-distribution with K-1, N-K degree of freedom (df) under 

the null hypothesis. 

A two-sample t-test with unequal variance has been used to test the hypotheses. 

Here, the hypothesis has been tested using data from two statistical populations (variable 

1: CFVI; variable 2: CIb). The formula of ‘Welch’s t test’ [85] is 

t'=
�̄���̄�

�
��

�

��
�

��
�

��

 
(28)

where t is the t-statistic.  

In the present study, �̄� ��� �̄� are the population means, s1 and s2 are the popula-

tion variances. and n1 and n2 are the total number of statistical population 1 and statistical 

population 2. 

During hypothesis testing, it can be theorized that 

Null hypothesis (H0). µ1 = µ2 (when the null hypothesis indicates that the means of the two 

statistical populations are equal). 

Alternative hypothesis (H1). µ2 ≠ µ1 (when the alternative hypothesis indicates that the means 

of the two statistical populations are unequal). In this study, the statistical software calculated 

Welch’s degrees of freedom and used a 95% confidence interval. 

For the years 2000 and 2015 in the study area, a receiver operating characteristic 

(ROC) curve and area under the ROC curve (AUC) have been constructed to validate the 

flood vulnerability index model. The probability is graphically plo�ed using the ROC 

curve, and additionally, the true positive rate of 1-sensitivity and the false positive rate of 

specificity are used to calculate the area under the ROC curve (AUC) [86,87]. The overall 

efficiency of flood susceptibility was evaluated using ROC-AUC in an earlier study on 

Iran [88]. The research was also conducted [89] to assess the precision of the mapping of 

flood risk using ROC-AUC. ROC-AUC was used to validate the mapping of flood risk 

zones in Prayagraj, India [90].  

4. Results 

4.1. An Outline of Rainfall Situation and Flood Occurrences in Nabadwip Municipality 

Nabadwip Municipality faced major flood situations from 2000 to 2020. It is notewor-

thy that they occurred in the years 2000, 2006, 2007, and 2015. The most effective floods, 

concerning the overall situation, were in 2000 and 2015. In 2000, the average monthly rain-

fall was 118.96 millimeters (mm), and in 2015, it was 113.01 mm, where the annual rainfall 

was 1427.57 mm and 1356.13 mm, respectively (Figure 3). The peak season of monthly 

rainfall in 2000 and 2015 occurred in July, August, September, and October (Figures 4–7). 

The report [91] states that in 2000, a flood incident occurred on September 17 and lasted 

through the second week of October due to heavy rainfall and discharge flow. A flooding 
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incident occurred in 2015 starting on July 24 due to a strong cyclonic storm and associated 

heavy rainfall [92]. The daily rainfall situation (Figures 4–7) showed the strongest uptrend 

pa�ern on 6 June, 22 July, 29 August, and 19 September in 2000 and on 27 June, 28 July, 1 

August, and 21 September in 2015. The SPI values show the standardized deviation of 

monthly rainfall over 30 years (1986–2015; Table 4); in addition, SPI values of the study 

area for 1 month, 3 months, 4 months, 6 months, and 12 months in the years 2000 and 2015 

are shown (Table 5). Figures 8–12 show 1-month SPI, 3-month SPI, 4-month SPI, 6-month 

SPI, and 12-month SPI, respectively, from 2000 to 2015 (a total of 16 years). In 2000, the 

SPIs from June to September were 0.75, 0.55, −0.26, and 0.04; in 2015, the values were −0.81, 

−0.74, 1.24, and −0.47, respectively. That indicates a higher consistency of rainfall in 2000 

than in 2015. The Nabadwip Municipality area experiences humid weather conditions, as 

indicated by the highest positive SPI value from August to September 2015. The flood in 

Nabadwip in 2000 had the highest water level ever recorded during a flood situation. In 

wards 6, 7, 8, 10, 14, 15, 21, and 22, the water levels reached a depth of more than 10 feet 

(3.048 m) (Figure 13). 

Table 4. Monthly SPI values of average rainfall condition in Nabadwip Municipality area (1986–

2015). 

Year Month SPI Year Month SPI Year Month SPI 

1986 1 −0.48 1996 1 −0.70 2006 1 0.33 

1986 2 0.43 1996 2 0.05 2006 2 −1.84 

         

1986 3 0.37 1996 3 −0.07 2006 3 −0.65 

1986 4 −0.58 1996 4 −0.15 2006 4 0.00 

1986 5 −0.33 1996 5 0.21 2006 5 0.07 

1986 6 −0.94 1996 6 −1.12 2006 6 1.01 

1986 7 0.57 1996 7 0.07 2006 7 0.86 

1986 8 −0.74 1996 8 −0.57 2006 8 1.34 

1986 9 −2.29 1996 9 1.63 2006 9 0.35 

1986 10 0.44 1996 10 −1.46 2006 10 0.37 

1986 11 0.63 1996 11 −0.10 2006 11 −0.54 

1986 12 1.53 1996 12 −0.96 2006 12 0.29 

1987 1 1.05 1997 1 −0.53 2007 1 −0.44 

1987 2 0.45 1997 2 1.47 2007 2 −1.57 

1987 3 −0.61 1997 3 0.13 2007 3 2.08 

1987 4 −0.33 1997 4 0.77 2007 4 −0.23 

1987 5 0.43 1997 5 0.95 2007 5 0.16 

1987 6 −0.93 1997 6 −0.78 2007 6 −0.32 

1987 7 −2.45 1997 7 −0.07 2007 7 −0.55 

1987 8 −1.18 1997 8 1.90 2007 8 2.29 

1987 9 −1.19 1997 9 1.10 2007 9 −0.25 

1987 10 −0.98 1997 10 −0.91 2007 10 1.27 

1987 11 −1.78 1997 11 −2.52 2007 11 0.15 

1987 12 0.39 1997 12 0.06 2007 12 1.04 

1988 1 1.05 1998 1 1.82 2008 1 −0.35 

1988 2 −1.58 1998 2 1.54 2008 2 1.99 

1988 3 1.22 1998 3 0.11 2008 3 1.04 

1988 4 −0.02 1998 4 2.25 2008 4 −0.24 

1988 5 −0.39 1998 5 −0.17 2008 5 −0.65 

1988 6 −0.09 1998 6 −0.13 2008 6 −0.07 

1988 7 1.10 1998 7 1.47 2008 7 0.56 



Atmosphere 2023, 14, 669 16 of 56 
 

 

