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Abstract: The WRF-Solar Ensemble Prediction System (WRF-Solar EPS) and a calibration method,
the analog ensemble (AnEn), are used to generate calibrated gridded ensemble forecasts of solar
irradiance over the contiguous United States (CONUS). Global horizontal irradiance (GHI) and
direct normal irradiance (DNI) retrievals, based on geostationary satellites from the National Solar
Radiation Database (NSRDB) are used for both calibrating and verifying the day-ahead GHI and
DNI predictions (GDIP). A 10-member ensemble of WRF-Solar EPS is run in a re-forecast mode to
generate day-ahead GDIP for three years. The AnEn is used to calibrate GDIP at each grid point
independently using the NSRDB as the “ground truth”. Performance evaluations of deterministic and
probabilistic attributes are carried out over the whole CONUS. The results demonstrate that using the
AnEn calibrated ensemble forecast from WRF-Solar EPS contributes to improving the overall quality
of the GHI predictions with respect to an AnEn calibrated system based only on the deterministic run
of WRF-Solar. In fact, the calibrated WRF-Solar EPS’s mean exhibits a lower bias and RMSE than the
calibrated deterministic WRF-Solar. Moreover, using the ensemble mean and spread as predictors for
the AnEn allows a more effective calibration than using variables only from the deterministic runs.
Finally, it has been shown that the recently introduced algorithm of correction for rare events is of
paramount importance to obtain the lowest values of GHI from the calibrated ensemble (WRF-Solar
EPS AnEn), qualitatively consistent with those observed from the NSRDB.

Keywords: solar irradiance ensemble forecasting; analog ensemble; rare events; ensemble calibration

1. Introduction

The value of numerical weather predictions (NWP) is nowadays well recognized by the
renewable energy community [1–3]. NWPs represent a component of most solar and wind
power prediction systems, providing reliable wind speed and solar irradiance forecasts up
to three days ahead in broad geographic regions [4–6]. Predictions of intermittent natural
resources such as wind and solar power facilitate their increasing penetration into the wider
pool of energy generation technologies [7,8]. In fact, in countries with a high solar/wind
production capacity, the electric transmission grid’s supply/demand can be kept in balance
and disruptions of the energy distribution can be prevented if accurate planning of backup
traditional dispatchable sources (coal, gas, hydro, etc.) is carried out. Another application of
NWP is related to trading wind/solar energy in the day-ahead market. In many countries,
producers have to sell their energy the day before, and they are subject to penalties if they
do not deliver the production amounts previously committed [9–11].

An important feature enhancing NWP’s value for these applications is to provide
uncertainty quantification, i.e., probabilistic information associated with the deterministic
single-valued forecast [12,13]. Probabilistic forecasts of weather variables important for
renewable energies have been traditionally generated using an ensemble of model runs with
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the members being different models (i.e., multi-model ensemble) [14,15], having different
initial conditions [16,17], physics configurations (i.e., multi-physics) [18], and stochastic
perturbations of the tendencies of physics parameterizations [19]. In these cases, the
uncertainty of predicting a meteorological variable is represented by the ensemble spread,
defined as the standard deviation of the members about the ensemble mean. Probabilities
of exceeding a given value of any meteorological variable can be derived by the fraction of
members larger than the value itself.

An alternative approach developed more recently in the last 15 years is to generate
the ensemble members with statistical post-processing techniques such as the analog
ensemble (AnEn) [20–22] or quantile regression [23]. In these cases, a historical dataset of
observations of the variable to be predicted is needed at a specific location. It should be
noted that the AnEn, as well as other post-processing techniques, have also been applied to
reduce systematic errors (bias correct) and calibrate the existing ensemble [24–27]. Also,
it is worth mentioning the work [2,28,29] where the AnEn is coupled with other machine
learning (ML) techniques, [13,30–33] where the AnEn is used to predict regional solar power
generation, and [34,35] where the AnEn’s computational efficiency has been optimized.

