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Abstract: Understanding the impact of climate change on runoff and its extremes is of great signif-
icance for water resource assessment and adaptation strategies, especially in water-scarce regions.
This study aims to analyze the impact of future climate change on runoff and its extremes in the upper
reaches of the Heihe River basin in northwest China. The projected runoff was derived using the
Soil Water Assessment Tool with climate data from the CSIRO-MK-3-6-0 model under the scenario of
RCP4.5, and a frequency analysis of runoff was performed by generalized extreme value distribution.
The results indicate that, compared with the baseline period of 1961 to 2000, the minimum and
maximum temperatures in the period 2031 to 2070 were predicted to increase by 2.5 ◦C on average.
The precipitation in most months was also predicted to increase, with an average rise of 16.5%. The
multi-year average runoff was projected to increase by 8%. The annual mean and extreme flows were
also expected to rise under future climate change at different return periods, and the low flow was
expected to increase the most.

Keywords: runoff; high flow; low flow; climate change; return period

1. Introduction

The Heihe River basin (HRB) is the second largest inland river basin in northwest
China. Water scarcity is one of the critical problems that the basin has to face. Under
warming climate conditions, the total runoff over the upper stream has been observed to
increase over the past 60 years (1958–2014) [1]. It increased by 30.5% during the period
from 1964 to 2013 [2] and by 6.1 mm per decade during the period from 1980 to 2010 [3].
Meanwhile, the levels of extreme runoff have also changed. For example, flood events in the
upper catchment have increased, while low-water events have decreased [4,5]. Specifically,
from 1960 to 2014, Cheng et al. (2020) found that extreme floods in the upstream areas
showed an increasing trend, whereas the extremely low water showed a decreasing trend [4].
Such changes in runoff extremes necessitate changes in local water resources management,
flood control, and disaster reduction strategies.

Under future climate change conditions, whether the risk of water resource short-
ages changes, continues, or declines is still a matter of great concern. We summarized
some related studies focusing on runoff responses to future climate change. For example,
Wu et al. (2015) concluded that the water yield would increase by 9.8% as a result of climate
change during the period 2006–2030 [6]. Zhang et al. (2016) reported that 11.4% and 12.5%
increases in runoff are projected to occur under scenarios RCP4.5 and RCP8.5, respectively,
in the near future [7]. Li et al. (2020) found that the projected precipitation during 2021–2050
and 2051–2080 would produce a 5.6% and 6.7% increase in runoff, respectively [8]. In spite
of the great increase in attention given to future runoff, the responses of runoff extremes to
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future climate change are rarely addressed. Thus, the aim of this study is to focus on how
the total and extreme runoff varies and how the frequency of such events is expected to
change in the future under climate change in the upper catchment of the HRB, which will
provide insights for decision-makers attempting to mitigate the corresponding impacts.

One common way to study the impact of climate change on runoff is by using general
circulation models (GCM) combined with hydrological models. As far as we know, as many
as nearly 30 GCMs have been tested in this basin. Li et al. (2020) and Wang et al. (2020)
reported that in simulating the observed precipitation and temperature data from 1960
to 2005, the top three models for this basin are CSIRO-Mk3.6.0, CCSM4, and CanESM2,
respectively [8,9]. In the references of Yan et al. (2018) and Wang et al. (2019), a slightly
different ranking was found, with CNRM-CM5, MPI-ESM-LR, and MPI-ESM-MR being the
top three [10,11]. However, these models only evaluated their performance in terms of pre-
cipitation without considering temperature, which is another important GCM output and
is always used as a hydrological modeling input [10,11]. Consequently, the CSIRO-Mk3.6.0
model, ranked first by Li et al. (2020) and Wang et al. (2020) [8,9], is selected here to derive
the future climate scenario over the upper reach of the basin. As for hydrological modeling
tools, some typical models have been used in this basin, including SWAT [1–3,5–7,12–28],
WASMOD [28], PRMS [29], VIC [30], SRM [31], and GBEHM [32–34]. Among them, the
most widely used is the SWAT model, which is used in more than 75% [23] of the stud-
ies we identified, owing to its advantages of being open source, highly developed, more
flexible, etc., and this model has been widely applied in various basins worldwide.