1988 8 −1.37 1998 8 0.66 2008 8 0.44 

1988 9 −0.89 1998 9 0.76 2008 9 −0.14 

1988 10 −0.59 1998 10 0.49 2008 10 0.48 

1988 11 −1.40 1998 11 0.70 2008 11 0.77 

1988 12 1.18 1998 12 0.92 2008 12 −0.68 

1989 1 0.06 1999 1 −0.32 2009 1 −0.22 

1989 2 −1.16 1999 2 −1.70 2009 2 −0.85 

1989 3 −0.30 1999 3 −0.96 2009 3 −0.79 

1989 4 0.07 1999 4 −0.42 2009 4 −0.11 

1989 5 −0.63 1999 5 −1.64 2009 5 −0.88 

1989 6 1.12 1999 6 0.94 2009 6 1.00 

1989 7 −0.20 1999 7 −0.26 2009 7 −1.64 

1989 8 −0.31 1999 8 1.44 2009 8 −0.41 

1989 9 −1.26 1999 9 1.12 2009 9 0.45 

1989 10 −0.11 1999 10 1.53 2009 10 0.18 

1989 11 0.95 1999 11 0.83 2009 11 −0.01 

1989 12 −1.24 1999 12 0.00 2009 12 0.74 

1990 1 0.88 2000 1 −0.27 2010 1 −0.36 

1990 2 −0.58 2000 2 −0.61 2010 2 −0.92 

1990 3 0.81 2000 3 0.97 2010 3 −0.20 

1990 4 1.61 2000 4 −0.24 2010 4 −0.22 

1990 5 0.99 2000 5 0.93 2010 5 −0.29 

1990 6 2.23 2000 6 0.55 2010 6 0.67 

1990 7 −0.27 2000 7 −0.01 2010 7 −0.62 

1990 8 0.28 2000 8 −0.13 2010 8 −0.88 

1990 9 −0.86 2000 9 −0.79 2010 9 −2.06 

1990 10 −0.54 2000 10 0.49 2010 10 −0.27 

1990 11 1.02 2000 11 −0.48 2010 11 0.46 

1990 12 1.30 2000 12 −0.68 2010 12 −0.10 

1991 1 0.45 2001 1 −1.47 2011 1 1.28 

1991 2 1.17 2001 2 0.18 2011 2 −0.70 

1991 3 −0.67 2001 3 −0.16 2011 3 0.02 

1991 4 −0.13 2001 4 1.51 2011 4 0.48 

1991 5 −1.11 2001 5 −0.50 2011 5 0.36 

1991 6 −0.76 2001 6 0.25 2011 6 0.08 

1991 7 0.05 2001 7 1.45 2011 7 0.73 

1991 8 −0.77 2001 8 0.34 2011 8 −0.71 

1991 9 0.45 2001 9 0.36 2011 9 0.95 

1991 10 0.16 2001 10 −0.75 2011 10 0.02 

1991 11 0.77 2001 11 1.28 2011 11 −1.55 

1991 12 0.30 2001 12 0.67 2011 12 −0.52 

1992 1 1.66 2002 1 −0.41 2012 1 −0.26 

1992 2 −0.25 2002 2 1.09 2012 2 1.31 

1992 3 0.39 2002 3 −1.21 2012 3 −0.09 

1992 4 −0.22 2002 4 0.07 2012 4 −0.66 

1992 5 −0.52 2002 5 −0.42 2012 5 0.44 

1992 6 −0.42 2002 6 0.07 2012 6 −0.83 

1992 7 −1.07 2002 7 0.22 2012 7 −1.58 

1992 8 −0.03 2002 8 0.46 2012 8 −0.98 
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1992 9 −0.38 2002 9 1.09 2012 9 −0.52 

1992 10 −1.07 2002 10 0.50 2012 10 0.95 

1992 11 −1.02 2002 11 −0.29 2012 11 −0.27 

1992 12 −0.25 2002 12 1.29 2012 12 0.25 

1993 1 −0.45 2003 1 −0.56 2013 1 1.20 

1993 2 −0.32 2003 2 −0.10 2013 2 0.16 

1993 3 −0.14 2003 3 −0.14 2013 3 0.29 

1993 4 0.67 2003 4 1.28 2013 4 −0.84 

1993 5 1.60 2003 5 1.38 2013 5 0.04 

1993 6 −0.37 2003 6 −0.33 2013 6 1.78 

1993 7 1.16 2003 7 1.29 2013 7 0.96 

1993 8 −0.33 2003 8 0.39 2013 8 −0.98 

1993 9 1.07 2003 9 −0.44 2013 9 0.84 

1993 10 0.66 2003 10 −0.59 2013 10 1.17 

1993 11 −0.45 2003 11 1.25 2013 11 0.96 

1993 12 0.63 2003 12 −0.20 2013 12 −0.71 

1994 1 −0.88 2004 1 1.65 2014 1 −0.33 

1994 2 0.68 2004 2 −0.02 2014 2 0.03 

1994 3 1.81 2004 3 0.34 2014 3 1.62 

1994 4 0.12 2004 4 −0.08 2014 4 0.16 

1994 5 0.83 2004 5 1.16 2014 5 −1.78 

1994 6 −0.65 2004 6 −0.52 2014 6 0.09 

1994 7 1.03 2004 7 0.41 2014 7 −0.91 

1994 8 −0.27 2004 8 0.70 2014 8 −0.96 

1994 9 0.31 2004 9 0.30 2014 9 0.66 

1994 10 −0.89 2004 10 2.53 2014 10 −1.20 

1994 11 −0.56 2004 11 0.97 2014 11 −0.97 

1994 12 −0.65 2004 12 −0.65 2014 12 −1.53 

1995 1 0.00 2005 1 −0.17 2015 1 0.59 

1995 2 −0.11 2005 2 0.65 2015 2 1.15 

1995 3 0.26 2005 3 −0.46 2015 3 −0.27 

1995 4 −0.45 2005 4 1.49 2015 4 0.37 

1995 5 −1.79 2005 5 1.71 2015 5 1.45 

1995 6 1.76 2005 6 −0.30 2015 6 −0.48 

1995 7 1.02 2005 7 −0.91 2015 7 −0.80 

1995 8 0.51 2005 8 −0.06 2015 8 1.42 

1995 9 1.42 2005 9 0.36 2015 9 −0.29 

1995 10 1.08 2005 10 −0.26 2015 10 −1.02 

1995 11 0.20 2005 11 2.14 2015 11 −0.46 

1995 12 2.16 2005 12 −0.43 2015 12 −0.33 

Source: Calculated by the authors. 

Table 5. Monthly standardized precipitation index (SPI) of the years 2000 and 2015. 

SPI 1-month 

Months Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

2000 1 0.05 −0.46 0.94 −0.29 0.75 0.55 0.04 −0.26 −1.17 −0.64 −0.49 

2015 0.82 1.11 −0.11 0.38 1.29 −0.81 −0.74 1.24 −0.47 −1.22 −0.63 −0.11 

SPI 3-month 

2000 NA NA 0.17 −0.02 0.51 0.49 0.20 −0.14 −0.72 −0.45 −0.70 −0.27 
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2015 −1.29 0.29 0.34 0.21 0.53 −0.15 −0.73 0.16 0.07 −0.28 −1.51 −1.52 

SPI 4-month 

2000 NA NA NA −0.42 0.25 0.73 0.13 −0.08 −0.61 −0.40 −0.74 −0.73 

2015 −2.20 −1.13 −0.09 0.12 0.78 −0.54 −0.71 0.28 −0.09 −0.57 −0.59 −1.52 

SPI 6-month 

2000 NA NA NA NA NA 0.41 0.13 −0.08 −0.59 −0.30 −0.58 −0.67 

2015 −1.49 −1.30 −2.14 −1.35 0.42 −0.32 −0.76 0.21 0.01 −0.59 −0.90 −0.82 

SPI 12-month 

2000 NA NA NA NA NA NA NA NA NA NA NA −0.60 

2015 −1.61 −1.53 −1.65 −1.64 −1.50 −1.68 −1.73 −0.88 −1.23 −0.91 −0.85 −0.81 

NA: Not applicable. Source: Calculated by the authors. 

 

Figure 3. Annual rainfall situation of 2000 and 2015. 

 

Figure 4. Daily rainfall situation (June 2000 and 2015). 
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Figure 5. Daily rainfall situation (July 2000 and 2015). 

 

Figure 6. Daily rainfall situation (August 2000 and 2015). 

 

Figure 7. Daily rainfall situation (September 2000 and 2015). 
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Figure 8. One-month SPI (years: 2000–2015). 

 

Figure 9. Three-month SPI (years: 2000–2015). 

 

Figure 10. Four-month SPI (years: 2000–2015). 

 

Figure 11. Six-month SPI (years: 2000–2015). 

  Positive value 

  Negative value 
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Figure 12. Twelve-month SPI (years: 2000–2015). 

