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Abstract: In this paper, recent research on terrestrial ecosystem predictability using the conditional
nonlinear optimal parameter perturbation (CNOP-P) method is summarized. The main findings
include the impacts of uncertainties in climate change on uncertainties in simulated terrestrial
ecosystems, the identification of key physical parameters that lead to large uncertainties in terrestrial
ecosystem modeling and prediction, and the evaluation of the simulation ability and prediction skill
of terrestrial ecosystems by reducing key physical parameter errors. The study areas included the
Inner Mongolia region, north–south transect of eastern China, and Qinghai–Tibet Plateau region.
The periods of the studies were from 1961 to 1970 for the impacts of uncertainties in climate change
on uncertainties in simulated terrestrial ecosystems, and from 1951 to 2000 for the identification
of the most sensitive combinations of physical parameters. Climatic Research Unit (CRU) data
were employed. The numerical results indicate the important role of nonlinear changes in climate
variability due to the occurrences of extreme events characterized by CNOP-P in the abrupt grassland
ecosystem equilibrium state and formation of carbon sinks in China. Second, the most sensitive
combinations of physical parameters to the uncertainties in simulations and predictions of terrestrial
ecosystems identified by the CNOP-P method were more sensitive than those obtained by traditional
methods (e.g., one-at-a-time (OAT) and stochastic methods). Furthermore, the improvement extent
of the simulation ability and prediction skill of terrestrial ecosystems by reducing the errors of the
sensitive physical parameter combinations identified by the CNOP-P method was higher than that
by the traditional methods.

Keywords: CNOP-P; model uncertainties; predictability; terrestrial ecosystem

1. Introduction

As a part of the Earth system, terrestrial ecosystems interact and couple with the
atmosphere through water cycling and energy exchange, so terrestrial ecosystems have
important impacts on weather and climate systems [1–3]. However, there are large uncer-
tainties in current terrestrial ecosystem simulations and predictions, and these uncertainties
affect our quantitative estimates of terrestrial ecosystem carbon flux and carbon storage and
are an obstacle to the simulation and prediction of weather and climate events. Therefore,
it is essential to conduct studies on uncertainties in terrestrial ecosystem simulations and
predictions [4–8].

Model errors are one of the factors that contribute to uncertainties in the simulation
and prediction of terrestrial ecosystems [9,10]. Model errors include climate forcing errors,
uncertainties in the physical processes of models, and errors in the physical parameters
of models. Climate change is an important factor that can induce variations in terrestrial
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ecosystems, especially under the background of global warming [11–13]. Climate change is
reflected not only in variations in climatology but also in climate variability. However, in
previous studies, linearly increased temperature and precipitation changes were employed
to assess the impacts of uncertainties in climate change on uncertainties in simulated
terrestrial ecosystems [14].

Recently, many studies have found that climate variability plays a key role in the
variation in terrestrial ecosystems [15]. For example, Botta and Foley [16] demonstrated that
climate variability resulted in changes in ecosystem structure, soil carbon, and vegetation
carbon. Mitchell and Csillag [17] also emphasized that climate variability could influence
the stability of grasslands and result in high uncertainty in estimating the net primary
production (NPP) of grasslands. Zaghloul et al. [18] investigated the impact of climate
change on river flow and showed that early spring warming caused water flow to increase
in cold climate regions of Canada due to snowpack melting and gradual glacier melting.
Li et al. [19] explored the climatic impact of vegetation spring phenology in China and
provided important support for modeling vegetation phenology and growth in northern
China. Dastour et al. [20] showed that the seasonal cycles of vegetation and climate were
generally coherent but there was a time delay. Their wavelet methods also considered the
observational uncertainties. Although the effects of climate variability change on terrestrial
ecosystems have been investigated, the extreme effects of uncertainties in climate variability
change on uncertainties in simulated terrestrial ecosystems are often neglected [21–23].