The annual maximum series (AM) and the peaks over a threshold (POT) series are two
common measures of extreme events [35]. The POT series is regarded as more advantageous
than the AM series, especially in cases when only a short period of records is available, as
it provides more information about the extremes involved [36]. However, the fact that the
peaks over a certain threshold value in the POT series might not form an independent time
series can restrict its application in some cases. Li et al. (2016) stated that the estimated
return levels from the AM and POT series were quite comparable [37]. Rao and Hamed
(1999) found that when λ is small (e.g., λ < 1.65, λ is the mean number of peaks per year
included in the POT series), the AM series is statistically more efficient [38].

Frequency analysis is a critical aspect of water resources management and hydrological
design. As for the choice of a probability distribution for a given application, several
researchers have investigated the suitability of different probability distributions in different
applications [39–42]. However, most results show that the optimal probability distribution
varies across different regions. For example, the generalized normal distribution (GNO)
resulted in the best fit to flood flows in northern Tunisia, whereas the GNO and generalized
extreme value (GEV) distributions gave the best fit in central/southern Tunisia [40]. Log
perason III (LP3) and GEV performed similarly in estimating the return levels of floods
in southeast Australia [39] and ranked as the top two distributions in flood fitting in
Khwazakhela [42]. More recently, there has been an increased focus on the use of GEV
distributions worldwide. Gubareva et al. (2011) also compared different distributions in
fitting floods in rivers in Austria, Siberia, and the Far East and found that GEV showed a
clear predominance over others, such as Pearson III and Lognormal distributions, in all
regions with various climate conditions [41]. Based on these observations, GEV is selected
to fit the runoff series in this study.

The outline of the paper is as follows. The study area and data are described in
Section 2, and the methods used are described in Section 3. The future climate scenarios
and their corrections, the construction, evaluation, and prediction of the SWAT model, as
well as frequency analysis of future runoff, both in total and in extremes, are discussed in
Section 4, followed by the conclusions in Section 5.

2. Study Area and Data Description

The HRB has an arid continental climate. According to its terrain, the basin is divided
into the upper, middle, and lower reaches. The upper reach extends from Qilian Mountain
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to the Yingluoxia gorge (E98◦34′-101◦09′ and N 37◦43′-39◦06′) (Figure 1); it is the main
recharge area of the basin. The upper reach has an altitude of 2000-5500 m, an annual
average temperature of less than 2 ◦C, and an annual precipitation of 200–500 mm. The
middle and lower reaches contain few oases. The largest one is Zhangye oasis, located in
the middle reach, an important agricultural area in Gansu province. This area produces 35%
of the commercial grain of the province on 5% of the cultivated land (http://www.zhangye.
gov.cn/zjzy/lswh/202212/t20221204_950374.html (accessed on 2 December 2022)). The
number and areas of oases in the basin largely depend on the amount of water from the
upper reach. The availability of water resources in the basin is limited, and the water
resource system is fragile.
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Figure 1. Location of the upper reach of the Heihe River basin in China.

The data required for establishing the SWAT model include a digital elevation model
(DEM), and land use, soil, meteorological, and runoff data. Details on the data are listed
in Table 1. Meteorological and hydrological data include historical daily precipitation,
minimum and maximum temperatures, wind speed, sunshine hours, relative humidity,
and runoff from 1960 to 2014. The precipitation data are gridded data with a 3 km resolution.
Other meteorological data and runoff data were obtained from gauge observations. The
missing runoff data for 1988 and 1989 were interpolated by calculating the multi-year
average. Table 2 provides the location of the stations.

The prediction period was 2031 to 2070, and the predicted data were compared with
the data from the 1961 to 2000 baseline period. The meteorological data from 2031 to
2070 were obtained from the CSIRO-MK-3.6.0 model released by CMIP5 under the RCP4.5
scenario. The time scale was daily, and the resolution was 1.875◦ × 1.875◦.

http://www.zhangye.gov.cn/zjzy/lswh/202212/t20221204_950374.html
http://www.zhangye.gov.cn/zjzy/lswh/202212/t20221204_950374.html
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Table 1. Data used in the study and their sources and descriptions.