 

Figure 13. The water level during the recent flood in Nabadwip. 

4.2. Factors and Zonation of Flood Vulnerability 

The following physical factors have been specifically related to flood vulnerability: 

relief (DEM), slope, flow direction, flow distance, flow length density (stream density), 

NDVI, NDWI (and MNDWI), NDBI, NDSI, NDTI, and the distance between municipal 

wards and the old and new river courses (Figures 14–27 and 29–42). The present study 

examines the relationships between the variables (Tables 6 and 7) concerning their situa-

tions in 2000 and 2015. Significant positive or negative correlations between NDVI and 

NDTI, NDWI and NDBI, NDSI and NDTI, NDBI with NDSI and NDTI, and between the 

distance of municipal wards from the old river course and the distance between municipal 

wards have been found. The correlation values are greater than 0.7. Significant positive or 

negative correlations between NDVI and NDTI, NDWI and NDBI, NDBI, and NDTI, and 

between the distance of municipal wards from the old river course and the distance of 

municipal wards from the new river course have been depicted in 2015. The spatial distri-

bution of the normalized difference flood index (NDFI) in 2000 and 2015 is depicted in 

Figures 28 and 43, respectively. The majority of the areas in Nabadwip Municipality had 

moderate NDFI values between 2000 and 2015. A low value (−0.131) of NDFI2 was found 

in the northwestern, northeastern, eastern, southern, and southeastern portions of the mu-

nicipality area in a dispersed condition in 2000, whereas a high value (0.952) of NDFI2 had 

been found in the northernmost, southernmost, western, and southeastern portions of the 

municipality area. The NDFI2 condition in 2015 was quite similar to that of 2000, but the 

range of the index was higher (the high value was 0.866 and the low value was −0.301). To 

determine the prediction value of the normalized difference flood index 2 (NDFI2) in 2015 

by each predictor of flood vulnerability, a multiple linear regression model has been for-

mulated. The relationships among the predictors have been represented in Tables 6 and 7. 

Table 8 displays the mean and standard deviation of the selected dependent variable along 

with the independent variables for 2015. Elevation (relief) shows the highest standard de-

viation (SD) (mean = 16.15, SD = 2.64), and flow distance shows the lowest (mean = 1.88, 

SD = 2.02). The NDFI2 and its predictors had a very strong relationship, as evidenced by 

the correlation coefficient of 0.866 (Table 9). In this instance, a significant change of 1 unit 
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in each predictor indicates a change of 75% in NDFI2 (F 0.05) (Tables 9 and 10). Due to the 

presence of autocorrelation (DW = 2.513), the coefficient values for NDVI and NDBI are 

not considered (Tables 9 and 11). In 2015, NDFI2, the dependent variable, was predicted 

by the other variables either significantly or insignificantly (Table 11). Here, NDFI2 in-

creased with increasing ground elevation, slope, flow direction, flow length line density, 

NDWI, and NDTI, and decreased with decreasing flow distance, NDSI, the distance of 

municipal wards from the old river course, and the distance of municipal wards from the 

new river course. The highly influential factors were flow length and line density, NDWI, 

NDSI, NDTI, the distance of municipal wards from the old river course, and the distance 

of municipal wards from the new river course in 2015. Here, a 1 km/square km (0.621371 

mile/0.38610191964 square mile) increase in flow length line density resulted in a 5.4% 

increase in NDFI2, a 1-unit increase in NDWI resulted in a 4.599-unit increase in NDFI2, 

a 1-unit increase in NDSI resulted in a 5.790-unit decrease in NDFI2, a 1-unit increase in 

NDTI resulted in a 6.476-unit increase in NDFI2, and a 1 km (0.621371 miles) increase in 

the distance of municipal wards from the old river course resulted in a 10.6% decrease in 

NDFI2. 

Table 6. Correlation matrix of the selected indicators of flood vulnerability (2000). 

R-Value 

 Elevati

on 
Slope 

Flow 

Directi

on 

Flow 

Distan

ce 

Flow Length 

Line Density 

ND

VI 

ND

WI 
NDBI NDSI NDTI 

Distance of 

Municipal Wards 

from the Old River 

Course 

Distance of Municipal 

Wards from the New 

River Course 

Elevation 1.000 −0.086 0.062 0.368 −0.277 
−0.11

8 
0.024 −0.024 −0.066 −0.150 −0.168 0.117 

Slope −0.086 1.000 −0.080 0.443 * 0.018 0.058 
−0.09

2 
0.092 0.015 0.017 0.502 * −0.397 

Flow Direction 0.062 −0.080 1.000 −0.288 −0.143 
−0.08

9 

−0.05

3 
0.053 −0.067 0.040 −0.137 0.244 

Flow Distance 0.368 0.443 * −0.288 1.000 −0.213 0.001 
−0.07

0 
0.070 0.047 0.081 0.058 −0.296 

Flow Length Line 

Density 
−0.277 0.018 −0.143 −0.213 1.000 

−0.09

2 
0.031 −0.031 −0.071 0.082 0.135 −0.291 

NDVI −0.118 0.058 −0.089 0.001 −0.092 1.000 
0.676 

** 
−0.676 −0.464* 

−0.771 

** 
−0.252 0.386 

NDWI 0.024 −0.092 −0.053 −0.070 0.031 
0.676 

** 
1.000 −1.000 −0.901 **

−0.718 

** 
−0.338 0.290 

NDBI −0.024 0.092 0.053 0.070 −0.031 
−0.67

6 ** 

−1.00

0 ** 
1.000 0.901 ** 0.718 ** 0.338 −0.290 

NDSI −0.066 0.015 −0.067 0.047 −0.071 
−0.46

4* 

−0.90

1 ** 

0.901 

** 
1.000 0.690 ** 0.246 −0.134 

NDTI −0.150 0.017 0.040 0.081 0.082 
−0.77

1 ** 

−0.71

8 ** 

0.718 

** 
0.690 ** 1.000 0.234 −0.327 

Distance of 

municipal wards 

from the old river 

course 

−0.168 0.502* −0.137 0.058 0.135 
−0.25

2 

−0.33

8 
0.338 0.246 0.234 1.000 −0.782 ** 

Distance of 

municipal wards 

from the new river 

course 

0.117 −0.397 0.244 −0.296 −0.291 0.386 0.290 −0.290 −0.134 −0.327 −0.782 ** 1.000 

* Correlation is significant at the 0.05 level (2-tailed). <+ −0.3  0.3 to 0.7  >+ −0.7 

. **.Correlation is significant at the 0.01 level (2-tailed). Source: Calculated by the authors. 
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Table 7. Correlation matrix of the selected indicators of flood vulnerability (2015). 

