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Abstract: NO3 radicals are one of the very important trace gases in the atmosphere. Accurate
measurements of NO3 can provide data support for atmospheric chemistry research. Due to the
extremely low content of NO3 radicals in the atmosphere, it is a challenge to accurately detect it.
In this paper, an incoherent broadband cavity-enhanced absorption spectrometer (IBBCEAS) with
high sensitivity is developed for measuring atmospheric NO3. The IBBCEAS absorption spectra of
NO3 in the range of 648–674 nm are measured. The concentration of NO3 is retrieved by fitting the
absorption cross-section of NO3 to the measured absorption coefficient using the least square method.
The interference absorption of water vapor is effectively removed by an iterative calculation of its
absorption cross-section. The detect limit of the spectrometer is analyzed using the Allan variance
and the standard variance. The NO3 detection limit (1σ) of the spectrometer is 1.99 pptv for 1 s
integration time, and improves to be 0.69 pptv and 0.21 pptv for 10 s and 162 s integration time,
respectively. The developed spectrometer with pptv level sensitivity is applied to the measurements
of the real atmospheric NO3 for verifying the effectiveness.

Keywords: NO3 radical; incoherent broadband cavity-enhanced absorption spectroscopy; high
sensitivity detection

1. Introduction

The ability of the atmosphere to load and remove trace gases is the focus of atmo-
spheric chemists. As a “cleaner” of the night atmosphere, NO3 radicals play an important
role in atmospheric chemistry [1,2]. Although the content of NO3 in the atmosphere is
extremely low, it determines the budget of some hydrocarbon substances at night, the
most representative of which are isoprene and terpene [3]. Moreover, NO3 radicals affect
the amount of NOx (NO and NO2) and VOCs at night and change the composition of
aerosols [4–6]. The oxidation reaction between NO3 and VOCs as well as organic sulfides,
together with the ozone decomposition of alkenes, is responsible for the generation and
circulation of OH radicals and peroxy radicals (HO2 + RO2) at night [7]. In addition, the
reaction of NO3 radicals with biological hydrocarbon will produce organic nitrate and
secondary organic aerosol [8].

In order to clearly understand the nocturnal chemical process of NO3 radicals, suf-
ficient and accurate atmospheric NO3 observation data must be available. Due to the
extremely low content of NO3 radicals in the atmosphere, the NO3 concentration varies
from several to hundreds of pptv at night [9], while the concentration is usually sub-pptv
in the daytime owing to NO3 photolysis. At the same time, NO3 radicals also have high
spatiotemporal characteristics, so it is very difficult to accurately detect them. Therefore, in
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order to realize the detection of NO3 radicals with high sensitivity and high time resolution,
the detection technology is very demanding.

Since Platt and Noxon et al. [10,11] used differential optical absorption spectroscopy
(DOAS) methods to measure NO3 radicals in the troposphere atmosphere for the
first time in 1980, many relevant research groups have developed long path DOAS tech-
nology to carry out measurements of NO3 radicals in different atmospheric environments
such as the land boundary layer [12], ocean boundary layer [13], urban area [14], and rural
and forest area [15]. In addition to DOAS technology, the methods for measuring NO3
radicals mainly include laser-induced fluorescence spectroscopy (LIF) [16], cavity ring-
down spectroscopy (CRDS) [17–19], and cavity-enhanced differential optical absorption
spectroscopy (CEDOAS) [20,21]. Although the long path DOAS method is the most widely
used, its measured NO3 concentration is the average concentration of NO3 distributed in
the absorption optical path. Due to the rapid spatiotemporal variation of NO3, it cannot
be guaranteed that NO3 is uniformly mixed at any time in the absorption optical path,
resulting in that the measurement results cannot truly reflect the concentration distribution
of NO3. Moreover, the long path DOAS method is subject to the weather and the measure-
ment location; for example, it cannot work in snowy or foggy days, nor can it work on
mobile platforms.