Moreover, the uncertainties of physical parameters in numerical models are a major
factor contributing to the uncertainties in terrestrial ecosystem simulations and predic-
tions. Reducing the errors of physical parameters in numerical models is an effective
way to improve the simulation ability and forecasting skills of terrestrial ecosystems. The
simulation ability and forecasting skill of terrestrial ecosystems can be improved by ad-
justing the model parameters. For example, by assimilating the parameters in the model,
Rayner et al. [24] found that the model could match the seasonal cycle and annual variation
in CO2 well with the observation with the Biosphere Energy Transfer Hydrology (BETH)
model. Mo et al. [25] optimized the physical parameters of the boreal ecosystem productiv-
ity simulator (BEPS) model using the ensemble Kaman filter and found that the simulation
abilities of total primary productivity, total ecosystem respiration, and net ecosystem pro-
ductivity were improved. From these results, it was found that the simulation capability of
terrestrial ecosystems could be improved by adjusting the parameters in numerical models.

Numerical models contain a large number of parameters in dynamic vegetation
models, which simulate carbon storage and cycling in terrestrial ecosystems. There are
three categories for the above parameters in numerical models. The first is related to
the discrete format of the model, which is independent of observations; the second is for
parameters that can be determined from direct observations; and the third is for parameters
that can be determined from indirect observations. For example, the random number
seed parameter in the Lund–Potsdam–Jena (LPJ) numerical model [26] belongs to the
first type; the co-limitation shape parameter obtained directly from observations belongs
to the second type [27]; and the temperature sensitivity parameter to the Q10 obtained
from indirect observations belongs to the third type [28]. The latter two types of physical
parameters determined by direct and (or) indirect observation (PDOs) are the focus of
attention in the above studies.

The numerical model contains a large number of PDOs, and reducing the errors of all
PDOs at the same time would be very costly. Identifying which PDO errors should be re-
duced first is critical, and this question involves identifying the sensitivity and importance
of the physical parameters. There has been ample research on how to identify the sensi-
tivities of physical parameters in numerical models. For example, Pitman [29] analyzed
the sensitivities of 18 physical parameters in the Biosphere Atmosphere Transfer Scheme
(BATS) model using the one-at-a-time (OAT) method. When the sensitivity of one of the
parameters was analyzed, the remaining 17 physical parameters remained unchanged.
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However, the OAT approach ignores the interaction of physical processes characterized by
physical parameters [30,31].

The above sensitivity analysis method was also used to analyze the sensitivity of the
parameters. However, this method is based on the assumption of linearity and can be used
to explore only small parameter errors and short integration times and is not valid for
large parameter errors and long integration times. To consider the interaction of physical
processes, some scholars have conducted sensitivity analysis of parameters with finite
parameter error samples using the multiobjective generalized sensitivity analysis (MOGSA)
method, Monte Carlo method, and extended Fourier amplitude sensitivity test (EFAST)
method [32]. Zaehle et al. [28] applied the Monte Carlo hierarchical sample method to
identify the sensitivity of model parameters. Bastidas et al. [33] used the MOGSA method
to analyze the sensitivity of parameters according to different significance levels. These
aforementioned methods were characterized by their low computational cost due to the
use of limited samples in the parameter space to identify the sensitivities of physical
parameters. However, there were certain limitations; for example, either the interaction
among all physical parameters was not considered, or the sensitivity of physical parameters
was identified within the parameter space using finite samples.

The responses of terrestrial ecosystems to uncertainties in climate change and physical
parameters are a component of predictability studies. Although many studies have been
conducted on the uncertainties of terrestrial ecosystem simulations and predictions in terms
of uncertainties in climate change and physical parameters, the maximum extent of their
uncertainty has rarely been determined. The conditional nonlinear optimal perturbation
(CNOP) approach [34,35] is a powerful tool to study predictability. The CNOP approach is
related to initial errors (CNOP-I) and model errors (CNOP-P) and has been widely applied
to predictability studies in atmospheric and oceanic sciences [36–42].