R-value 

 Elevati

on 

Slop

e 

Flow 

Directi

on 

Flow 

Distan

ce 

Flow 

Length 

Line 

Density 

NDVI NDWI 
NDB

I 
NDSI NDTI 

Distance of 

Municipal Wards 

from the Old River 

Course 

Distance of Municipal 

Wards from the New 

River Course 

Elevation 1.000 
−0.63

4 ** 
−0.245 −0.259 −0.304 0.445 * 0.040 

0.406 

* 
0.577 ** 0.445 * −0.168 0.117 

Slope 
−0.634 

** 
1.000 0.405* 0.604 ** 0.378 

−0.465 

* 
0.006 

−0.38

0 
−0.466 * −0.465 * 0.188 −0.029 

Flow Direction −0.245 
0.405 

* 
1.000 0.101 −0.058 −0.099 0.224 

−0.18

5 
0.132 −0.099 −0.106 0.234 

Flow Distance −0.259 
0.604 

** 
0.101 1.000 −0.024 −0.318 0.272 

−0.44

0 * 
−0.106 −0.318 0.165 −0.083 

Flow Length Line 

Density 
−0.304 0.378 −0.058 −0.024 1.000 

−0.512 

* 
−0.321 

−0.12

8 
−0.681 ** −0.512 * 0.188 −0.384 

NDVI 0.445 ** 
−0.46

5 * 
−0.099 −0.318 −0.512* 1.000 

−0.479 

* 

0.841 

** 
0.262 1.000 ** −0.038 0.244 

NDWI 0.040 0.006 0.224 0.272 −0.321 
−0.479 

* 
1.000 

−0.79

2 ** 
0.648 ** −0.479 * −0.040 0.155 

NDBI 0.406 * 
−0.38

0 
−0.185 −0.440* −0.128 

0.841 

** 

−0.792 

** 
1.000 −0.048 0.841 ** −0.075 0.064 

NDSI 0.577 
−0.46

6* 
0.132 −0.106 −0.681 ** 0.262 

0.648 

** 

−0.04

8 
1.000 0.262 −0.155 0.329 

NDTI 0.445 * 
−0.46

5 * 
−0.099 −0.318 −0.512* 

1.000 

** 

−0.479 

* 

0.841 

** 
0.262 1.000 −0.038 0.244 

Distance of municipal 

wards from the old 

river course 

−0.168 0.188 −0.106 0.165 0.188 −0.038 −0.040 
−0.07

5 
−0.155 −0.038 1.000 −0.782 ** 

Distance of municipal 

wards from the new 

river course 

0.117 
−0.02

9 
0.234 −0.083 −0.384 0.244 0.155 0.064 0.329 0.244 −0.782 ** 1.000 

* Correlation is significant at the 0.05 level (2-tailed). <+ −0.3  0.3 to 0.7  >+ −0.7 

. **.Correlation is significant at the 0.01 level (2-tailed). Source: Calculated by the authors. 

Table 8. Descriptive statistics of the selected variables (2015). 

Variable Mean 
Std. Deviation (Standard 

Deviation) 

NDFI2 0.3396 0.08503 

Elevation 16.1529 2.64389 

Slope 4.3016 2.45902 

Flow Direction 34.4583 28.90502 

Flow Distance 1.8811 2.01773 

Flow Length Line Density 1.3057 0.40098 

NDVI −0.0867 0.02213 

NDWI 0.2013 0.05387 

NDBI −0.0730 0.04289 

NDSI 0.1306 0.03364 

NDTI −0.0867 0.02213 

Distance of municipal wards from the old 

river course 
1.4396 0.72325 

Distance of municipal wards from the new 

river course 
0.9729 0.62209 

N (total municipal wards) = 24 

Source: Calculated by the authors.  
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Table 9. Model summary of the regression analysis (2015). 

Model Summary b 

Model R R Square Adjusted R Square 
Std. Error of the 

Estimate 
Durbin–Watson 

 0.866 a 0.750 0.557 0.05659 2.513 
a. Predictors: (constant), distance of municipal wards from the new river course, slope, NDWI, flow 

direction, flow length line density, elevation, flow distance, distance of municipal wards from the 

old river course, NDSI, NDTI. b. Dependent variable: NDFI2. Source: Calculated by the au-

thors. 

Table 10. Analysis of variance (ANOVA) of the regression analysis (2015). 

ANOVA a 

Model Sum of Squares df Mean Square F 
Sig. 

(Significance) 

Regression 0.125 10 0.012 3.893 0.012 b 

Residual 0.042 13 0.003   

Total 0.166 23    
a. Dependent variable: NDFI2. b. Predictors: (Constant), distance of municipal wards from the 

new river course, slope, NDWI, flow direction, flow length line density, elevation, flow dis-

tance, distance of municipal wards from the old river course, NDSI, NDTI. Source: Calculated 

by the authors. 

Table 11. Coefficients of the regression analysis (2015). 

Coefficients a 

 
Unstandardized 

Coefficients 

Standardized 

Coefficients 
  

95.0% 

Confidence 

Interval for B 

Collinearity 

Statistics 

Model B 
Std. 

Error 
Beta t Sig. 

Lower 

Bound 

Upper 

Bound 

Tolera

nce 

VIF (Variance 

Inflation 

Factor)  

(Constant) 0.455 0.199  2.288 0.040 0.025 0.885   

Elevation 0.024 0.008 0.748 2.966 0.011 0.007 0.042 0.303 3.299 

Slope 0.017 0.013 0.485 1.265 0.228 −0.012 0.045 0.131 7.624 

Flow Direction 0.000 0.001 0.166 0.861 0.405 −0.001 0.002 0.518 1.931 

Flow Distance −0.015 0.010 −0.360 −1.458 0.169 −0.038 0.007 0.315 3.173 

Flow Length Line 

Density 
0.054 0.060 0.254 0.900 0.384 −0.076 0.183 0.241 4.145 

NDWI 4.599 1.029 2.913 4.470 0.001 2.376 6.821 0.045 22.055 

NDSI −5.790 1.291 −2.291 −4.484 0.001 −8.580 −3.001 0.074 13.554 

NDTI 6.476 2.267 1.685 2.857 0.013 1.579 11.373 0.055 18.067 

Distance of 

municipal wards 

from the old river 

course 

−0.106 0.046 −0.903 −2.304 0.038 −0.206 −0.007 0.125 7.971 

Distance of 

municipal wards 

from the new 

river course 

−0.093 0.057 −0.677 −1.634 0.126 −0.215 0.030 0.112 8.920 

a. Dependent Variable: NDFI2 

Excluded Variables a 



Atmosphere 2023, 14, 669 25 of 56 
 

 

Model     Collinearity Statistics 

 Beta In t Sig. 
Partial 

Correlation 
Tolerance VIF Minimum Tolerance 

NDVI .b . . . 0.000 . 0.000 

NDBI 15.410b 0.957 0.358 0.266 0.00007472 
13382.68

3 
0.00004458 

a. Dependent Variable: NDFI2 
b. Predictors in the model: (constant), distance of municipal wards from the new river course, slope, NDWI, flow 

direction, flow length line density, elevation, flow distance, distance of municipal wards from the old river course, 

NDSI, NDTI 

Source: Calculated by the authors. 

 

Figure 14. Relief (2000). 

 

Figure 15. Slope (2000). 
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Figure 16. Flow direction (2000). 

 

Figure 17. Flow distance (2000). 

 

Figure 18. Flow length (2000). 
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Figure 19. Flow length line density (2000). 

 

Figure 20. NDVI (2000). 

 

Figure 21. NDWI (2000). 
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Figure 22. MNDWI (2000). 

 

Figure 23. NDBI (2000). 

 

Figure 24. NDSI (2000). 
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Figure 25. NDTI (2000). 

 

Figure 26. Distance of the centers of the municipal wards from the old river course (2000). 

 

Figure 27. Distance of the centers of the municipal wards from the new river course (2000). 
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Figure 28. NDFI2 (2000). 

 

Figure 29. Relief (2015). 

 

Figure 30. Slope (2015). 
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Figure 31. Flow direction (2015). 

 

Figure 32. Flow distance (2015). 

 

Figure 33. Flow length (2015). 
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Figure 34. Flow length line density (2015). 

 

Figure 35. NDVI (2015). 

 

Figure 36. NDWI (2015). 
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Figure 37. MNDWI (2015). 

 

Figure 38. NDBI (2015). 

 

Figure 39. NDSI (2015). 
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Figure 40. NDTI (2015). 

 

Figure 41. Distance of the centers of the municipal wards from the old river course (2015). 

 

Figure 42. Distance of the centers of the municipal wards from the new river course (2015). 
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Figure 43. NDFI2 (2015). 