Incoherent broadband cavity-enhanced absorption spectroscopy (IBBCEAS) first pro-
posed by Fiedler et al. [22] provides a new idea and method for the measurement of
atmospheric NO3 radicals. First of all, IBBCEAS technology evolved from CRDS. It not only
retains the high sensitivity detection performance of CRDS, but also simplifies the complex-
ity of the CRDS device. Secondly, IBBCEAS technology uses an incoherent broadband light
source, for example xenon lamp and light emitting diode (LED), as the light source of the
measurement system, so it is a broadband absorption spectrum measurement technology.
It uses a spectrometer to disperse the outgoing light of the optical cavity, and then uses
CCD and other detectors to receive and convert the optical signal. The final result is a
broadband absorption spectrum (usually tens of nanometers width) containing a variety
of trace gas concentration information. That is, IBBCEAS technology can simultaneously
measure many kinds of atmospheric trace gases, which is completely different from the
single selective measurement of CRDS technology. Moreover, although the optical cavity
used by IBBCEAS technology is similar to the CRDS optical cavity, it does not need to
consider the mode matching, cavity length scanning or wavelength scanning when CRDS
uses laser as the light source, and the requirements for the stability of the cavity are not
very strict. Therefore, the IBBCEAS device is relatively simple and very suitable for field
measurements. In addition, the measurement based on IBBCEAS is almost unaffected
by the weather, and the measurement platform is considerably flexible, for example on
the ground, tower, vehicle, ship and airborne. Especially and importantly, NO3 radicals
measured by IBBCEAS technology are distributed in the point area, so it is easy to obtain
the high spatiotemporal concentration change information of NO3 radicals in the local
small-scale range. Other measuring instruments can be put together with IBBCEAS instru-
ments to measure the relevant gases at the same location. Because the gas distribution areas
measured by these instruments are the same, it is easy to combine their measurement data
to help researchers analyze the atmospheric chemical and physical processes occurring in
the measurement area.

In recent years, IBBCEAS technology has been widely used in the detection of gases
with above ppbv concentrations in the atmosphere, for example NO2 [23–33],
HONO [28–36], HCHO [36,37], CHOCHO [38–42], SO2 [43], and halogen oxides [44–47].
However, for the measurement of atmospheric NO3 radicals which have concentrations at
the pptv level in the atmosphere, three orders of magnitude lower than ppbv, only a few
studies have reported the application examples of IBBCEAS technology. For example, Ven-
ables et al. [48] measured the absorption of NO3 in the range of 645–675 nm using IBBCEAS
technology with a xenon lamp as the light source. The detection sensitivity of NO3 reached
4 pptv in the spectrum acquisition time of 1 min, but they measured the NO3 generated
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by the reaction of NO2 and O3 in an atmospheric simulation chamber, not the NO3 in the
actual atmosphere. Subsequently, they established an open optical path IBBCEAS device
with a long optical cavity (cavity length of 20 m) for measuring NO3, NO2 and aerosol
extinction [49]. The detection sensitivity of NO3 reached 2 pptv in the spectrum acquisition
time of 5 s; however, the measurement object was still a simulated atmosphere. Similarly,
Yi et al. [50,51] and Wu et al. [52] used the IBBCEAS to implement the measurements of
NO3 in the atmospheric simulation chamber. Langridge et al. [53] developed an LED light
source-based IBBCEAS instrument to measure NO3 radicals (including NO3 generated by
the thermal decomposition of N2O5) in the marine boundary layer during the RHaMBLe
field campaign at Roscoff, France. The detection sensitivity reached 0.25 pptv when the
acquisition time was 10 s. Shortly afterwards, they carried out the observation experiments
of NO3, N2O5 and NO2 using an airborne platform-based IBBCEAS instrument [54]. The
observation results verified that IBBCEAS technology can realize the rapid measurement
of atmospheric trace gases as well as obtain high spatiotemporal concentration change
information of NO3 radicals. Additionally, Nam et al. [55] developed an IBBCEAS spec-
trometer for simultaneous measurements of ambient NO3, NO2 and H2O. Wang et al. [56]
developed a red LED-based IBBCEAS instrument for measuring the sum of NO3 and
N2O5 in a polluted urban environment. The NO3 detection limit was about 2.4 pptv and
1.6 pptv for the acquisition time of 1 s and 30 s, respectively. Measuring the absorption of
the sum of NO3 and N2O5 is easier than measuring that of NO3 alone. Moreover, they used
a NO titration method to remove the absorption structure of water vaper. Duan et al. [57]
developed a similar IBBCEAS instrument for measuring ambient NO3 in Hefei city, China.
The average concentration of the measured NO3 was ~11.6 pptv at night and the NO3
detection limit was about 0.75 pptv for the acquisition time of 10 s. They used the measured
spectrum in the daytime as the reference spectrum to reduce the absorption interference
of water vapor. However, whether using NO titration or a daytime reference spectrum
to remove the interference of water vapor, it virtually leads the IBBCEAS instrument to
lose the ability of the simultaneous measurement of other trace gases, for example NO2,
thus losing the advantages of IBBCEAS technology in broadband measurement over CRDS
technology. In addition, Suhail et al. [58] and Wang et al. [59] used open path incoherent
broadband cavity-enhanced absorption spectroscopy (OP-IBBCEAS) to detect NO3 radicals
in the atmosphere. However, the detection sensitivity of NO3 deteriorates due to un-
avoidable aerosol extinction, which leads to a larger detection limit compared with closed
path IBBCEAS.