In this work, we will focus on developing and testing global horizontal irradiance
(GHI) and direct normal irradiance (DNI) probabilistic prediction based on the version
of the Weather Research and Forecasting (WRF) [36,37] model specialized for solar ap-
plications (WRF-Solar) [38,39]. Being a deterministic model, WRF-Solar does not inform
about uncertainties associated with the irradiance predictions or probabilities of exceeding
a given irradiance level. To avoid this limitation, WRF-Solar has been enhanced with a
probabilistic component called the WRF-Solar Ensemble Prediction System (WRF-Solar
EPS) [40–43]. WRF-Solar EPS generates the probabilistic forecasts introducing stochastic
perturbations to state variables to account for uncertainties in the cloud, aerosol, and radi-
ation processes. The variables were selected by developing tangent linear models of six
WRF-Solar modules to identify the variables responsible for the most significant uncertain-
ties in predicting surface solar irradiance and clouds [43]. Previous work has shown the
necessity of calibration for WRF-Solar EPS predictions over the contiguous United States
(CONUS). In fact, we have found that WRF-Solar EPS, like most of the NWP dynamical
ensemble systems, is overconfident in the day-ahead predictions [40,42]. The calibration
of the ensemble herein presented makes use of the AnEn post-processing system already
applied in [21] to generate GHI and solar power probabilistic forecasts starting from a
deterministic NWP. Herein we focus on applying the AnEn to a WRF-Solar EPS ensemble.
A preliminary assessment of the use of AnEn coupled with WRF-Solar and WRF-Solar EPS
has been briefly presented [42], and this work explores this approach in more detail, using
a more extended dataset (three years), and includes an evaluation of the performances
predicting DNI as well as GHI. More specifically, the AnEn will be applied to generate an
ensemble forecast from the deterministic NWP output of WRF-Solar (WRF-Solar AnEn) and
to calibrate WRF-Solar EPS (WRF-Solar EPS AnEn), improving its spread/skill consistency.
It is necessary because the uncalibrated WRF-Solar EPS spread underestimates the error
(root mean squared error) of the ensemble mean with respect to GHI observations [40]. As
already mentioned, the AnEn needs an archive of past forecasts from an NWP model and
past observations of the meteorological variables of interest, GHI or DNI, in this work. Past
forecasts (analog forecasts) similar to the current one are selected based on some relevant
meteorological variables (predictors). For each analog forecast, the verifying observations
of the variable to be predicted (GHI or DNI) are used to build the ensemble prediction. The
assumption is that these past observations can inform about future outcomes since they had
occurred in similar meteorological conditions in the past. When calibrating the WRF-Solar
EPS, the AnEn can also use, as predictors, variables derived from the ensemble members,
such as the mean and the spread. Since the AnEn is based on just a single deterministic
forecast in the WRF-Solar AnEn, it has the advantage of building an ensemble with fewer
computational resources than the WRF-Solar EPS or WRF-Solar EPS AnEn.
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The novel aspect of this work is that both the WRF-Solar AnEn and WRF-Solar
EPS AnEn GHI and DNI forecasts are built using the National Solar Radiation Database
(NSRDB) [44], a satellite-based solar irradiance observation dataset, which is based on the
Geostationary Operational Environmental Satellite (GOES) observations and covers the
CONUS region. Our previous work has quantified its adequacy in evaluating WRF-Solar
predictions [45]. Therefore, using NSRDB gridded GHI and DNI data allows the AnEn to
by applied at every grid point within the CONUS domain, resulting in calibrated systems
over the entire model grid. A similar application of the AnEn for gridded 10 m wind
speed forecasts was explored by [46], in which the wind speed gridded observations were
derived from the European Center for Medium-Range Weather Forecasts (ECMWF) model
analysis product. It should be noted that in past applications of the AnEn to GHI [21], the
AnEn was applied only at specific locations corresponding to ground observation sites with
radiometers, meaning that calibrated ensemble values of GHI or DNI were not available
as gridded products covering large geographic areas. The use of NSRDB gridded data
over CONUS allows setting up experiments to answer the following scientific questions:
(1) Assessing and comparing WRF-Solar and WRF-Solar EPS performances in different cli-
matic regions of the US in terms of deterministic GHI and DNI predictions. (2) Comparing
the performance of the computationally cheaper ensemble, the WRF-Solar AnEn, against
the more expensive WRF-Solar EPS. (3) Quantifying the improvements obtained by the
AnEn calibration of the WRF-Solar EPS.

The paper is organized as follows: Section 2 describes the NSRDB observational
dataset, WRF-Solar and WRF-Solar EPS, the AnEn, and the methodology used to calibrate
the ensembles and to assess the performance of the GHI and DNI predictions. The results,
including verification of the models’ performances and some case studies, are illustrated in
Section 3, with the conclusions in Section 4.

2. Models and Dataset
2.1. The WRF-Solar Model

The WRF-Solar model was created to enhance the value of the WRF NWP model for
solar energy applications [38]. The original emphasis was placed on improving the aerosol–
cloud–radiation interactions with other physical additions to increase the value of solar
applications [38,39]. The WRF-Solar community model was fully integrated into WRF in
version 4.2. Recently, we have added a solar diagnostic package to provide 2-dimensional
variables characterizing the cloud field and radiation. A more recent development is the
addition of the multi-sensor advection diffusion (MAD)-WRF component [47] to improve
short-range irradiance predictions. MAD-WRF improves the cloud initialization using a
cloud parameterization based on the relative humidity in combination with observations
of the cloud mask and the cloud top/base height if available. MAD-WRF has been shown
to improve the short-term irradiance predictions over CONUS by 18% [47].

2.2. WRF-Solar Ensemble Prediction System

To extend the WRF-Solar capabilities [38,39,48] beyond deterministic forecasts, we
have developed WRF-Solar EPS [40–42] First, we selected six parameterizations affecting
solar irradiance and cloud processes: (1) Thompson microphysics [47], (2) Mellor–Yamada–
Nakanishi–Niino planetary boundary layer parameterization [49], (3) the Noah land sur-
face model [50], (4) Deng’s shallow cumulus parameterization [51], (5) the Fast-All-sky
Radiation Model for Solar applications [52], and (6) a parameterization of the effects of
unresolved clouds based on relative humidity. Then, we developed tangent linear models
of these parameterizations to quantify sensitivities of the input variables to the parame-
terizations and select the ones introducing the most significant uncertainties in the output
variables [43]. As a result of this analysis, we selected 14 state variables. In the final step,
we introduced stochastic perturbations to these variables during the model integration in
order to create the WRF-Solar EPS component. The characteristics of the perturbations and
the variables/parameterizations to perturb are determined in configuration files, providing
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flexibility in generating the WRF-Solar EPS ensemble. The interested reader is referred
to [40–42] for further details about the WRF-Solar EPS model.