A spatio-temporal variation of flood vulnerability has been identified in the present 

study for the years 2000 and 2015 (Figures 44 and 45). To determine the criteria weights of 

each variable, analytical hierarchy processes have been applied. Here, in the study, the 

coefficient of determinants (r square, non-negative value, Table 12) has been used to cal-

culate the criteria weights of each of the variables. This is done by squaring the correlation 

coefficient (r-value) among the selected variables. A ward-wise composite flood vulnera-

bility index has been computed for both years after the integration of the weights with the 

actual values. The proposed relationship between each of the factors and flood vulnera-

bility is shown in Table 13 along with the criteria weights for 2000 and 2015, with the 

consistency index (CI) and consistency ratio (CR) being 0.156 and 0.101 in 2000 and 0.182 

and 0.118 in 2015, respectively. Table 14 shows the ward-wise value of the composite flood 

vulnerability index (CFVI) in 2000 and 2015. In 2000, flood vulnerability was determined 

to be very high (0.37–0.99), high (0.26–0.36), moderate (0.17–0.25), low (0.064–0.16), and 

very low (0.0010–0.063) in the wards 10, 11, and 21; 8, 9, 13, and 14; 3, 4, 5, 6, 7, 12, and 15; 

1, 17, 18, 19, and 22; and 2, 16, 20, 23, and 24, respectively (Figure 44). Similarly, in 2015, 

wards 7, 8, 9, and 10; 3, 4, 5, 6, and 21; 1, 2, 11, 12, 13, and 20; 144, 15, 16, 17, 18, and 19; and 

22, 23, and 24 had very high (0.44–0.49), high (0.34–0.43), moderate (0.20–0.33), low (0.081–

0.09), and very low (0.0010–0.080) flood vulnerability, respectively (Figure 45). Figures 46 

and 47 show the isoline zones of the composite flood vulnerability index in Nabadwip 

Municipality (2000 and 2015) and Figures 48–54 show the normal probability plots, the 

relationship between regression standardized predicted values (ZPR) and NDFI2, the 

plo�ed map of ZPR, the frequency distribution of regression standardized residuals 

(ZRE), the relationship between regression ZRE and NDFI2, and the plo�ed map of re-

gression ZRE, respectively. 

Table 12. Coefficient of determinants (assigned weights of MCDM) of the selected indicators of 

flood vulnerability (2000 and 2015). 

R Square (2000) 
Elevati

on 
Slope 

Flow 

Directio

n 

Flow 

Distanc

e 

Flow Length 

Line Density 

ND

VI 

ND

WI 

N

DB

I 

N

DS

I 

ND

TI 

Distance of 

Municipal 

Wards from the 

Old River 

Course 

Distance of Municipal wards 

from the New River Course 

Elevation 1.000 0.007 0.004 0.135 0.077 
0.0

14 

0.00

1 

0.0

01 

0.0

04 

0.0

23 
0.028 0.014 

Slope 0.007 1.000 0.006 0.196 0.000 
0.0

03 

0.00

8 

0.0

08 

0.0

00 

0.0

00 
0.252 0.158 

Flow Direction 0.004 0.006 1.000 0.083 0.020 
0.0

08 

0.00

3 

0.0

03 

0.0

04 

0.0

02 
0.019 0.060 
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Flow Distance 0.135 0.196 0.083 1.000 0.045 
0.0

00 

0.00

5 

0.0

05 

0.0

02 

0.0

07 
0.003 0.088 

Flow Length Line Density 0.077 0.000 0.020 0.045 1.000 
0.0

08 

0.00

1 

0.0

01 

0.0

05 

0.0

07 
0.018 0.085 

NDVI 0.014 0.003 0.008 0.000 0.008 
1.0

00 

0.45

7 

0.4

57 

0.2

15 

0.5

94 
0.064 0.149 

NDWI 0.001 0.008 0.003 0.005 0.001 
0.4

57 

1.00

0 

1.0

00 

0.8

12 

0.5

16 
0.114 0.084 

NDBI 0.001 0.008 0.003 0.005 0.001 
0.4

57 

1.00

0 

1.0

00 

0.8

12 

0.5

16 
0.114 0.084 

NDSI 0.004 0.000 0.004 0.002 0.005 
0.2

15 

0.81

2 

0.8

12 

1.0

00 

0.4

76 
0.061 0.018 

NDTI 0.023 0.000 0.002 0.007 0.007 
0.5

94 

0.51

6 

0.5

16 

0.4

76 

1.0

00 
0.055 0.107 

Distance of municipal 

wards from the old river 

course 

0.028 0.252 0.019 0.003 0.018 
0.0

64 

0.11

4 

0.1

14 

0.0

61 

0.0

55 
1.000 0.612 

Distance of municipal 

wards from the new river 

course 

0.014 0.158 0.060 0.088 0.085 
0.1

49 

0.08

4 

0.0

84 

0.0

18 

0.1

07 
0.612 1.000 

R square (2015) 
Elevati

on 
Slope 

Flow 

Directio

n 

Flow 

Distance 

Flow Length 

Line Density 

ND

VI 

ND

WI 

ND

BI 

N

DS

I 

ND

TI 

Distance of 

municipal wards 

from the old 

river course 

Distance of municipal wards from 

the new river course 

Elevation 1.000 0.402 0.060 0.067 0.092 
0.1

98 

0.00

2 

0.1

65 

0.3

33 

0.1

98 
0.028 0.014 

Slope 0.402 1.000 0.164 0.365 0.143 
0.2

16 

0.00

0 

0.1

44 

0.2

17 

0.2

16 
0.035 0.001 

Flow Direction 0.060 0.164 1.000 0.010 0.003 
0.0

10 

0.05

0 

0.0

34 

0.0

17 

0.0

10 
0.011 0.055 

Flow Distance 0.067 0.365 0.010 1.000 0.001 
0.1

01 

0.07

4 

0.1

94 

0.0

11 

0.1

01 
0.027 0.007 

Flow Length Line Density 0.092 0.143 0.003 0.001 1.000 
0.2

62 

0.10

3 

0.0

16 

0.4

64 

0.2

62 
0.035 0.147 

NDVI 0.198 0.216 0.010 0.101 0.262 
1.0

00 

0.22

9 

0.7

07 

0.0

69 

1.0

00 
0.001 0.060 

NDWI 0.002 0.000 0.050 0.074 0.103 
0.2

29 

1.00

0 

0.6

27 

0.4

20 

0.2

29 
0.002 0.024 

NDBI 0.165 0.144 0.034 0.194 0.016 
0.7

07 

0.62

7 

1.0

00 

0.0

02 

0.7

07 
0.006 0.004 

NDSI 0.333 0.217 0.017 0.011 0.464 
0.0

69 

0.42

0 

0.0

02 

1.0

00 

0.0

69 
0.024 0.108 

NDTI 0.198 0.216 0.010 0.101 0.262 
1.0

00 

0.22

9 

0.7

07 

0.0

69 

1.0

00 
0.001 0.060 

Distance of municipal 

wards from the old river 

course 

0.028 0.035 0.011 0.027 0.035 
0.0

01 

0.00

2 

0.0

06 

0.0

24 

0.0

01 
1.000 0.612 

Distance of municipal 

wards from the new river 

course 

0.014 0.001 0.055 0.007 0.147 
0.0

60 

0.02

4 

0.0

04 

0.1

08 

0.0

60 
0.612 1.000 

Source: Calculated by the authors. 

Table 13. Criteria weights of the MCDM process and proposed relationship of the indicators with 

flood vulnerability (2000 and 2015). 