In this paper, we develop an IBBCEAS instrument with pptv level sensitivity for
measuring atmospheric NO3. The main contributions of this work include the follow-
ing. (1) The improvement of the detection limit for NO3 by designing the mechanical
assembly, based on a four-rod cage system, is made. Mechanical assembly and high reflec-
tivity mirrors make the optical path length up to 7.6 km even if the cavity length is only
50 cm, which ensures the measurement sensitivity of the instrument. (2) Our instrument has
the ability to simultaneously measure multiple species, i.e., NO3, NO2 and H2O, because
the interference absorption of water vapor is effectively removed by iteratively calculating
its cross-section instead of using the reference spectrum recorded in the daytime or using
the NO titration method. (3) The NO3 detection limit (1σ) of our instrument is improved
to be 0.69 pptv for the integration time of 10 s, which is lower compared with the existing
IBBCEAS instruments which have a hardware configuration similar to that of our instru-
ment. The improvement of the instrument performance depends on the optical path design,
mechanical assembly and certainly high reflectivity of cavity mirrors.

The rest of this paper is organized as follows. Section 2 introduces the IBBCEAS
principle and instrument. Section 3 describes the calibration of the mirror reflectivity and
the calibration of the effective cavity length. Section 4 shows the spectrum retrieval, and
discusses the transmission efficiency of NO3, the stability, uncertainty and detection limit of
the instrument as well as real applications. Finally, Section 5 summarizes the conclusions.
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2. The Principle and Instrument
2.1. The Principle of IBBCEAS

IBBCEAS technology uses an optical cavity for letting the incident light to form
multiple reflections in the cavity to increase the optical path and thus improve the detection
sensitivity. Fiedler et al. [22] described the principle of quantifying trace gas concentrations
with IBBCEAS. The absorption coefficient of the measured gases can be expressed as:

α(λ) = ∑
i

σi(λ)Ni =

(
I0(λ)

I(λ)
− 1
)
× 1 − R(λ)

d
(1)

where σi(λ) and Ni are the absorption cross-section and the number density for species
i, respectively, α(λ) is the absorption coefficient of the measured gases, d is the optical
cavity length, R(λ) is the reflectivity of cavity mirrors, and I(λ) and I0(λ) are the measured
spectra with and without absorbing species in the cavity, respectively. The number density
of the measured objects can be retrieved by fitting the absorption cross-sections to the
absorption coefficient.

2.2. The IBBCEAS Instrument
2.2.1. Optical Layout

The schematic diagram of the IBBCEAS instrument is shown in Figure 1a. The in-
strument is composed of a red light emitting diode (LED), two lenses, two plane-concave
mirrors, a spectrometer and a gas cell. The core of the instrument is the optical cavity that
is formed by plane-concave mirrors M1 and M2. M1 (or M2) has high reflectivity and the
calibrated reflectivity by the manufacturer is more than 0.9999 within 640–680 nm. The
diameter and radius curvature of the high reflectivity (HR) mirror are 25 mm and 1 m,
respectively. The distance between M1 and M2, i.e., the optical cavity length, is 50 cm. In
order to avoid being contaminated by the measured sample, both mirrors M1 and M2 are
continuously purged by clean nitrogen flow. The red LED, which has a center wavelength
of 660 nm at 20 °C and full width at half maximum (FWHM) of 26 nm, is regarded as the
light source for exciting the optical cavity. Considering the influence of working current and
temperature on the stability of the emitting spectrum, the red LED is driven by a constant
current of 1000 mA. In addition, a thermoelectric cooler with a control unit is used to keep
the LED temperature stable at 25 °C. The reason why the LED temperature is selected to be
stable at 25 °C is that its center wavelength can match with the absorption peak wavelength
of NO3 (~662nm) by increasing the LED temperature. The lens L1 (f = 20 mm, diameter
= 25 mm) is used to collimate the red light into the optical cavity. The light exiting from
the optical cavity is focused by another lens, i.e., L2 (f = 50 mm, diameter = 25 mm), on
one end of a fiber while the other end is connected to a spectrometer. The diameter and
numerical aperture (NA) of the fiber are 400 µm and 0.22, respectively. The spectrometer is
from Ocean Optics in the USA and the type is QE65Pro, of which the entrance slit width,
line density of the diffraction grating and spectral resolution in the wavelength range of
640–720 nm are 200 µm, 1800 mm−1 and 0.9 nm, respectively. The detailed specifications
of all the optical components used in the IBBCEAS instrument are listed in Table 1. The
mechanical assembly of the instrument is based on a four-rod cage system as shown in
Figure 1b, which ensures the collimation and stability of the optical path.
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Figure 1. The schematic diagram and photograph of the IBBCEAS instrument. (a) The schematic
diagram of the IBBCEAS instrument; (b) a photograph of the instrument. The mechanical assembly
is based on a four-rod cage system.