Data Type Data Source Spatial/Temporal
Resolution Description

DEM

The data set is provided by Geospatial Data
Cloud site, Computer Network Information

Center, Chinese Academy of Sciences.
http://www.gscloud.cn/ (accessed on

26 March 2021).

90 m Elevation

Land use https://doi.org/10.12078/2018070201
(accessed on 19 April 2021). 1 km The classification system

contains 7 categories

Soil type

https://www.fao.org/soils-portal/soil-
survey/soil-maps-and-databases/

harmonized-world-soil-database-v12/en/
(accessed on 19 April 2021).

1 km

Parameters in the soil
attribute database were

calculated using SPAW and
HWSD

Meteorological data http://data.cma.cn/site/index.html
(accessed on 19 April 2021). Daily Grid and gauge stations

Runoff data Hydrologic manual Monthly gauge station

GCM http://www.ceda.ac.uk (accessed on
25 June 2021). Daily CSIRO-MK-3.6.0

Table 2. Locations of meteorological and hydrological stations in the study area.

Station Type Station Name Longitude (◦) Latitude (◦)

Hydrological station Yingluoxia 38.82 100.18
Meteorological

station
Yeniugou 38.42 99.58

Qilian 38.18 100.25

3. Methods
3.1. Downscaling and Bias Correction of Future Climate Data

Since the horizontal grid distance of a GCM is usually hundreds of kilometers, it
is necessary to downscale the GCM to reduce the error. This study performed linear
interpolation using the interp3 function in MATLAB to resample the spatial resolution of
the CSIRO-Mk-3-6-0 model from 1.875◦ × 1.875◦ to 0.25◦ × 0.25◦.

The original GCM output data have been bias-corrected using the delta change ap-
proach; this approach is typically used in related studies [43,44]. Here, the precipitation
data derived from the GCM in the future period (2031–2070) and the baseline period
(1961–2000) were compared, and the percentage change was calculated. The result was
multiplied by the annual mean precipitation in the baseline period to obtain the change
in annual mean precipitation in the future. In contrast, we used the absolute change for
temperature. Detailed descriptions of the delta change approach can be found in Zhao and
Xu (2007) [45].

3.2. SWAT Model

The SWAT model is a distributed watershed hydrological model. It uses geographic
data to divide basins into sub-basins, and each sub-basin contains one or more hydrological
response units (HRUs). The model can simulate surface runoff using the soil conservation
service (SCS) curve or the Green and Ampt method. It uses degree days to estimate snow
accumulation and melting. SWAT-CUP is a program developed specifically for SWAT
model parameter calibration. It uses the Glue, Parasol, Sufi2, MCMC, and PSO methods.
We used SUFI2 for parameter sensitivity analysis and calibration. This method has a
short optimization time and is suitable for basins with relatively simple runoff changes.
The SUFI2 algorithm randomly generates a set of parameters through Latin-Hypercube
simulations and inputs them into the SWAT model to calculate the objective function.

Within the framework of AVSWAT 2015, the study area was divided into 11 sub-
basins and 113 HRUs based on the soil type, land use, and topography. The SCS curve

http://www.gscloud.cn/
https://doi.org/10.12078/2018070201
https://www.fao.org/soils-portal/soil-survey/soil-maps-and-databases/harmonized-world-soil-database-v12/en/
https://www.fao.org/soils-portal/soil-survey/soil-maps-and-databases/harmonized-world-soil-database-v12/en/
https://www.fao.org/soils-portal/soil-survey/soil-maps-and-databases/harmonized-world-soil-database-v12/en/
http://data.cma.cn/site/index.html
http://www.ceda.ac.uk
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method, Muskingum, and Penman–Monteith methods were used for surface runoff volume
estimation, flow routing, and potential evapotranspiration estimation, respectively. SWAT-
CUP was used for parameter sensitivity analysis, model calibration, and validation. Runoff
data from the Yingluoxia station from 1985 to 1989 were chosen as the warm-up period,
data from 1990 to 2005 were used for model calibration, and the last 9 years (2006–2014)
were used for validation.