2.3. National Solar Radiation Database

The National Solar Radiation Database (NSRDB) [44] is a satellite-based solar irradiance
observation dataset, which has a 4 km horizontal resolution for each 30 min interval from
1998 to 2017 (https://nsrdb.nrel.gov accessed on 12 August 2022). From 2018 onwards, the
NSRDB contains improved spatiotemporal resolution data (2 km of spatial resolution with up
to 5 min of temporal resolution) which are in addition to the 4 km, 30 min NSRDB products.
For this improved dataset, the NSRDB makes use of data from the new generation of GOES
satellites [53–55] and covers the CONUS region (Figure 1). It has been shown to provide
state-of-the-science retrievals of GHI (DNI). In [45], NSRDB and ground observations were
compared to WRF-Solar predictions to confirm the adequacy of the NSRDB to assess the
performances of WRF-Solar over CONUS. The NSRDB data are also used as an observation
component of the AnEn calibration in this work. To efficiently implement the AnEn calibration,
the NSRDB datasets covering 2016–2018 are aggregated to the 9 km WRF-Solar grid for each
30 min interval. For 2016 and 2017 datasets, the 9 km GHI (DNI) is obtained from spatially
averaged 4 km NSRDB pixels, which are derived from 30 min, 4 km GOES-13 (East) and GOES-
15 (West) data. For the 2018 dataset, additional procedures (e.g., spatiotemporal averaging; see
details summarized in [41]) are applied to produce the 9 km GHI (DNI). Because the NSRDB
is derived from the 30 min, 4 km GOES-15 and new GOES-East satellite data (i.e., GOES 16),
which includes cloud properties retrieved from 15 min, 2 km satellite data. Comprehensive
details for building up the 9 km GHI (DNI) are summarized in [41,45]. In Figure 1 a map of
the 9 km GHI observations from the NSRDB on 1530 UTC 16 April 2018 within the WRF-Solar
computational domain, is presented.
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2.4. Forecast Dataset

WRF-Solar was configured to cover CONUS with 9 km grid spacing (Figure 1). The
physics configuration follows those in the WRF-Solar [38], and one difference is the ac-
tivation of the Fast-All-sky Radiation Model for Solar applications (FARMS) radiation
scheme [52]. The National Centers for Environmental Prediction (NCEP) Global Forecast
System (0.25◦ × 0.25◦; 3-hourly intervals) forecast was used as the initial and boundary
conditions, and 48 h forecasts were conducted and initialized every 06 UTC. This configura-
tion is optimized for day-ahead forecasting. WRF-Solar EPS runs a stochastically generated
ensemble with 10 members based on WRF-Solar.

The AnEn post-processing (hereafter described) focused on the GHI and DNI predic-
tions over the 24–48 h lead time interval. Due to limitation in the storage and computational
resources, the AnEn ran over a subsample of WRF-Solar grid points. Specifically, one of
every fifth grid point has been considered for AnEn post-processing. Also, the AnEn was

https://nsrdb.nrel.gov
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run every day of the verification period from 1 January to 29 December 2018 using the
period from 1 January 2016 to 31 December 2017 as training; thus, in the verification period,
there are 363 WRF-Solar and WRF-Solar EPS runs, and the corresponding post-processed
WRF-Solar AnEn and WRF-Solar EPS AnEn runs.

2.5. The Analog Ensemble (AnEn)

A very brief description of the AnEn algorithm and its bias correction for rare events
algorithms are presented here. We direct the reader to [21,56] for more details.

As previously explained, with the AnEn, the ensemble is built by searching for similar
(analogs) forecasts to a current (target) forecast in an archive of historical deterministic predic-
tions. The observed GHI (DNI) values verifying each selected forecast are used to generate the
ensemble of GHI (DNI) predictions. The similarity is determined by a Euclidean distance that,
in this application, is based on a few predictors. Following [21], after a few tests (not shown)
carried out over the training period, no other predictors than GHI and DNI were found to
add some skills. Therefore, only GHI and DNI were used for the AnEn post-processing of
the WRF-Solar deterministic output of both GHI and DNI. In the case of WRF-Solar EPS
post-processing, the GHI and DNI ensemble mean and ensemble standard deviation (spread)
have been used as predictors. The Euclidean distance adopted to determine the similarity of
the past forecasts with respect to the target one is computed over 3 h trends centered around
the lead time of the target forecast. For instance, when predicting the GHI at 12 UTC (lead
time 12 h) on 1 January 2018, GHI and DNI forecasts at 11 UTC, 12 UTC, and 13 UTC are used
to compute the distances with all the past forecasts in the training dataset, from 1 January
2016 to 31 December 2017. The result is an array of 730 values (the number of days from
1 January 2016 to 31 December 2017), each representing the distance between the target forecast
and each day’s forecast in the training dataset. After sorting these values in increasing order,
the first n (number of ensemble members) dates are usually selected. The GHI (DNI) observed
verifying values on these n dates are used to build the GHI (DNI) forecast’s ensemble values
for 1 January 2018 12 UTC.

The ensemble members’ mean or median is commonly used to obtain a single-valued
deterministic forecast. It is generally recommended to use the mean or the median of the
ensemble distribution if the goal is to minimize the root mean squared error or the mean
absolute error respectively [57]. Since the WRF-Solar EPS was run with 10 members due to
computational capacity limits, the number of AnEn ensemble members was set to 10 to
allow a fair comparison. After a few tests aimed at optimizing the performance at each grid
point through brute force [21] by assigning different weights to the predictors, we decided
to keep the same and equal weights. In fact, overfitting occurred at many grid points when
trying to assign different weights, meaning that the AnEn performance improvement over
the training dataset did not reflect over the verification dataset.