Table 1. The specifications of the optical components used in the IBBCEAS instrument.

Components Type (Manufacturer) Specification Description

LED LZ1-10R200 (LED Engin)
Center wavelength: 660 nm at 20°C;

optical power: 830 mW with working
current of 1 A; FWHM: 26 nm.

HR mirror M1 and M2 102116 (Layertec GmbH) Reflectivity>0.9999 at 640–680 nm;
diameter: 25 mm; radius curvature: 1 m.

Lens L1 AL2520-A (Thorlabs) Diameter: 25 mm; f = 20 mm; NA = 0.54.
Lens L2 AL2550-A (Thorlabs) Diameter: 25 mm; f = 50 mm; NA = 0.23.

Spectrometer QE65Pro (Ocean Optics)

Working wavelength: 640–720 nm;
entrance slit Width: 200 µm; spectral
resolution: 0.9 nm; line Density of the

diffraction grating: 1800 mm−1.

2.2.2. Gas Flow System

The schematic diagram of the IBBCEAS instrument gas flow system is shown in
Figure 2. The flow system is designed for calibrating the mirror reflectivity and the
effective cavity length, purging the HR (M1, M2) and sampling the ambient air. The flow
system consists of one aerosol filter, six valves (V1-V6), three mass flow controllers (MFC1,
MFC2 and MFC3), one sample cell, one pressure meter, one temperature and humidity
meter, three kinds of gases (N2, He and NO2/N2), one gas pump and a certain number of
perfluoroalkoxy alkanes (PFA) tubes. The sample cell (exclude connectors at both ends) is
one 35 cm long PFA tube, with inner and outer diameters of 10 mm and 12 mm, respectively,
and is enclosed by a stainless tube, as shown in Figure 1b.

The diameters of the purging and sampling gas hole are 3 mm and 5 mm, respectively.
Before pumping the ambient air into the sample cell, the mirror reflectivity and the effective cavity
length often need to be calibrated (details of how to calibrate are given in Sections 3.1 and 3.2).
When calibrating the mirror reflectivity or the effective cavity length, both purge flow (blue
arrow) and sample flow (red arrow) remain impassable by turning off MFC1 and MFC2,
and closing V6. When sampling the ambient air, the calibration flow (green arrow) stops
working (by closing V2 and V3), but the purge flow needs to be open. The flow rates of the
sample and purge flow are 2 SLPM (standard liter per minute) and 0.2 SLPM, respectively.
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denotes N2 purge gas flow to prevent HR (M1, M2) from particle contamination. The green arrow
denotes calibration gas flow for determining the mirror reflectivity and the effective cavity length.
The red arrow denotes sample gas flow, namely the measured ambient air.

3. Calibration
3.1. Calibration of the Mirror Reflectivity

Calibrating the mirror reflectivity is a very import procedure for incoherent broad-
band cavity-enhanced absorption spectroscopy. According to Equation (1), the absorption
coefficient of the measured gases can only be obtained if the mirror reflectivity, R(λ), is
known. In our previous work [26], we make use of the difference of Rayleigh scattering
cross-sections between high-purity nitrogen and helium to calibrate the mirror reflectivity.
In this paper, we still use this method to obtain the profile of the mirror reflectivity. As
shown in Figure 3, open V1, V2 and MFC3, and close the remaining valves and MFCs. The
sample cell is flushed with nitrogen with a purity of 99.999% with a flow rate of 2 SLPM.
Measure the intensity of the transmitted light and record it as IN2(λ). Next, open V3, V4
and MFC3, and close the remaining valves and MFCs. The sample cell is flushed with
helium with a purity of 99.999% with a flow rate of 2 SLPM. Measure the intensity of the
transmitted light and record it as IHe(λ). The relative mirror reflectivity can be obtained
according to the following equation [41]:

R(λ) = 1 − d ×
IN2 (λ)

IHe(λ)
αN2

Ray(λ)− αHe
Ray(λ)

1 − IN2 (λ)