The determination coefficient (R2) and the Nash–Sutcliffe efficiency coefficient (NSE)
were used to evaluate model performance. The equations are as follows:

NSE = 1− ∑T
t=1
(
Qt

o −Qt
m
)2

∑T
t=1

(
Qt

o −
−

QO

) (1)

R2 =


∑T

t=1

(
Qt

o −
−

QO

)(
Qt

m −
−

Qm

)
∑T

t=1

(
Qt

o −
−

Qo

)2

∑T
t=1

(
Qt

m −
−

Qm

)2

 (2)

where Qt
o and Qt

m are the observed and simulated values at time t, and T is the total time.
The R2 value range is [0, 1]. The larger the value of R2, the better the simulation result of
the model. The range of the NSE values is [−∞, 1]. The larger the value of NSE, the higher
the model reliability. An NSE value between 0 and 1 is generally considered an acceptable
performance level, and a value much smaller than 0 indicates poor model performance [46].
The closer the NSE and R2 values are to 1, the better the model performance. The model
performance ratings are listed in Table 3.

Table 3. Model performance evaluation criteria [46].

Performance Rating NSE R2

Very Good 0.75–1.00 0.75–1.00
Good 0.65–0.75 0.65–0.75

Satisfactory 0.50–0.65 0.50–0.65
Unsatisfactory <0.50 <0.50

3.3. Frequency Analysis

Since hydrological periodicity exists, and the λ value is small (it is estimated at 1.2
in this study), the AM series was selected to detect extreme events. The annual, monthly
maximum and minimum series were chosen and denoted as the high-flow and low-flow
series, respectively. This strategy ensured the full use of limited data and the independence
of the series.

The GEV distribution was selected to fit the mean and the high- and low-flow series in
this study because it is widely used. Equation (3) defines the probability density function
(PDF) for this distribution.

F(x) =


exp
[
−
(

1− k x−β
α

) 1
k
]

, k 6= 0

exp
[
−exp

(
− x−β

α

)]
, k = 0

(3)

where k, α, and β are the shape, scale, and position parameters, respectively.
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The theoretical return period of the runoff was obtained by calculating the quantile; it
was compared with the empirical return period. The quantile equation is:

XT =


β + α

k

[
1−

(
−ln

(
1− 1

λT

))k
]

, k 6= 0

β− αln
[
−ln

(
1− 1

λT

)]
, k = 0

(4)

where λ is the average crossover rate for many years and λ = n/N, where n is the sample
size and N is the total length of data. For the AM sequence, λ = 1.

The Kolmogorov–Smirnov (K-S) test and the Anderson–Darling (A-D) test were used
to test the goodness of fit of the GEV. The A-D test is an improvement of the K-S test; it
gives more weight to the tail of the distribution. The test rejects the assumption of a GEV
distribution if the test statistic is greater than the threshold at a given significance level.

4. Results
4.1. Future Climate Change

The meteorological data derived from the CSIRO-Mk3.6.0 model are compared with
the corresponding observations from 1961 to 2000 to ensure the accuracy of the meteorolog-
ical data predicted by the GCM. The results are shown in Figures 2 and 3.
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Many precipitation values are overestimated (Figure 2). The interannual distribution
shows that the values are overestimated in ten out of twelve months (except for September
and October), and only the data for September are underestimated (Figure 3). At the
seasonal scale, the multi-year average spring precipitation is 110.31 mm, which is overes-
timated by nearly 73%, and the multi-year average summer precipitation is 316.07 mm,
which is overestimated by 12%. The maximum temperature is underestimated (about 5 ◦C
on average), and the minimum temperature is overestimated (about 1.5 ◦C on average)
(Figure 2). At the inter-annual scale, only the maximum temperature in June and July
exhibits a good fit with the observations, whereas the data in the other months are substan-
tially underestimated. The minimum temperature shows a good fit with the observations
only in July and August, whereas the data are overestimated in the other months.

As shown in Figures 2 and 3, the bias-corrected data are much closer to the observations
than the uncorrected data. The multi-year average relative errors of the maximum and
minimum temperatures decrease substantially from 64% and 16% to less than 1% after
bias correction. The bias-corrected precipitation data are also more consistent with the
observations than the uncorrected data. The multi-year average relative error decreases
from 23% to 3%, indicating the advantage of bias correction.