In this study, the applications of the CNOP-P method to predictability studies of terres-
trial ecosystems are introduced. The content includes the maximum extent of uncertainties
in climate change on the simulation uncertainties in terrestrial ecosystems using the CNOP-
P method. Second, key physical parameters and combinations of physical parameters that
lead to uncertainties in terrestrial ecosystem simulations and predictions are identified
using the CNOP-P method. Furthermore, the degree of improvement in terrestrial ecosys-
tem simulations and projections is assessed by reducing the errors of sensitive physical
parameter combinations identified by the CNOP-P method. These works are reviewed
mainly to demonstrate the usefulness and adaptability of nonlinear optimization methods
(e.g., the CNOP-P method) in terrestrial ecosystem predictability studies. Furthermore, it
provides an outlook for more scholars to use this method to conduct uncertainty studies on
numerical simulations and predictions of terrestrial ecosystems using the method.

This paper is organized as follows: studies on the influence of grassland ecosystem
equilibrium on moisture index perturbation are introduced in Section 2.1. The impact of
uncertainties in climate change on the uncertainties in simulated terrestrial ecosystems is
presented in Section 2.2. In Section 2.3, the impact of uncertainties in physical parameters
on the terrestrial ecosystem is introduced; in Section 3, the summary and conclusion
are provided.

2. Results of Reviews
2.1. The Impact of Moisture Index Perturbation on the Stability of Grassland Ecosystem Equilibrium

To investigate the stability of grassland ecosystem equilibrium to climate perturbation,
Sun and Mu [43] used the CNOP-P method and a five-variable grassland ecosystem
model. For a grassland equilibrium state (GES) and a desert equilibrium state (DES)
within the five-variable grassland ecosystem model, moisture index perturbations were
generated using the CNOP-P method, and these perturbations represented the climate
perturbation. They first found that the variations in the moisture index resulting from
CNOP-P showed nonlinear characteristics. For instance, for the GES, the humidity index of
CNOP-P gradually decreased when the amplitude of the moisture indices was small, while
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when the amplitude of the moisture indices was large, the humidity index of CNOP-P
showed a “decreasing–increasing–decreasing” pattern and changed sharply at the end of
the period. The variation in the GES also exhibited nonlinear characteristics due to the
above humidity index variations.

With the small amplitude of moisture indices, grassland ecosystems returned to the
grassland equilibrium state under the influence of the CNOP-P-type humidity index. There
were different times required for recovery for different amplitudes of moisture indices.
However, grassland ecosystems gradually evolved toward the desert equilibrium state with
abrupt changes in the larger amplitude of moisture indices. Numerical results indicated that
grassland ecosystems eventually evolved toward a desert state with nonlinear instability
when subjected to sufficiently large climate changes. For the DES, Sun and Mu [43] also
demonstrated a nonlinear character similar to that of the GES.

To further explore the nonlinear characteristics of the stability of the GES and DES to
different types of climatic disturbances, Sun and Mu [43] analyzed the nonlinear evolution
of grassland ecosystems under the influence of nonlinear and linear climatic disturbances
(Table 1). To interpret the differences between the two, they created two linear climate
perturbations that could be distinguished in light of their linear slopes, which were zero
or nonzero. For the GES, they found that nonlinear climate change had a severe impact
on grassland ecosystems. Grassland ecosystems degraded to a desert equilibrium state
and tended to be nonlinearly unstable under the influence of the CNOP-P-type moisture
indices. For the DES, they found that nonlinear moisture indices had a severe impact on
desert ecosystems. The desert ecosystem influenced by the CNOP-P-type moisture index
degenerated into the grassland equilibrium state and became nonlinearly unstable. All of
the above work suggests that nonlinear changes in climate variability play an important
role in abrupt changes in the equilibrium state of grassland ecosystems.