As already pointed out in [56,58], the AnEn introduces a negative/positive bias
when predicting the right/left tails of the forecast distribution. Here, the bias correction
techniques suggested by [58] have been adopted to mitigate these biases. They include
extending the training dataset to lead times adjacent to that of the target forecast. For
example, when predicting 12 h ahead, analogs are also searched at 11 h and 13 h (one-hour
window). With this approach, the forecast sample from which analogs can be selected is
increased by a factor of three. The other method is an adaptation to solar irradiance of what
was proposed by [56] for wind speed. The forecasts in the distribution tails are adjusted
by adding or subtracting a coefficient proportional to the difference between the target
forecast and the mean of the analog forecasts. Hereafter in Section 3.3, it is shown that
including this bias correction technique allowed us to have a more realistic prediction over
an area affected by low irradiance, as observed by the NSRDB.
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3. Results
3.1. Deterministic Verification

A first comparison between the models is presented here in terms of standard met-
rics such as bias, the root mean squared error (RMSE), and Pearson correlation [3]. For
additional details about these standard metrics, the reader is referred to [3,59].

WRF-Solar, WRF-Solar EPS, WRF-Solar AnEn, and WRF-Solar EPS AnEn are evaluated
in Figures 2–4. The goal is to verify potential improvements achieved by using an ensemble
with respect to a deterministic model (WRF-Solar EPS vs. WRF-Solar) both with and without
the AnEn calibration. Also, the benefit of using an ensemble calibration process such as
AnEn is assessed. In terms of bias (Figure 2) both WRF-Solar and WRF-Solar EPS have the
tendency to overestimate GHI, which indicates that cloudiness is underestimated in general
(see also [3]). Positive bias values are more significant in the Midwest and in subtropical
areas facing the Gulf of Mexico than over the West coast. WRF-Solar and the WRF-Solar EPS
performances are similar, with slightly higher peaks of bias from the latter of about 60 W/m2,
and the overall total bias value obtained by pooling all the grid points and lead time together
(Figure 2a,b) was larger in the WRF-Solar EPS (31.7 W/m2) than in WRF-Solar (22.8 W/m2).
The benefit of the AnEn calibration is evident for both models, with a significant absolute bias
reduction everywhere, and broad areas in the West with values virtually equal to zero in both
the WRF-Solar AnEn and WRF-Solar EPS AnEn (Figure 2c,d).
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Looking at the RMSE (Figure 3a,b), the WRF-Solar EPS improves upon WRF-Solar with
a reduction of RMSE in many areas. Since the systematic component of RMSE (bias) is
very similar in both models, or even higher in the WRF-Solar EPS than WRF-Solar, RMSE
improvements can be attributed to a significant reduction of the random component of the
RMSE in the WRF-Solar EPS. The AnEn calibration improves the RMSE in the Midwest
regions for both models (Figure 3c,d), with more significant improvements over the West
coast for WFR-Solar AnEn rather than for WRF-Solar EPS AnEn. The calibrated WRF-Solar
AnEn (Figure 3c) is slightly better than the WRF-Solar EPS for RMSE (Figure 3b), with an
overall RMSE value of 122.6 W/m2 against 125.5 W/m2. The WRF-Solar AnEn (Figure 3c)
is slightly worse than the calibrated version the WRF-Solar EPS AnEn (Figure 3d), with an
overall RMSE value of 122.6 W/m2 against 117.9 W/m2. The relative performances of the
four different models for the correlation index (Figure 4) are very similar to those drawn for
the RMSE. In conclusion, it is worth noting that the full potential of the WRF-Solar EPS is
reached only after the AnEn calibration process that allows reaching the best performances
in all three metrics (bias, RMSE, and correlation) among the four models examined. In fact,
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before the AnEn calibration, the WRF-Solar EPS is worse than the ensemble WRF-Solar AnEn
in terms of RMSE and bias in particular. These results highlight the well-known importance of
post-processing any NWP-based forecasts. Another conclusion is that the calibration process
over the deterministic run (WRF-Solar) allows very competitive performances compared to its
EPS versions without the need to run multiple numerical simulations.
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The same plots regarding bias, RMSE, and correlation are presented in Appendix A for
DNI. The conclusions drawn for DNI are almost identical to those already presented for GHI.

For a more detailed analysis, in Figure 5, RMSE, bias, and correlation are presented
for the four models as time series of average daily values for 2018. In terms of bias, the
benefit of calibration is clear most of the time. Especially in summer and winter, there is
a clear benefit to having the AnEn coupled to WRF-Solar or the WRF-Solar EPS, which
otherwise are affected by a more significant bias than in other seasons. In some cases,
during spring and fall, there is a slight tendency of the AnEn to over-correct the positive
bias resulting in negative values. In general, WRF-Solar exhibits a lower bias than the WRF-



Atmosphere 2023, 14, 567 8 of 19

Solar EPS (Figure 5a), with the AnEn post-processing effectively reducing the systematic
error, especially in summer, which is consistent with what is already seen in Figure 2. In
terms of RMSE and correlation, the WRF-Solar EPS AnEn is the best model most days,
confirming that the post-processing reduces the random component of the error more than
in the calibrated WRF-Solar AnEn.
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3.2. Probabilistic Verification

One of the main reasons for using ensemble prediction systems is to assess information
dynamically regarding the accuracy of any forecast. A common practice to evaluate how
effectively an EPS can provide accurate information about its own uncertainty is to compare
the RMSE of the ensemble mean with the ensemble spread [60]. Historically, NWP-based
EPSs have shown to be under-dispersive, at least up to 7 days ahead, meaning that the
spread is lower than the RMSE [61]. EPS calibration procedures are aimed at not only
reducing the bias but also at improving the RMSE/spread consistency.