Variable Criteria Weight (2000) Criteria Weight (2015) 

Presumption of the 

Relationship with Flood 

Vulnerability 

Elevation 0.11 0.21 - 

Slope 0.14 0.24 - 

Flow Direction 0.10 0.12 + 
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Flow Distance 0.13 0.16 - 

Flow Length Line Density 0.11 0.21 + 

NDVI 0.25 0.32 - 

NDWI 0.33 0.23 + 

NDBI 0.33 0.30 + 

NDSI 0.28 0.23 + 

NDTI 0.28 0.32 + 

Distance of municipal wards from the 

old river course 
0.19 0.15 + 

Distance of municipal wards from the 

new river course 
0.20 0.17 - 

 

Consistency Index (CI) = 

0.156 

Consistency Ratio (CR) = 

0.101 

Consistency Index (CI) = 

0.182 

Consistency Ratio (CR) = 

0.118 

 

Source: Calculated by the authors.    

Random Index (RI)    

n 1 2 3 4 5 6 7 8 9 10 11 12  

RI 0.00 0.00 0.52 0.89 1.11 1.25 1.35 1.40 1.45 1.49 1.51 1.54  

Source: [73]. 

Table 14. Composite flood vulnerability index (CFVI) (2000 and 2015) and composite Ibrahim index 

(CIb) (2015) of the wards of Nabadwip Municipality. 

Ward Latitude Longitude CFVI (2000) CFVI (2015) CIb (2015) 

1 23.41379929 88.3572998 0.086 0.292 24.00 

2 23.41250038 88.36569977 0.033 0.322 53.63 

3 23.41519928 88.36820221 0.208 0.366 34.56 

4 23.42040062 88.36049652 0.204 0.386 25.51 

5 23.42700005 88.36199951 0.235 0.408 21.88 

6 23.42320061 88.36769867 0.244 0.429 27.74 

7 23.4197998 88.37580109 0.253 0.451 22.90 

8 23.41259956 88.37460327 0.329 0.475 24.34 

9 23.41390038 88.37139893 0.352 0.485 36.87 

10 23.40990067 88.37200165 0.991 0.491 40.27 

11 23.40699959 88.37380219 0.595 0.327 36.75 

12 23.40480042 88.36849976 0.194 0.234 41.65 

13 23.40800095 88.36990356 0.358 0.239 26.85 

14 23.40979958 88.36419678 0.313 0.190 32.80 

15 23.40579987 88.3640976 0.194 0.141 36.32 

16 23.40810013 88.35929871 0.063 0.123 33.25 

17 23.40229988 88.36440277 0.123 0.157 31.93 

18 23.39990044 88.36830139 0.140 0.175 31.09 

19 23.39579964 88.36640167 0.096 0.193 30.25 

20 23.39520073 88.35739899 0.036 0.252 30.22 

21 23.42639923 88.37120056 0.624 0.398 25.90 

22 23.40390015 88.37220001 0.157 0.080 35.08 

23 23.40369987 88.35970306 0.048 0.003 44.66 

24 23.39209938 88.35919952 0.001 0.001 24.17 

Source: Calculated by the authors. 
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Figure 44. Composite flood vulnerability index of Nabadwip Municipality (2000). 

 

Figure 45. Composite flood vulnerability index of Nabadwip Municipality (2015). 
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Figure 46. Isoline of CFVI (2000). 

 

Figure 47. Isoline of CFVI (2015). 
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Figure 48. The normal p–p plot of regression ZRE. 

 

Figure 49. Relationship between regression ZPR and NDFI2. 
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Figure 50. Plots of regression ZPR (2015). 

 

Figure 51. Frequency distribution of regression ZRE. 
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Figure 52. Relationship between regression ZRE and NDFI2. 

 

Figure 53. Plots of regression ZRE (2015). 
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Figure 54. Plo�ed graph of Lower Mean Confidence Interval (LMCI), Upper Mean Confidence 

Interval (UMCI), and Covariance (COV) of regression analysis. 

4.3. Relationship between Urban Development and Flood Vulnerability 

The socio-economic and urban amenity situation is variedly distributed in the wards 

of the study area. Figures 55–59 show the ward-wise distribution of households, SC pop-

ulation, ST population, literates, and workers per thousand population in 2015. In 2015, 

the composite Ibrahim index (Ib) of the socio-economic status of urban development was 

high in wards 2, 10, 12, and 23 (the CIb value is 36.88–53.63); moderately high (33.26–36.87) 

in wards 3, 9, 11, 15, and 22; moderate (30.23–33.25) in wards 14, 16, 17, 18, and 19; mod-

erately low (24.35–30.22) in wards 4, 6, 13, 20, and 21; and low (21.88–24.34) in wards 1, 5, 

7, 8 and 24 (Figure 60). Figure 61 shows the overlapping layer of isolines of the composite 

flood vulnerability index on the interpolated inverse distance weight (IDW) zones of the 

composite Ibrahim index. The relationship between urban development and flood vulner-

ability is illustrated in Figure 62. Here, a negative relationship has been identified between 

the flood vulnerability index and the composite Ibrahim index of the 24 wards of Naba-

dwip Municipality in 2015 (the r square value is 0.0368, so a 1-unit increase in the CIb 

results in a 3.68% decrease in the CFVI). In general, highly developed areas within the 

municipality have a low risk of flooding, but real-world examples and current research 

show that some of the developing wards of Nabadwip Municipality are particularly vul-

nerable to flooding. 

The findings of the hypothesis testing are presented in Table 15. Here, the population 

means of the CFVI and CIb are 0.27575 and 32.1925, respectively. The standard deviation 

values of the two variables are 0.1494309 and 7.72409, respectively. The differences be-

tween the two population means and standard errors have been measured as −31.91675 

and 1.576968, respectively. As it is presumed that the difference = mean (CFVI) − mean 

(CIb) where H0: difference = 0, the estimated t value is −20.2393 (Welch’s degrees of free-

dom = 23.0187) with a 0.05 significance level. The t value has been calculated by dividing 

the combined mean by the combined standard error; that is, −31.91675/1.576968 = −20.2393. 

Based on the alternative hypothesis, Ha: diff! = 0, the p-value is less than 0.05 (Pr (|T| > 

|t|) = 0.0000). This proves that the difference in means is statistically significantly different 

from zero (two-tailed test). Consequently, the alternative hypothesis has been accepted 

with the rejection of the null hypothesis. Among the other two alternative hypotheses (Ha: 

diff < 0 and Ha: diff > 0) of the one-tailed test, the former is statistically significant as p<0.05 

(Pr (T < t) = 0.0000), and the la�er is not statistically significant as p > 0.05 (Pr(T > t) = 
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1.0000). Therefore, it can be specified that the variance of the composite Ibrahim index of 

socio-economic development is greater than the variance of the composite flood vulnera-

bility index in the study area. 

Table 15. Results of Hypothesis testing. 

Two-Sample t-Test with Unequal Variances 

Variable Obs Mean Std. Err. Std. Dev. [95% Conf. Interval] 

CFVI (2015) 24 0.27575 0.0305024 0.1494309 0.2126509 0.3388491 

CIb (2015) 24 32.1925 1.576673 7.72409 28.9309 35.4541 

combined 48 16.23413 2.454992 17.00868 11.29532 21.17293 

diff  −31.91675 1.576968  −35.17881 −28.65469 

diff = mean (CFVI) − mean (CIb) t = −20.2393 

Ho: diff = 0 Welch’s degrees of freedom = 23.0187 

Ha: diff < 0 Ha: diff ! = 0  

Ha: diff > 0  

Pr (T < t) = 0.0000 Pr (|T| > |t|) = 0.0000  

Pr (T > t) = 1.0000 

Here, Obs is the number of valid (non-missing) observations used in calculating the t-test, Std. Err. is the standard 

error, Std. Dev. is the standard deviation, Conf. Interval is the confidence interval, diff denotes difference, Ho = null 

hypothesis, Ha = alternative hypothesis, and Pr denotes predicted. 