2.2. The Impact of Uncertainties in Climate Change on the Uncertainties in Simulated
Terrestrial Ecosystems

Soil carbon, as a large carbon sink, plays an important role in the carbon cycle in ter-
restrial ecosystems [14,44]. Changes in soil carbon can cause large changes in atmospheric
CO2, which may further accelerate global warming. It is therefore necessary to determine
the uncertainty in modeled soil carbon. Sun and Mu [45] used the CNOP-P method to
analyze the maximum degree of uncertainty in the contribution of soil carbon to climate
change uncertainty (both climatological change and climate variability) in China (Table 1).

Table 1. Summary of the studies of terrestrial ecosystem predictability using the CNOP-P method.

Sources of Uncertainty Descriptions/Limitations Reference

Moisture index Stability analysis of grassland ecosystem equilibrium was shown due to moisture
index perturbation using CNOP-P method. A theoretical model was employed. Sun and Mu [43]

Climate condition Uncertainties in simulated soil carbon due to temperature and precipitation
perturbations were estimated using the CNOP-P method. Sun and Mu [45]

Physical parameters

A new parameter sensitivity analysis method based on CNOP-P was proposed.
The new method was applied to identify the most sensitive physical parameters
set to uncertainties in simulated NPP in China. The improvement extent by
reducing the errors of sensitive physical parameters set determined by the new
method was evaluated.

Sun and Mu [46]

Physical parameters
The new parameter sensitivity analysis method based on CNOP-P was applied to
identify the most sensitive physical parameters set to uncertainties in simulated
soil carbon in China.

Sun and Mu [47]

Physical parameters

The new parameter sensitivity analysis method based on CNOP-P was applied to
identify the most sensitive physical parameters set to uncertainties in simulated
ET over the TP. The improvement extent by reducing the errors of sensitive
physical parameters set determined by the new method was evaluated.

Sun et al. [48]
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Under the background of global warming, they provided a nonlinear climate change,
i.e., CNOP-P-type climate change, and a linear climate change. The key difference between
the CNOP-P-type climate change and the linear climate change was whether there was
a change in temperature or precipitation variability compared to a reference temperature
or precipitation variability. Sun and Mu [45] showed that there were different regional
responses to uncertainties in simulated soil carbon caused by CNOP-P-type and linear
temperature changes.

By exploring three components of soil carbon in the LPJ model, namely, rapidly
decomposing soil carbon, slowly decomposing soil carbon, and subsurface apoplastic
material, they found that the decrease in subsurface apoplastic matter was probably the
main reason for the decrease in soil carbon in arid and semiarid zones as a result of the two
temperature climate changes. The different effects of the two temperature climate changes
in southern China may be caused mainly by the rapid decomposition of soil carbon. The
uncertainties in simulated soil carbon caused by the two precipitation climate changes
were similar. In the arid and semiarid zones, both precipitation and climate changes led to
increased uncertainty in the simulated soil carbon. This research implied that the variation
in temperature variability played a crucial role in the variations in soil carbon and its
components in the study region.

2.3. The Impact of Uncertainties in Physical Parameters on the Terrestrial Ecosystem
2.3.1. The Sensitivity Analysis Method Based on CNOP-P

The numerical model contains a large number of physical parameters. Finding the
key physical processes and physical parameters in the numerical model is an important
way to improve simulation capabilities and prediction skills. To find the most sensitive
physical parameters, Sun and Mu [46] proposed a sensitivity analysis (SA) method based
on CNOP-P (Figure 1, Table 1). For the SA method based on CNOP-P, there were two
steps. First, some insensitive physical parameters were eliminated using the CNOP-P
method. Next, among the remaining physical parameters, the combination of relatively
sensitive and important physical parameters was judged using the idea of combination
and the CNOP-P method. In the second step, the sensitivity of a single parameter was
identified using the CNOP-P approach, which in theory was the optimal way to ensure
the ranking of every parameter in terms of its sensitivity. Obviously, this method fully
considered the nonlinear synergistic effects between physical parameters. Moreover, this
method identified relatively sensitive and important combinations of physical parameters
in the whole physical parameter space.
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2.3.2. Identification of Sensitive Physical Parameters