IHe(λ)

(2)

where αN2
Ray(λ) and αHe

Ray(λ) are the Rayleigh scattering extinction coefficient of nitrogen

and helium, respectively, and d is the cavity length. αN2
Ray(λ) is equal to the product of

nitrogen purity and nitrogen Rayleigh scattering cross-sections [60]. Additionally, αHe
Ray(λ)

is equal to the product of helium purity and helium Rayleigh scattering cross-sections [61].
Because ref. [60] and [61] only provided Rayleigh scattering cross-sections of nitrogen and
helium at a specific wavelength, respectively, Rayleigh scattering cross-sections, σRay(λ), is
interpolated to obtain cross-section values over the region of interest based on wavelength
dependence to an expression ( σRay(λ) ∼ λ−4.082).
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Figure 3. The measured absorption spectra when the sample cell is flushed with nitrogen and helium
both with purity of 99.999%, respectively.

Figure 3 shows the measured absorption spectra of high-purity nitrogen and helium,
namely IN2(λ) and IHe(λ). It can be seen that there is a distinct differentiation between
IN2(λ) and IHe(λ), which is owing to the fact that the Rayleigh scattering cross-sections of ni-
trogen (10−27 cm2/molecule level) is much larger than that of helium (10−29 cm2/molecule
level) in the range of 640–690 nm.

According to Equation (2), we use IN2(λ) and IHe(λ) in Figure 3 to calculate the mirror
reflectivity. Figure 4 shows the calibrated mirror reflectivity as well as the cavity loss.
The black line is the calculated mirror reflectivity and the red line is the cubic polynomial
fitting curve of the calculated mirror reflectivity. There is a maximum mirror reflectivity of
0.999934 at the wavelength of 665 nm. The orange line is the calculated cavity loss, namely
(1 − R(λ))/d, and the green line is the cubic polynomial fitting curve of the calculated
cavity loss. There is a minimum cavity loss of 1.31 × 10−6 cm−1 at the wavelength of
665 nm, which corresponds to the optical path length of 7.6 km.
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and the corresponding cavity loss and optical path length are 1.31 × 10−6 cm−1 and 7.6 km, respectively.

3.2. Calibration of the Effective Cavity Length

The effective cavity length, deff, denotes the cavity length occupied by the sampling
gases. At two ends of the cavity, we design a continuous purge gas flow to prevent the
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sampling gases from contaminating HR mirrors. The effective cavity length therefore is
usually shorter than the distance d (d is 50 cm in our instrument) between two HR mirrors,
and longer than the distance ds (ds is 40 cm in our instrument) between the sample inlet
and outlet. In order to calibrate the deff, with and without purge gas flow, we pump a NO2
standard gas of 500 ppbv into the cavity, respectively. Measure the respective absorption
spectrum and then retrieve the NO2 concentration by fitting NO2 cross-sections (obtained
by the convolution of high-resolution NO2 cross-sections from ref. [62] with the instrument
function of the spectrometer) to the measured absorption coefficient based on Equation (1),
recording the retrieved NO2 number density as Npurge on

NO2
and Npurge off

NO2
, respectively. The

deff is determined by the following equation:

deff = d ×
Npurge on

NO2

Npurge off
NO2

(3)

Figure 5a shows the fitting example of NO2 standard gas when the purge gas flow is
on. The resulting number density of NO2 is 455 ppbv. Figure 5b shows the measurement
results of NO2 standard gas including the results with and without purge gas flow. The
averages of Npurge on

NO2
and Npurge off

NO2
are 457 ppbv and 491 ppbv, respectively. The calculated

deff is ~46.5 cm.
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Figure 5. Calibration of the effective cavity length. (a) An example of fitting one absorption spectrum
of NO2 standard gas. The resulting number density of NO2 is 455 ppbv; (b) the measurement results
of NO2 standard gas including the results with and without purge gas flow.

4. Results and Discussion
4.1. Spectrum Retrieval

The number density of NO3 radicals is retrieved from the measured spectra by the
least squares fitting technique. The determination of the spectral fitting window is of
importance for broadband absorption spectroscopy. After repeated testing and comparison,
the range of 648–674 nm is regarded as the optimal fitting window. In addition to the
absorption of NO3, there are the absorptions of other gases, for example NO2 and water
vapor, in the wavelength range of 648–674 nm. Hence, the measured absorption coefficient
can be approximated as:

α(λ) = σNO3(λ)NNO3 + σNO2(λ)NNO2 + σH2O(λ)NH2O (4)

where σNO3(λ), σNO2(λ) and σH2O(λ) are the cross-sections of NO3, NO2 and water vapor,
respectively, and NNO3 , NNO2 and NH2O are the number density of NO3, NO2 and water
vapor, respectively.
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Before the spectral fitting procedure starts, σNO3(λ), σNO2(λ) and σH2O(λ) must be
determined. σNO3(λ) is determined by the convolution of high-resolution NO3 cross-sections
from ref. [63] with the instrument function of the spectrometer. Additionally, σNO2(λ) is
determined by the convolution of high-resolution NO2 cross-sections from ref. [62] with the
instrument function of the spectrometer. However, the water vapor’s absorption lines in the
4v + δ polyad have pressure-broadened half-widths of only 0.1 cm−1, which correspond to
~0.008 nm FWHM at 652 nm [64]. It means that the convolution method is inapplicable to
get σH2O(λ) due to the fact that the resolution of our spectrometer (is 0.9 nm FWHM), far
lower compared with the width of the water vapor’s absorption lines. In this paper, we use
iterative calculation to obtain the effective cross-sections of water vapor. This method was
also used by Kennedy et al. [54]. Figure 6 shows the procedure of iterative calculation for
obtaining the effective σH2O(λ).
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As shown in Figure 6, the procedure of an iterative calculation for obtaining the
effective cross-sections of water vapor is as follows:

Step 1: Prepare the measured (reference and absorption) spectra and calibrated mir-
ror reflectivity as the input of iterative calculation. The high-resolution cross-section of
water vapor, σHR

H2O(λ), is calculated using the line-by-line parameters from the HITRAN
database [65] as well as combining with the measured pressure and temperature inside
the cavity.

Step 2: The low resolution I0(λ) and R(λ) are converted into the high resolution
IHR
0 (λ) and RHR(λ) by applying interpolation.
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Step 3: The high resolution absorption spectrum of water vapor, IHR
H2O(λ), is calcu-

lated using the measured concentration of water vapor, nH2O, according to the follow-
ing equation:

σHR
H2O(λ)× nH2O =

(
IHR
0 (λ)

IHR
H2O(λ)

− 1

)
× 1 − RHR(λ)

d
(5)

Step 4: The low resolution absorption spectrum of water vapor, IH2O(λ), is obtained
by convolving the IHR

H2O(λ) with the instrument function of the spectrometer.
Step 5: The effective cross-section of water vapor, σH2O(λ), is calculated according to

the following equation:

σH2O(λ)× nH2O =

(
I0(λ)

IH2O(λ)
− 1
)
× 1 − R(λ)

d
(6)

Step 6: Perform the spectral fitting according to Equations (1) and (4).
Step 7: Evaluate whether the error of the resulting water vapor concentration reaches

the desired value. If yes, end the iterative calculation. Otherwise, back to step 3. In
step 3, the nH2O is replaced by the water vapor concentration obtained from the previous
spectral fitting.

Figure 7 shows an example of fitting one absorption spectrum measured in an ambient
atmosphere. The acquisition time of the measured spectrum is 5 s, corresponding to the
average of ten spectra and the exposure time of 500 ms for each spectrum. The black line
in Figure 7a is the observed absorption coefficient including the absorption information
of NO3, NO2, water vapor and other unknown species, and the red line is the fitted
absorption coefficient. Figure 7b–d show the fitting results of NO3, NO2 and water vapor,
respectively. It can be seen from Figure 7b that the absorption of NO3 is obviously observed
by our developed instrument. The resulting number density of NO3 is 41.4 pptv and the
fitting uncertainty is 1.6 pptv. Moreover, the absorption of NO2 is observed as shown
in Figure 7c, which means that our instrument fully exploits the ability of broadband
absorption spectroscopy to detect multiple species. Figure 7d shows that the interference
absorption of water vapor in the measured spectrum has been effectively removed, which
demonstrates the effectiveness of iteratively calculating the absorption cross-section of
water vapor. Figure 7e shows the total fitting curve of the absorption coefficient including
the second-order polynomial. The fitting residual is shown in Figure 7f and the standard
deviation of the residual is 1.97 × 10−9 cm−1.
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Figure 7. An example of fitting one absorption spectrum measured in ambient atmosphere. The
absorption spectrum is recorded with an acquisition time of 5 s (exposure time of 500 ms, 10 times
average). (a) The observed (black line) and fitted (red line) absorption coefficient; (b) the observed
(black line) and fitted (red line) NO3 absorption. The number density of NO3 is 41.4 ± 1.6 pptv;
(c) The observed (black line) and fitted (red line) NO2 absorption. The number density of NO2 is
86.2 ± 5.1 ppbv; (d) the observed (black line) and fitted (red line) H2O absorption. The number
density of H2O is 0.15%; (e) the total (black line) and fitted (red line) absorption coefficient, as well as
the second-order polynomial; (f) residual spectrum with a standard deviation of 1.97 × 10−9 cm−1.