In Figure 6, the ratio between the RMSE and spread is plotted for all the grid points
by pooling all the forecast lead times from +24 h to +48 h and runs together. The ratio has
been computed following [60]:

ratio =

√
1
N ∑N

i=1 (ei − oi)
2 n

n+1√
1
N ∑N

i=1 var(ei)
(1)
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where ei is the ensemble mean at any of the N forecast events, oi is the observation, and
var(ei) is variance about the ensemble mean of the n ensemble members. The numerator
of Equation (1) is the RMSE adjusted by a factor n

n+1 . This factor has been included to
account for the limited number of members to properly compare the RMSE and the spread
at the denominator of Equation (1), as demonstrated by [60]. The WRF-Solar EPS is under-
dispersive, with values of the ratio larger than 2 everywhere, reaching peaks of 4 in the
western US. Both the calibrated versions, WRF-Solar EPS AnEn and WFR-Solar AnEn,
largely improve the RMSE/spread matching everywhere, with much lower values of the
ratio between 1 and 1.4. These results indicate that the WRF-Solar EPS does not generate
enough cloudiness variability across the members in the western US and East of the Rocky
Mountains, in Wyoming and Colorado in particular.
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Another way to assess whether the probabilistic prediction system can quantify its own
uncertainty is to compile a binned spread-skill diagram (Figure 7). In spread-skill diagrams,
the ensemble spread is compared with the RMSE of the ensemble mean over small class
intervals (i.e., bins) of spread [61]. A good correlation in the spread-skill diagram indicates
that an ensemble system can predict its uncertainty. A perfect RMSE/spread matching
is achieved at all bins for values resulting in a trend lying on the plot’s 1:1 diagonal. In
Figure 7, a better spread skill consistency is clearly shown by the WRF-Solar AnEn and
WRF-Solar EPS AnEn, with values closer to the 1:1 diagonal than for the WRF-Solar EPS.
It is worth noticing that errors (RMSE) between 25 and 125 W/m2 for the WRF-Solar EPS
correspond to an almost constant value of spread of about 10 W/m2. It means that a small
value of spread around 10 W/m2 from the raw WRF-Solar EPS does not necessarily result
in an accurate forecast, since the RMSE can likely take values up to 125 W/m2.

So far, the metrics presented in this section were aimed at assessing only one attribute,
i.e., the statistical consistency of the ensemble systems. The continuous ranked probability
score (CRPS) [62,63] can be used to assess the overall quality of the probabilistic predictions.
Details about the formulation of the CRPS and its components, reliability (REL), and
potential CRPS (CRPSPOT) are presented in Appendix B. In Figures 8–10, maps obtained
from computing the CRPS, CRPSPOT and REL over all the grid points for the year 2018
and the +24 h, +48 h lead time interval are presented. The overall evaluation of the
CRPS indicates the WRF-Solar EPS AnEn is the best model (lowest CRPS). The WRF-Solar
EPS delivers the worst performance, and the WRF-Solar AnEn is slightly worse than the
calibrated version the WRF-Solar EPS AnEn. When comparing the WRF-Solar EPS and its
calibrated version (WRF-Solar EPS AnEn), it is possible to quantify the overall improvement
achieved through the AnEn calibration, which is about 20%. The lack of reliability consistent
with the under-dispersive characteristic already pointed out (Figures 6 and 7) for the WRF-
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Solar EPS is evident looking at the reliability map. In fact, REL values are the highest
(worst) for the WRF-Solar EPS, especially in the Midwest and Mexico. The WRF-Solar
AnEn is very similar to the WRF-Solar EPS AnEn in terms of reliability, with values below
4 W/m2 everywhere. The WRF-Solar EPS exhibits the best (lowest) CRPSPOT values and,
since CSPSPOT = UNC-RES holds, also the best (highest) resolution. It is worth recalling
that the model resolution is the ability of the system to perform better than a climatological
forecast, which can also be seen as the degree to which the forecasts separate the observed
events in groups that are different from each other. Since WRF-Solar EPS forecasts are
sharper (have a lower spread) than their calibrated version (WRF-Solar EPS AnEn), this is
somehow reflected in a better resolution of the former. On the other hand, the improvement
achieved by the calibration in terms of reliability abundantly compensates for the loss in
resolution, leading to an overall (lower CRPS) improved probabilistic model. Given that
the WRF-Solar AnEn and the WRF-Solar EPS AnEn show very similar reliability maps,
the slightly overall worse CRPS in the former can be attributed to its lower resolution,
highlighted by a higher CRPSPOT.
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3.3. Case Study

In this section, an episode (1530 UTC July 29, 2018) in which NSRDB observations
indicate a wide area affected by a very low GHI is investigated. In Figure 11, NSRDB
estimates show a wide area across Arkansas, Missouri, and Illinois, with a GHI of less than
100 W/m2 and even under 50 W/m2 in a smaller region. Over the same area, the WRF-Solar
EPS exhibits peaks of low GHI in the same range, even if the spatial pattern does not match
exactly that of the NSRDB. After the calibration with the AnEn (Figure 11c), the overall bias
is improved, and the average overestimation from WRF-Solar EPS of 41.2 W/m2 is reduced
to −0.2 W/m2. Despite these general improvements when comparing with the NSRDB
map (Figure 11a), a positive bias is introduced by the AnEn calibration (Figure 11c) over
the area with a GHI lower than 100 W/m2 and, in particular, GHI values under 50 W/m2

are no longer generated. By using the bias correction for rare events (Figure 11d) described
in Section 2.5 values under 50 W/m2 are introduced back in the forecast, consistently with
the NSRDB and WRF-Solar EPS, while still keeping the overall improvement in terms of
bias reduction (−0.8 W/m2) very similar to that of the AnEn without the correction for
rare events (Figure 11c). It is worth recalling that the AnEn correction for rare events is
applied only if the target forecast from the NWP model (WRF-Solar EPS ensemble mean
in this case) is under a threshold value that, in this application, is set as the 10th quantile
of the forecast distribution computed independently at each lead time and grid point.
Hence, comparing the plots in Figure 11b–d, one can notice that GHI values under about
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200 W/m2 in Figure 11b are modified with lower values in Figure 11d than in Figure 11c.
The bias correction for rare events has been always included in the AnEn algorithm in all
the applications previously presented in this work.
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4. Conclusions