Model errors are a critical source affecting the uncertainty in simulated terrestrial
ecosystems. It is important to determine which parameter errors should be reduced to
improve the simulation ability of terrestrial ecosystems. Sun and Mu [47] used the SA
method based on CNOP-P to identify the most sensitive physical parameters to soil carbon.
To compare the sensitivity of the parameter combination, the one-at-a-time (OAT) approach
was also applied to judge the sensitivity of each parameter.

Sun and Mu [47] noted that the most sensitive parameters to soil carbon varied between
plant functional types (Figure 2, Table 1, and the physical meanings of the parameters can
be found in Table S1). For example, for C3 perennial grasses under semiarid conditions,
the uncertainty in hydrological processes was also critical for modeling soil carbon.C3
perennial grasses are cool season grasses and are great at fixing CO2 at cooler temperatures.
However, at higher temperatures, e.g., above 90 degrees F, they are not as efficient. The most
sensitive parameter combinations using the SA method based on CNOP-P differed from
the highest rank of sensitivity for each parameter using the OAT method. This difference
suggested that the nonlinear effects of parameter combinations were key to determining
sensitive parameter combinations (Figure 3, and the physical meanings of the parameters
can be found in Table S1).
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Numerical simulations and predictions of carbon fluxes (net primary production, NPP)
on the Qinghai–Tibet Plateau (TP) are still subject to large uncertainties. To reduce the
uncertainty in numerical simulations and improve the predictive power of simulated NPP,
Sun et al. [48] identified the key physical processes associated with uncertainty at nine
stations on the TP using the SA method based on CNOP-P. In the mid-precipitation region
of the Tibetan Plateau, the parameters related to photosynthesis were the main factors
contributing to the large uncertainty in the NPP simulations; in regions with low and high
precipitation on the Tibetan Plateau, the combined effects of the parameters related to
hydrological processes and photosynthesis played an important role (Figures 4 and 5, and
the physical meanings of the parameters can be found in Table S2). All the above results
showed that the SA based on the CNOP-P method could reasonably identify relatively
sensitive and important combinations of parameters and was more physically meaningful.
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2.3.3. Evaluation of Simulation Ability and Prediction Skill by Reducing the Errors of
Sensitive Physical Parameters

An important objective of finding the sensitive parameter subset is to improve the
simulation ability and prediction skill of terrestrial ecosystems. Sun et al. [48] designed an
ideal numerical experiment to reduce the uncertainty in the simulation of NPP over the TP
(Table 1). To explore the benefits of modeling NPP while reducing the parameter errors
associated with the most sensitive parameter subset, an experiment was implemented
as follows:

τ =
‖MT(U0, P + p)−MT(U0, P)‖ − ‖MT(U0, P + (1− α)p)−MT(U0, P)‖

‖MT(U0, P + p)−MT(U0, P)‖ × 100% (1)
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where τ represents the benefit of modeling NPP based on reducing the parameter errors
of the sensitive parameter subset. A larger τ value indicates a better improvement in
the NPP simulation. P is the reference state of the sensitive parameter subsets. p is the
CNOP-P, which is related to the errors of five sensitive parameter subsets. α (=0.2, 0.4, 0.6,
and 0.8) represents the extent of the error reduction for the correct parameters due to data
assimilation or observation.
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Sun et al. [48] demonstrated that eliminating the errors associated with the most
sensitive and important parameter subset with the SA method based on CNOP-P led
to the maximum benefit in terms of reducing the uncertainty of simulated NPP when
compared to that obtained using the traditional method. For all cases over the TP in the
studies of Sun et al. [48], the numerical results showed that the simulation abilities of NPP
were improved by reducing the uncertainties in sensitive physical parameters identified
by the CNOP-P method compared to the OAT method. In addition, for some cases, the
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extent of improvement in the simulated NPP by reducing the uncertainties in sensitive
physical parameters identified by the CNOP-P method was distinctly better than that by
the OAT method [48]. For example, for the Ngari site, the extent of the improvement in the
simulated NPP was 34.3% using the CNOP-P method and 28.6% using the OAT method.
This study suggested that we should prioritize reducing the uncertainty of relatively
sensitive parameter combinations among all physical parameters to improve the prediction
or simulation ability of NPP over the TP. Sun et al. [48] also emphasized the importance of
nonlinear interactions among sensitive parameter sets for uncertainties in the simulation
ability and prediction skill of terrestrial ecosystems.