Source: Calculated by the authors. 

 

Figure 55. Ward-wise distribution of households/1000 population in Nabadwip Municipality (2011). 
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Figure 56. Ward-wise distribution of SC/1000 population in Nabadwip Municipality (2011). 

 

Figure 57. Ward-wise distribution of ST/1000 population in Nabadwip Municipality (2011). 
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Figure 58. Ward-wise distribution of literates/1000 population in Nabadwip Municipality (2011). 

 

Figure 59. Ward-wise distribution of workers/1000 of the population in Nabadwip Municipality 

(2011). 
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Figure 60. Ward-wise composite Ibrahim index of development in Nabadwip Municipality (2015). 

 

Figure 61. Comparison between ward-wise composite Ibrahim index of development and composite 

flood vulnerability index in Nabadwip Municipality (2015). 
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Figure 62. Relationship between composite Ibrahim index of development and composite flood vul-

nerability index in Nabadwip Municipality (2015). 

5. Major Findings, Discussion, and Policy Suggestions 

The current study examines and elucidates rainfall variability, factors that contribute 

to flooding, flood vulnerability and its spatio-temporal dimension, correlations among the 

predictors of floods, relationships between the factors of flood vulnerability and the nor-

malized difference flood index, and the relationship between urban development and 

flood vulnerability. The monthly and daily rainfall pa�erns between 2000 and 2015 show 

that the monsoon season is characterized by exceptionally heavy rainfall caused by cy-

clonic depressions. The majority of Nabadwip Municipality and surrounding areas expe-

rienced significant flooding due to the influence of heavy rainfall and a high discharge 

within a short period. In comparison to the other months during the 2015 monsoon sea-

son, July was a moderately humid month according to the SPI values. In 2000, a flood 

situation characterized by a high water level in this municipality’s wards had a devastat-

ing impact on both property and human lives. The selected physical factors of flood vul-

nerability had a positive or negative impact on flood affectivity. The flood index increased 

with increasing elevation, slope, flow direction, flow length, line density, NDWI, and 

NDTI, whereas it decreased with increasing flow distance, NDSI, the distance of munici-

pal wards from the old river course, and the distance of municipal wards from the new 

river course. A highly concretized relief and slope can increase the flood vulnerability in 

the study area, whereas increasing stream flow direction and flow length line density nat-

urally increased the flood vulnerability when they were in peak form during the monsoon. 

The main channel of the Bhagirathi-Hugli could no longer withstand the unprecedented 

pressure of heavy discharge during stormy rainfall, which led to flood situations. The high 

value of the water index also indicated higher flood conditions and high river turbidity 

indicated an increasing amount of siltation into the river. Municipality wards that are lo-

cated closer to the new river course are typically more at risk than those that are farther 

away. The flood situation between 2000 and 2015 exhibited a substantial change. The num-

ber of very high, moderate, and very low vulnerability wards had decreased compared to 

2000, while high and low vulnerability wards had increased. Figure 48 depicts the rela-

tionship between the observed and expected cumulative probability distribution of the 

computed residuals of the relationship between NDFI2 and its predictors. The points for 

the corresponding wards 13, 14, 15, and 17 are positioned here on the line of equality, 

while the others are positioned far from it. The values away from the equality line indicate 
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that the anticipated likelihood of a flood is either too high or too low (high in the case of 

the points below the line, low in the case of the points above the line). In terms of the best 

fit, the mean occurrences pertain to the points that are exactly positioned on the line (Fig-

ure 48). The flood vulnerability indices have been validated using the ROC-AUC analysis 

(Figures 63 and 64). The overall accuracy of the AUC was 73.9% in 2000 and 77.5% in 2015. 

Thus, the model is validated and further acceptable. In 2015, the sensitivity and specificity 

rates increased. Be�er performance is indicated by classifiers that provide curves that are 

closer to the top-left corner. The values of the area of fi�ed ROCs are good and within an 

acceptable range, varying from 0.7–0.8 in 2000 to 0.8–0.9 in 2015. The variations have con-

sequences for the changes to the distribution facilities for urban amenities and the socio-

economic conditions of the residents of Nabadwip Municipality. In general, the wards 

exhibited moderately high and higher socio-economic development where the vulnera-

bility to flooding was low. Contrarily, some of the underdeveloped wards located rela-

tively in a high-elevation area of the city fringe showed less vulnerability to flooding oc-

currences than some of the developed wards located at low elevations and closer to the 

city center. The results of the hypothesis test also revealed a significant association be-

tween socio-economic development and flood vulnerability, but the variability of socio-

economic development is greater than the conditions of flood vulnerability in Nabadwip 

Municipality. Further research on this municipality area is usually required in this context 

of a dichotomous situation. This study takes into account flood vulnerability mitigation 

measures. To lessen the ‘most adverse’ effects of flood hazards on the physical and an-

thropogenic environment, ‘flood prevention’, ‘mitigation strategies’, and improved resil-

ience are necessary [93]. In this regard, a strengths, weaknesses, opportunities, challenges 

(SWOC) analysis was conducted to determine the main strengths, weaknesses, opportu-

nities, and challenges related to urban development and flood vulnerability in the Naba-

dwip Municipality area. Strengths, weaknesses, opportunities, and threats (SWOT) anal-

yses had been performed in earlier literature for a range of purposes. The SWOT of Dutch 

water storage areas were analyzed for flood prevention and flood risk management [94]. 

The researchers also used SWOT analysis in some other studies [95,96] they conducted on 

flood preparedness, mitigation, and management. Based on participant observations, the 

present study has identified two important strengths, four weaknesses, five opportunities, 

and five challenges of urban development and flood vulnerability in Nabadwip Munici-

pality. Based on their priorities for urban development and flood vulnerability, the SWOC 

have been ranked separately (Table 16). A SWOC matrix has been generated in Table 17 to 

show the combinations of greater challenges and weaknesses as well as be�er opportuni-

ties and strengths. The Weakness 1, Challenge 1 (W1C1), and Opportunity 2, Strength 1 

(O2S1) combinations are the most influential and effective strategies to combat floods. The 

proper reconstruction of sewage systems along with the dredging of river silt would be 

effective in the Nabadwip Municipality area to minimize flood risks and vulnerabilities. 

In addition, well-connected roads and railways adjacent to wide tourism activity will con-

tinue to initiate be�er employment opportunities in the study area, which will drive urban 

development strategies in a more prosperous way. 

Table 16. Selected strengths, weaknesses, opportunities, and challenges (SWOC) in Nabadwip Mu-

nicipality area. 

SWOC Code 

Relative 

Importanc

e (Rank) 

Strengths   

1 Better road and railway connectivity. S1 1 

2 A significant number of water bodies. S2 2 

Weaknesses   

1 Unstructured sewage system. W1 1 
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2 Unplanned built-up areas. W2 4 

3 Roadways are not properly maintained. W3 3 

4 Health facilities are inadequate. W4 2 

Opportunities   

1 Better agricultural production in fringe areas. O1 5 

2 International importance on tourism. O2 1 

3 Building up a comprehensive urban development. O3 4 

4 Participation of local people in flood management. O4 3 

5 
New employment opportunities through the flood 

management system. 
O5 2 

Challenges   

1 River dredging has not been performed. C1 1 

2 Resettlement is problematic during the flood. C2 4 

3 Inadequate distribution of flood relief. C3 3 

4 Indigent damage control network. C4 5 

5 A large number of poverty-stricken people. C5 2 

Source: The authors. 