In this work, the WRF version enhanced for solar energy applications, WRF-Solar, and
its ensemble version, the WRF-Solar EPS, are evaluated using the National Solar Radiation
Database (NSRDB), a satellite-based solar irradiance observation dataset. To handle the big
datasets efficiently for evaluation of WRF-Solar and WRF-Solar EPS forecasts, the NSRDB
observations covering 2016–2018 are aggregated from the native NSRDB grid (2 km or 4 km)
to the WRF-Solar grid (9 km). Also, analog ensemble (AnEn) post-processing has been
used to calibrate both models. In the case of the deterministic WRF-Solar model, the AnEn,
besides removing the bias, also adds the capability of generating probabilistic predictions,
since an ensemble is developed after the post-processing. For the WRF-Solar EPS, the AnEn
ensemble members replace the original members that are output from the model, offering a
calibrated version with a reduced bias and a better spread/skill consistency.

The first goal was to assess and compare WRF-Solar and WRF-Solar EPS performances
in different climatic regions of the US in terms of deterministic GHI and DNI predictions.
Both WRF-Solar and the WRF-Solar EPS overestimate GHI and DNI, which indicates that
cloudiness is generally underestimated. Positive bias values are larger in the Midwest
and in subtropical areas facing the Gulf of Mexico than over the West coast. For RMSE,
the WRF-Solar EPS improves upon WRF-Solar both for DNI and GHI with a reduction in
RMSE in many areas. Given the similar bias (a systematic component of the error) of the
two models, the improvement in RMSE from the WRF-Solar EPS can be attributed to a
reduction in the random component of the error.

The second goal was to compare the performance of the computationally cheaper
ensemble, the WRF-Solar AnEn, against the more expensive WRF-Solar EPS. The WRF-
Solar AnEn outperforms the WRF-Solar EPS both in terms of deterministic scores (lower
bias and better RMSE) and probabilistic scores with improved statistical consistency and
overall lover CRPS. These conclusions hold true for both GHI and DNI.

The third goal was to quantify the improvements obtained by the AnEn with respect
to the raw models to which it is applied (WRF-Solar and WRF-Solar EPS). For deterministic
verification, the benefit of the AnEn calibration is evident for both models, with a significant
absolute bias reduction everywhere, and in broad areas in the West with bias values virtually
equal to zero. The AnEn calibration improves the RMSE in the mid-West regions for both
models, with more significant benefits over the West coast for WFR-Solar rather than the
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WRF-Solar EPS. The calibrated WRF-Solar AnEn is slightly better than the WRF-Solar EPS
for RMSE and, generally, somewhat worse than the calibrated version of the WRF-Solar
EPS (WRF-Solar EPS AnEn). For these reasons, the full benefit of using the WRF-Solar
EPS is evident only after the AnEn calibration process, allowing better performances
than the WRF-Solar AnEn in all three metrics (bias, RMSE, and correlation) for both GHI
and DNI. For probabilistic verification, the WRF-Solar EPS is clearly under-dispersive,
with values of the RMSE/spread ratio larger than 2 everywhere, reaching peaks of 4
in the western US. The calibrated version of the WRF-Solar EPS AnEn improves the
RMSE/spread ratio everywhere. These results indicate that the WRF-Solar EPS does not
generate enough cloudiness variability across the members in the western US and east of
the Rocky Mountains in Wyoming and Colorado. The AnEn calibration process, despite
slightly deteriorating the resolution of the WRF-Solar EPS due to the loss of sharpness,
significantly increases its reliability, resulting in an overall improved ensemble system.

Finally, a test case involving an episode with a wide area of high cloudiness and very low
GHI was examined. It has been shown that the recently introduced algorithm of correction for
rare events is of paramount importance to obtain the lowest values of GHI from the WRF-Solar
EPS AnEn, qualitatively consistent with those observed from the NSRDB.

Author Contributions: Conceptualization, S.A., P.A.J., J.-H.K. and J.D.; methodology, S.A., P.A.J.,
J.-H.K. and J.D.; software, S.A., P.A.J., J.-H.K. and J.D.; validation, S.A., P.A.J., J.-H.K. and J.D.; formal
analysis, S.A. and J.-H.K.; investigation, S.A., P.A.J., J.-H.K. and J.D.; resources, S.A. and P.A.J.; data
curation, J.-H.K. and J.Y.; writing—original draft preparation, S.A.; writing—review and editing,
S.A., P.A.J., J.-H.K. and J.Y.; visualization, S.A. and J.-H.K.; supervision, S.A. and P.A.J.; project
administration, P.A.J.; funding acquisition, P.A.J. and M.S.; All authors have read and agreed to the
published version of the manuscript.

Funding: This work was authored in part by the National Renewable Energy Laboratory, operated
by Alliance for Sustainable Energy, LLC, for the U.S. Department of Energy (DOE) under Contract
No. DE-AC36-08GO28308. Funding provided by the U.S. Department of Energy Office of Energy
Efficiency and Renewable Energy Solar Energy Technologies Office. The views expressed in the article
do not necessarily represent the views of the DOE or the U.S. Government. The U.S. Government and
the publisher, by accepting the article for publication, acknowledges that the U.S. Government retains
a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of
this work, or allow others to do so, for U.S. Government purposes. We would also like to acknowledge
high-performance computing support from Cheyenne (https://doi.org/10.5065/D6RX99HX accessed
on 2 February 2023) provided by NCAR’s Computational and Information Systems Laboratory,
sponsored by the National Science Foundation. This material is based upon work supported by
the National Center for Atmospheric Research, which is a major facility sponsored by the National
Science Foundation under Cooperative Agreement No. 1852977.