3. Discussion

Although the CNOP-P method has been studied in terms of uncertainties in terrestrial
ecosystem modeling and prediction, more research should be conducted. It is not enough
for studies to consider only the effects of a 2 ◦C temperature increase on terrestrial ecosys-
tem variations. Climate change with multimodel prediction results should be considered.
Additionally, ideal numerical experiments are implemented when studying sensitive com-
binations of physical parameters. In the future, studies of sensitive physical parameter
combinations can be conducted with observational data. Finally, the study of the CNOP-P
method in terrestrial ecosystem predictability is not limited to the above two aspects.

On the one hand, ensemble forecasting is one of the methods that can be used to
improve the simulation and prediction of terrestrial ecosystems, and research on the
CNOP-P method is worth exploring land carbon cycle ensemble predictions (LEPS). On the
other hand, the impacts of extreme events (e.g., droughts, high temperatures, and fires) on
terrestrial ecosystems have received increasing attention from scholars. Studies of terrestrial
ecosystem responses to climate change imply that this approach can be used to carry out
research on the effects of extreme events on terrestrial ecosystems.As the underlying surface
of the Earth system, terrestrial ecosystems affect local and global climate change through
land–atmosphere interactions. The impact of terrestrial ecosystems on regional and global
climate change will be discussed in the future using the CNOP-P method, especially for
studies of extreme events. The results reviewed in this article may not be sufficient to
conclude significant findings that are part of uncertainties in simulated and predicted
terrestrial ecosystems over multiple years. In this study, uncertainties in simulated and
predicted terrestrial ecosystems were shown using the nonlinear optimization method
(CNOP-P method). These results encourage us to further research the uncertainty and
predictability of terrestrial ecosystems.

4. Conclusions

In this paper, the applications of CNOP methods in terrestrial ecosystem predictabil-
ity studies are reviewed. The paper contained two main parts. First, using the CNOP
method, climate changes were given where both climate state changes and climate variabil-
ity changes were considered. The numerical results showed that the nonlinear changes in
climate variability were considered to show more significant changes in terrestrial ecosys-
tems. This result shows the important role of nonlinear variations in climate variability in
terrestrial ecosystem changes.

Additionally, to overcome the limitations of traditional methods in studying the
identification of key physical parameters for terrestrial ecosystem simulation and prediction
uncertainty, a CNOP-P-based SA method for identifying combinations of sensitive physical
parameters was proposed. This method can consider both the nonlinear interactions among
physical parameters and the sensitivity of the parameters in the whole physical parameter
error space. The sensitive physical parameter combinations identified by the CNOP-P-
based SA method for identifying sensitive physical parameter combinations were more
sensitive than those identified by the traditional methods. Furthermore, reducing the errors
of sensitive physical parameters identified by the CNOP-P-based SA method resulted in a
higher degree of improvement in terrestrial ecosystem simulation and prediction. All of
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these applications imply that the CNOP method is an important theoretical tool that can be
used to study the uncertainties in terrestrial ecosystem simulations and predictions.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/atmos14040617/s1, Table S1: The chosen physical parameters in
studies of Sun and Mu [46,47]; Table S2: The chosen physical parameters in studies of Sun et al. [48].
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