4.2. Transmission Efficiency of NO3

The wall loss and filter loss will deteriorate the transmission efficiency of NO3. The
inlet and the sample cell in our instrument are constructed of a PFA tube. The inner
diameter of the PFA tube is similar to that of the PFA tubes used in ref. [56] and in our
previous work of measuring NO3 and N2O5 using CRDS [66]. According to the wall loss
reported in refs. [56,66], we estimate the wall loss to be (20 ± 5%). The filter loss has been
determined in our previous work [66], and is (17 ± 5%) for a clean filter while it increases
to (19 ± 5%) for a used filter for 2 h. Overall, the transmission efficiency of NO3 is about
(66 ± 8%) for a new filter. During the measurement process, we replace the filter every 2 h.

4.3. Stability, Uncertainty and Detection Limit Analysis

The stability of an instrument influences its sensitivity. Theoretically, high sensitivity
can be achieved by signal averaging with a sufficient number of times. However, it is
not true that the more the average number of times, the higher the sensitivity. In fact, a
detection system only remains stable for a certain period of time. In this paper, we use
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the Allan variance method to determine the optimal integration time of the IBBCEAS
instrument. Moreover, standard variance is used to determine the detection limit for NO3.

A data set about absorption spectra is created using 6000 consecutive measurements of
I(λ) when the sample cell is flushed with nitrogen (integration time of 1s each measurement,
the total measurement time of 1.67 h). This data set is processed to produce a time series
of spectra averaged over integration times ranging from 1 to 1000 s. In other words, we
get a series of M = 6000 spectra with an integration time of 1 s, a series of M = 3000 spectra
with an integration time of 2 s, and so on. The reason for determining the maximum
integration time of 1000 s is to ensure that each series of spectra contain at least six averaged
spectra. Each series of absorption coefficients are calculated according to Equation (1), and
then individual series of the NO3 number density are obtained by fitting the cross-section
of NO3 to these absorption coefficients. The Allan variance,σ2

A(tav), and the standard
variance, σ2

S (tav), of each time series can be expressed as:

σ2
A(tav) =

1
2(M − 1)

×
M−1

∑
i=1

(ni+1(tav)− ni(tav))
2 (7)

σ2
S (tav) =

1
M − 1

×
M

∑
i=1

(ni(tav)− µ)2 (8)

where ni(tav) for i = 1 to i = M is the NO3 number density in the time series of a given
integration time, tav, and µ is the average value of the NO3 number density of the whole
time series.

The square root of the Allan variance, named the Allan deviation σA(tav), provides an
indication of an instrument’s stability [67]. The red line in Figure 8a plots the relationship
between the Allan deviation and the integration time. It can be observed that the Allan
deviation decreases rapidly as the integration time increases from 1 s to 162 s. After the
integration time is longer than 162 s, the Allan deviation begins to increase gradually, which
indicates that further increasing the integration time does not improve the sensitivity of the
instrument because it is difficult to ensure that the LED emission spectrum keeps stable for
a long time. In order to reduce the influence of the variation in the LED emission spectrum
on the instrument, it is advisable to measure a new reference spectrum I0(λ) the optimal
integration time (162 s) later when the instrument works in the field campaign. Figure 8b
shows the time series of NO3 concentration (number density) for the integration time of 1 s,
10 s and the optimum (162 s). It can be evidently seen that the peak-to-peak of the NO3
concentration decreases with the increase of the integration time, which indicates the noise
can be effectively reduced by averaging spectra due to the fact that white noise dominates
in the noise for tav < 162 s.
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Figure 8. Allan variance and standard variance for analyzing the stability and the detection limit
of the IBBCEAS instrument. (a) The Allan deviation (red line) and the standard deviation (black
line) for different integration times; (b) the time series of NO3 concentration (number density) for
the integration time of 1 s (black line), 10 s (red line) and 162 s (blue line); (c) the histogram analysis
of the time series of NO3 concentration for the integration time of 1 s. The detection limit of 1σ is
1.99 pptv; (d) the histogram analysis of the time series of NO3 concentration for the integration time
of 10 s. The detection limit of 1σ is 0.69 pptv; (e) the histogram analysis of the time series of NO3

concentration for the integration time of 162 s. The detection limit of 1σ is 0.21 pptv.