Institutional Review Board Statement: Not Applicable.

Informed Consent Statement: Not Applicable.

Data Availability Statement: Not Applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

In this section, the same metrics (bias, correlation, RMSE, spread/skill diagram, CRPS,
reliability, CRPSPOT) presented for GHI are shown for DNI. As mentioned in the conclusion
section, the same considerations drawn for GHI also hold for DNI.

https://doi.org/10.5065/D6RX99HX


Atmosphere 2023, 14, 567 14 of 19

Atmosphere 2023, 14, x FOR PEER REVIEW 15 of 21 
 

 

also like to acknowledge high-performance computing support from Cheyenne 
(https://doi.org/10.5065/D6RX99HX accessed on 2 February 2023) provided by NCAR’s Computa-
tional and Information Systems Laboratory, sponsored by the National Science Foundation. This 
material is based upon work supported by the National Center for Atmospheric Research, which is 
a major facility sponsored by the National Science Foundation under Cooperative Agreement No. 
1852977. 

Institutional Review Board Statement: Not Applicable. 

Informed Consent Statement: Not Applicable. 

Data Availability Statement: Not Applicable. 

Conflicts of Interest: The authors declare no conflicts of interest. 

Appendix A 
In this section, the same metrics (bias, correlation, RMSE, spread/skill diagram, 

CRPS, reliability, CRPSPOT) presented for GHI are shown for DNI. As mentioned in the 
conclusion section, the same considerations drawn for GHI also hold for DNI. 

 
Figure A1. Root mean squared error (RMSE) computed for DNI over the year 2018 for the forecast 
lead times from +24 to +48 h. The value in the legend at the bottom of each panel indicates the RMSE 
computed by pooling all the grid points and lead times together. 

 
Figure A2. Bias computed for DNI over the year 2018 for the forecast lead times from +24 to +48 h. 
The value in the legend at the bottom of each panel indicates the bias computed by pooling all the 
grid points and lead times together. 

Figure A1. Root mean squared error (RMSE) computed for DNI over the year 2018 for the forecast
lead times from +24 to +48 h. The value in the legend at the bottom of each panel indicates the RMSE
computed by pooling all the grid points and lead times together.

Atmosphere 2023, 14, x FOR PEER REVIEW 15 of 21 
 

 

also like to acknowledge high-performance computing support from Cheyenne 
(https://doi.org/10.5065/D6RX99HX accessed on 2 February 2023) provided by NCAR’s Computa-
tional and Information Systems Laboratory, sponsored by the National Science Foundation. This 
material is based upon work supported by the National Center for Atmospheric Research, which is 
a major facility sponsored by the National Science Foundation under Cooperative Agreement No. 
1852977. 

Institutional Review Board Statement: Not Applicable. 

Informed Consent Statement: Not Applicable. 

Data Availability Statement: Not Applicable. 

Conflicts of Interest: The authors declare no conflicts of interest. 

Appendix A 
In this section, the same metrics (bias, correlation, RMSE, spread/skill diagram, 

CRPS, reliability, CRPSPOT) presented for GHI are shown for DNI. As mentioned in the 
conclusion section, the same considerations drawn for GHI also hold for DNI. 

 
Figure A1. Root mean squared error (RMSE) computed for DNI over the year 2018 for the forecast 
lead times from +24 to +48 h. The value in the legend at the bottom of each panel indicates the RMSE 
computed by pooling all the grid points and lead times together. 

 
Figure A2. Bias computed for DNI over the year 2018 for the forecast lead times from +24 to +48 h. 
The value in the legend at the bottom of each panel indicates the bias computed by pooling all the 
grid points and lead times together. 

Figure A2. Bias computed for DNI over the year 2018 for the forecast lead times from +24 to +48 h.
The value in the legend at the bottom of each panel indicates the bias computed by pooling all the
grid points and lead times together.

Atmosphere 2023, 14, x FOR PEER REVIEW 16 of 21 
 

 

 
Figure A3. Pearson correlation computed for DNI over the year 2018 for the forecast lead times from 
+24 to +48 h. The value in the legend at the bottom of each panel indicates the correlation computed 
by pooling all the grid points and lead times together. 

 
Figure A4. RMSE/spread ratio computed for all the grid points for DNI by pooling the forecast lead 
times from +24 to +48 h and forecast runs for 2018 together. 

 
Figure A5. Binned RMSE/spread diagrams are computed by pooling all the grid points for DNI 
forecasts, runs, and the forecast lead times from +24 to +48 h for 2018. The horizontal bars represent 
the 5–95% bootstrap confidence intervals of the spread for each considered bin. 

Figure A3. Pearson correlation computed for DNI over the year 2018 for the forecast lead times from
+24 to +48 h. The value in the legend at the bottom of each panel indicates the correlation computed
by pooling all the grid points and lead times together.



Atmosphere 2023, 14, 567 15 of 19

Atmosphere 2023, 14, x FOR PEER REVIEW 16 of 21 
 

 

 
Figure A3. Pearson correlation computed for DNI over the year 2018 for the forecast lead times from 
+24 to +48 h. The value in the legend at the bottom of each panel indicates the correlation computed 
by pooling all the grid points and lead times together. 