Table 17. SWOC matrix. 

Matrix Strengths Weaknesses Opportunities Challenges 
 S1 S2 W1 W2 W3 W4 O1 O2 O3 O4 O5 C1 C2 C3 C4 C5 

S1 S1S1 S1S2 S1W1 S1W2 S1W3 S1W4 S1O1 S1O2 S1O3 S1O4 S1O5 S1C1 S1C2 S1C3 S1C4 S1C5 

S2 S2S1 S2S2 S2W1 S2W2 S2W3 S2W4 S2O1 S2O2 S2O3 S2O4 S2O5 S2C1 S2C2 S2C3 S2C4 S2C5 

W1 W1S1 W1S2 W1W1 W1W2 W1W3 W1W4 W1O1 W1O2 W1O3 W1O4 W1O5 W1C1 W1C2 W1C3 W1C4 W1C5 

W2 W2S1 W2S2 W2W1 W2W2 W2W3 W2W4 W2O1 W2O1 W2O1 W2O1 W2O1 W2C1 W2C2 W2C3 W2C4 W2C5 

W3 W3S1 W3S2 W3W1 W3W2 W3W3 W3W4 W2O1 W2O1 W2O1 W2O1 W2O1 W3C1 W3C2 W3C3 W3C4 W3C5 

W4 W4S1 W4S2 W4W1 W4W2 W4W3 W4W4 W4O1 W4O2 W4O3 W4O4 W4O5 W4C1 W4C2 W4C3 W4C4 W4C5 

O1 O1S1 O1S2 O1W1 O1W2 O1W3 O1W4 O1O1 O1O2 O1O3 O1O4 O1O5 O1C1 O1C2 O1C3 O1C4 O1C5 

O2 O2S1 O2S2 O2W1 O2W2 O2W3 O2W4 O2O1 O2O2 O2O3 O2O4 O2O5 O2C1 O2C2 O2C3 O2C4 O2C5 

O3 O3S1 O3S2 O3W1 O3W2 O3W3 O3W4 O3O1 O3O2 O3O3 O3O4 O3O5 O3C1 O3C2 O3C3 O3C4 O3C5 

O4 O4S1 O4S2 O4W1 O4W2 O4W3 O4W4 O4O1 O4O2 O4O3 O4O4 O4O5 O4C1 O4C2 O4C3 O4C4 O4C5 

O5 O5S1 O5S2 O5W1 O5W2 O5W3 O5W4 O5O1 O5O2 O5O3 O5O4 O5O5 O5C1 O5C2 O5C3 O5C4 O5C5 

C1 C1S1 C1S2 C1W1 C1W2 C1W3 C1W4 C1O1 C1O2 C1O3 C1O4 C1O5 C1C1 C1C2 C1C3 C1C4 C1C5 

C2 C2S1 C2S2 C2W1 C2W2 C2W3 C2W4 C2O1 C2O2 C2O3 C2O4 C2O5 C2C1 C2C2 C2C3 C2C4 C2C5 

C3 C3S1 C3S2 C3W1 C3W2 C3W3 C3W4 C3O1 C3O2 C3O3 C3O4 C3O5 C3C1 C3C2 C3C3 C3C4 C3C5 

C4 C4S1 C4S2 C4W1 C4W2 C4W3 C4W4 C4O1 C4O2 C4O3 C4O4 C4O5 C4C1 C4C2 C4C3 C4C4 C4C5 

C5 C5S1 C5S2 C5W1 C5W2 C5W3 C5W4 C5O1 C5O2 C5O3 C5O4 C5O5 C5C1 C5C2 C5C3 C5C4 C5C5 

Source: The authors. 
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Figure 63. Validation of composite flood vulnerability index using ROC-AUC (2000). 

 

Figure 64. Validation of composite flood vulnerability index using ROC-AUC (2015). 

6. Conclusions 

The urban flood situation disastrously impacts the properties, lives, and livelihoods 

of urban residents. In this era of climate change, severe floods have occurred in the world’s 

largest urban areas as a result of rapid urbanization and urban encroachment. Nabadwip 

Municipality, the present study area, is also a significant urban body in the Indian state of 

West Bengal. In the study area, the frequency of floods is influenced by several physical 

factors. Among them, the most useful and significant variables were flow length and line 

density, NDWI and NDSI, the distance of municipal wards from the old river course, and 

the distance of municipal wards from the new river course. The municipality area had 

experienced impairing floods multiple times. The significant flooding that occurred be-

tween 2000 and 2020 was devastating in the years 2000 and 2015. Floods in Nabadwip and 



Atmosphere 2023, 14, 669 52 of 56 
 

 

the surrounding areas were severely impacted by seasonal rainfall variability and high 

daily rainfall during the monsoon season. In the years 2000 and 2015, the normalized dif-

ference flood index indicated a variety of relationships with the predictor variables. Ac-

cording to the composite Ibrahim index of socio-economic developmental status and the 

composite flood vulnerability index, some developing countries were less vulnerable to 

flooding than others, and the majority of underdeveloped countries were more vulnera-

ble. Despite this, it became apparent that some of the developed municipal wards located 

closer to the city’s center were more susceptible to flooding. The implementation of flood 

recovery, resilient management, awareness, and capacity building, along with the proper 

maintenance of sewage systems, river dredging, the integration of structured urban plan-

ning, and employment generation, are required to mitigate and manage the flood effects 

in the studied municipality area in the future. 
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Abbreviations 

DEM Digital Elevation Model 

LULC Land Use Land Cover 

TWI Topographic Wetness Index 

NDVI Normalized Difference Vegetation Index 

MNDWI Modified Normalized Difference Water Index 

NDBI Normalized Difference Built-Up Index 

SPI Standardized Precipitation Index 

STI Sediment Transport Index 

AHP Analytical Hierarchy Process 

MCDM Multi-Criteria Decision Making 

GIS Geographic Information System 

F-AHP Fuzzy Analytical Hierarchy Process 

M.S.L. Mean Sea Level 

SODA Solar Radiation Data 

MERRA 
Modern-Era Retrospective Analysis for Research 

and Applications 

NASA National Aeronautics and Space Administration 

USGS United States Geological Survey 

NRSC National Remote Sensing Centre 

mm Millimeter 

SD Standard Deviation 

U statistics Unbiased Statistics 

NDWI Normalized Difference Water Index 
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NDFI Normalized Difference Flood Index 

NDTI Normalized Difference Turbidity Index 

NDSI Normalized Difference Soil Index 

FVI Flood Vulnerability Index 

SWIR Shortwave Infrared 

CR Consistency Ratio 

CI Consistency Index 

RI Random Index 

CFVI Composite Flood Vulnerability Index 

CIb Composite Ibrahim Index 

SC Scheduled Castes 

ST Scheduled Tribes 

ANOVA Analysis of Variance 

ROC Receiver Operating Characteristic 

AUC Area Under the ROC Curve 

IDW Inverse Distance Weight 

SWOC 
Strengths, Weaknesses, Opportunities, 

Challenges 

SWOT Strengths, Weaknesses, Opportunities, Threats 

W1C1 Weakness 1, Challenge 1 

O2S1 Opportunity 2, Strength 1 

LMCI Lower Mean Confidence Interval 

UMCI Upper Mean Confidence Interval 

COV Covariance 

SRTM Shuttle Radar Topographic Mission 

ETM+ Enhanced Thematic Mapper Plus 

LISS 

NIR        

Linear Imaging Self Scanning  

Near Infrared 

Std. Deviation Standard Deviation 

Df Degree of Freedom 

Sig. Significance 

VIF Variance Inflation Factor 
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