The square root of the standard variance, named the standard deviation σS(tav),
provides an indication of an instrument’s detection limit [18,67] for a given integration
time. The black line in Figure 8a plots the relationship between the standard deviation and
the integration time. In the regime of white noise absolutely dominating in the noise (for
tav < 5 s), the standard deviation and the Allan deviation are almost equivalent, but there
is a considerable difference between them for tav > 5 s. Figure 8c–e show the histogram
analysis of the time series of NO3 concentration (number density) for the integration time
of 1 s, 10 s and the optimum (162 s), respectively. The detection limit of the instrument is
1.99 pptv (1σ) for the 1 s integration time, and improves to be 0.69 pptv (1σ) and 0.21 pptv
(1σ) for the 10 s and 162 s integration time, respectively. Table 2 shows the comparison
of our instrument’s detection limit with that of other instruments. Compared with the
IBBCEAS instruments (for example, developed in refs. [56,57]) with the similar hardware
configuration to our instrument, the detection limit of our instrument is lower.
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Table 2. Comparison of our instrument’s detection limit (1σ) with that of other instruments.

Reference Method Wavelength Range Maximum Mirror
Reflectivity

Detection Limit of NO3

Ref. [16] LIF 659–663 nm - 76 pptv (60 s)
Ref. [17] CRDS 661.85 nm ~0.999985 1.6 pptv (10 s)
Ref. [18] CRDS ~662 nm ~0.999985 0.8 pptv (25 s)
Ref. [19] CRDS 662.08 nm ~0.999985 2.3 pptv (2.5 s)
Ref. [20] CEDOAS 650–675 nm ~0.999985 6.5 pptv (300 s)
Ref. [56] IBBCEAS 640–680 nm ~0.999936 2.4 pptv (1 s), 1.6 pptv (30 s)
Ref. [57] IBBCEAS 655.5–668 nm ~0.999930 1.15 pptv (4 s), 0.75 pptv (10 s)
Ref. [58] OP-IBBCEAS 658–668 nm ~0.999 36 pptv (600 s)
Ref. [59] OP-IBBCEAS 650–670 nm ~0.999850 1.5 pptv (30 s)

Our work IBBCEAS 648–674 nm ~0.999934 1.99 pptv (1 s), 0.69 pptv (10 s)

The uncertainty of the instrument mainly comes from the uncertainty of the NO3
cross-section (10%), the uncertainty of the mirror reflectivity (5%), the uncertainty of the
effective cavity length (6%) and the uncertainty of the transmission efficiency of NO3 (8%).
According to the error transfer rule, the uncertainty of our instrument for measuring NO3
is estimated to be 15%. It should be noted that it will lead to a large fitting uncertainty if the
accurate water vapor concentration cannot be retrieved because the absorption structure of
water vapor has not been effectively removed from the measured absorption coefficient.

4.4. Atmospheric NO3 Measurement

The developed instrument is applied to the measurements of real atmospheric NO3
to further verify its usefulness. The instrument is placed in a laboratory on the second
floor of Anhui University of Science and Technology. The air sampling point is ~3 m high
from the ground. A 1.5 m long PFA tube for sampling air connects to one end of the filter
and the other end connects to the inlet of the sample cell. The flow rate of sampling air is
set as 2 SLPM. The filter is replaced by a new one every two hours. The measurement of
atmospheric NO3 was implemented from 19:00 on 16 January to 05:00 on 17 January in 2023,
and the total measurement time is 10 h, corresponding to 7200 absorption spectra (5 s each
spectrum). Figure 9 shows the time series of the measured atmospheric NO3 concentration,
corrected by the transmission efficiency of NO3, and shows the estimated uncertainty. The
number density of atmospheric NO3 ranges from −0.6 pptv to 44.2 pptv. The negative
concentration is meaningless, which indicates the measured NO3 concentration is close to
the detection limit of the instrument.
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In addition, the concentrations of NO2 and H2O are simultaneously retrieved for
accounting for the advantage of the broadband technique. Figure 10a,b show the concen-
trations of NO2 and H2O, respectively.
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In this paper, a pptv level incoherent broadband cavity-enhanced absorption spec-
trometer is developed for the measurement of atmospheric NO3. With a cavity length
of 50 cm, the optical path reaches 7.6 km, and the NO3 detection limit of the developed
instrument improved to be 0.69 pptv for the integration time of 10 s. Iteratively calculating
the cross-section of the water vapor to remove its absorption interference ensures the
instrument’s ability of simultaneous measurement of multiple species. The application
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