 
Figure A4. RMSE/spread ratio computed for all the grid points for DNI by pooling the forecast lead 
times from +24 to +48 h and forecast runs for 2018 together. 

 
Figure A5. Binned RMSE/spread diagrams are computed by pooling all the grid points for DNI 
forecasts, runs, and the forecast lead times from +24 to +48 h for 2018. The horizontal bars represent 
the 5–95% bootstrap confidence intervals of the spread for each considered bin. 

Figure A4. RMSE/spread ratio computed for all the grid points for DNI by pooling the forecast lead
times from +24 to +48 h and forecast runs for 2018 together.

Atmosphere 2023, 14, x FOR PEER REVIEW 16 of 21 
 

 

 
Figure A3. Pearson correlation computed for DNI over the year 2018 for the forecast lead times from 
+24 to +48 h. The value in the legend at the bottom of each panel indicates the correlation computed 
by pooling all the grid points and lead times together. 

 
Figure A4. RMSE/spread ratio computed for all the grid points for DNI by pooling the forecast lead 
times from +24 to +48 h and forecast runs for 2018 together. 

 
Figure A5. Binned RMSE/spread diagrams are computed by pooling all the grid points for DNI 
forecasts, runs, and the forecast lead times from +24 to +48 h for 2018. The horizontal bars represent 
the 5–95% bootstrap confidence intervals of the spread for each considered bin. 

Figure A5. Binned RMSE/spread diagrams are computed by pooling all the grid points for DNI
forecasts, runs, and the forecast lead times from +24 to +48 h for 2018. The horizontal bars represent
the 5–95% bootstrap confidence intervals of the spread for each considered bin.

Atmosphere 2023, 14, x FOR PEER REVIEW 17 of 21 
 

 

 
Figure A6. Continuous ranked probability score (CRPS) map computed for DNI by pooling runs 
and the forecast lead times from +24 to +48 h for 2018 together. 

 
Figure A7. Potential continuous ranked probability score (CRPSPOT) map computed for DNI pool-
ing runs and the forecast lead times from +24 to +48 h for 2018 together. 

 
Figure A8. Reliability (REL) map computed for DNI pooling runs and the forecast lead times from 
+24 to +48 h for 2018 together. 

  

Figure A6. Continuous ranked probability score (CRPS) map computed for DNI by pooling runs and
the forecast lead times from +24 to +48 h for 2018 together.



Atmosphere 2023, 14, 567 16 of 19

Atmosphere 2023, 14, x FOR PEER REVIEW 17 of 21 
 

 

 
Figure A6. Continuous ranked probability score (CRPS) map computed for DNI by pooling runs 
and the forecast lead times from +24 to +48 h for 2018 together. 

 
Figure A7. Potential continuous ranked probability score (CRPSPOT) map computed for DNI pool-
ing runs and the forecast lead times from +24 to +48 h for 2018 together. 

 
Figure A8. Reliability (REL) map computed for DNI pooling runs and the forecast lead times from 
+24 to +48 h for 2018 together. 

  

Figure A7. Potential continuous ranked probability score (CRPSPOT) map computed for DNI pooling
runs and the forecast lead times from +24 to +48 h for 2018 together.

Atmosphere 2023, 14, x FOR PEER REVIEW 17 of 21 
 

 

 
Figure A6. Continuous ranked probability score (CRPS) map computed for DNI by pooling runs 
and the forecast lead times from +24 to +48 h for 2018 together. 

 
Figure A7. Potential continuous ranked probability score (CRPSPOT) map computed for DNI pool-
ing runs and the forecast lead times from +24 to +48 h for 2018 together. 

 
Figure A8. Reliability (REL) map computed for DNI pooling runs and the forecast lead times from 
+24 to +48 h for 2018 together. 

  

Figure A8. Reliability (REL) map computed for DNI pooling runs and the forecast lead times from
+24 to +48 h for 2018 together.

Appendix B

The continuous ranked probability score (CRPS) can be expressed as:

CRPS =
1
N ∑N

i=1

∫ ∞

−∞

(
F f

i (x)− F0
i (x)

)2
dx (A1)

where F f
i (x) is the cumulative distribution function (CDF) of the probabilistic forecast and

F0
i (x) is the CDF of the observation for the ith ensemble prediction/observation pair, and

N is the number of available pairs. The CRPS reduces to the mean absolute error (MAE) if
a deterministic (single-member) forecast is considered [64]. Like the MAE, a lower value
of CRPS indicates better skill, with 0 as a perfect score. The CRPS has the same unit of
measurement as the forecasted variable. Also, the CRPS can be obtained by integrating
the Brier score [65] over all the possible threshold values [64] and it can be decomposed
into three components: reliability (REL), resolution (RES), and uncertainty (UNC). The
REL component measures the statistical consistency of the ensemble system (the lower, the
better), that is, how well the forecasted probabilities match the observed frequencies. REL
is closely connected to the rank histograms, which measure whether the frequency of the
observations found in each ensemble bin is equal for all the bins [66]. The RES component
measures how much better a system performs compared to a climatological forecast, where
the climatological forecast is merely the single probability of an event as observed in the
historical dataset. In general, the resolution attribute of a system reflects how well the
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different forecast frequency classes can separate the different observed frequencies from
the climatological mean. The UNC component, which depends only on the observations,
measures the variability of the observations reflecting the predictability associated with the
available data set. More specifically, the CRPS can be expressed as CRPS = REL + CRPSPOT
where CRPSPOT is the potential CRPS and can be defined as CRPSPOT = UNC − RES.
The potential CRPS is the CRPS that could be obtained if a forecasting system becomes
perfectly reliable (REL = 0). For the details about mathematical formulations of the three
components, we direct the reader to [64].
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