The performance of the bias-corrected GCM in reproducing the extreme precipitation
at monthly scales (maximum monthly precipitation) is shown in Figure 4. Figure 4a
indicates that the extreme precipitation data derived from the GCM is generally consistent
with the observations, whereas the values are overestimated in some years (e.g., 1967, 1975,
and 1985). The multi-year average value (denoted by “�” in the box plot) is overestimated
by 13% (Figure 4b). After bias correction, the data are more consistent with the observations,
and the errors of the mean, median, and 75% quantile decrease from 13%, 18%, and 10% to
0.5%, 1.7%, and 5.3%. This result demonstrates that the performance of the bias-corrected
GCM in reproducing the extreme monthly precipitation was satisfactory.
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Figure 4. Extreme precipitation events before and after bias correction and historical observations.
(a) is a scatter plot, and (b) is a box plot.

The historical and future temperature and precipitation values derived from the
CSIRO-Mk3-6-0 model after bias correction are presented in the box plot in Figure 5,
showing the mean, median, upper and lower quartiles, upper and lower limits, and point
fitting results. The mean, maximum, and minimum temperatures and the upper and lower
quartiles and limits are higher in the future than historically (1961–2000). The maximum
and minimum temperatures are projected to increase by 2.4 ◦C and 2.6 ◦C, respectively,
on average. At the inter-annual scale, both temperatures are projected to rise in nearly
all months (Figure 6). The minimum temperature in March exhibits the largest increase
(about 3.0 ◦C), followed by February, April, May, July, and August, with increases of more
than 1.0 ◦C. The maximum temperature of each month is projected to rise steadily, with
increases of more than 2 ◦C in ten out of twelve months and less than 2 ◦C in October and
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November. These results indicate that the temperature rise will continue in the coming
decades, consistent with global climate warming.
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Figure 5. Box plot of historical and future temperatures and precipitation in the study area.
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Figure 6. Boxplot of inter-annual temperatures and precipitation in the historical and future periods
in the study area.

The future precipitation is also projected to increase compared to 1961 to 2000, with
an average increase of 16.5%. At the inter-annual scale, the largest increases occur in May,
January, and December (more than 50%), and decreases are observed only in September
and October (about 5%).

In summary, the future climate in the basin will likely be warmer and wetter than in
the historical baseline period, increasing the probability of extreme hydrological events in
the future.
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4.2. SWAT Model Performance

Figure 7 shows the hydrographs at the Yingluoxia station derived from AVSWAT2015
and SWAT-CUP, together with the errors of the simulated runoff. There is good consistency
between the calibration and validation periods. The major patterns of the hydrograph are
simulated accurately. The evaluation indicators are displayed in Figure 7. The NSE and R2

are greater than 0.80 in both periods. As shown in Table 3, the SWAT model shows a very
good performance in simulating the runoff series in the study area. In contrast to other
studies [5–7,12–28], a moderate performance is obtained in this study.
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Figure 7. Comparison of observed and simulated monthly runoff during the calibration and valida-
tion periods.

We extracted the high-flow and low-flow series (Figure 8). The relative errors range
from −31% to 29% for the high flows and from −44% to 91% for the low flows. The perfor-
mance of simulating the high flows and low flows is satisfactory. Figure 8b indicates that
the mean, median, and 25% and 75% quantiles of the high flows were underestimated by
3%, 6%, 3%, and 6%, respectively; however, the percentages are acceptable. The simulation
performance is inferior for the low flows; the mean, median, and 25% and 75% quantiles
were overestimated by 24%, 25%, 6%, and 39%, respectively. The model performance is
higher for high flows than for low flows.
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Figure 8. Comparisons of observed and simulated high flows and low flows. (a) is a scatter plot, and
(b) is a box plot.
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4.3. Projected Runoff and Extremes

The future runoff predicted by the validated SWAT model with the corrected input
data of future precipitation and temperature is shown in Figure 9. The annual mean runoff
from 2031 to 2070 is projected at 51 m3/s, which is 8% higher than in the baseline period.
The 25% and 75% quantiles are also projected to increase.
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Figure 9. Comparison of the projected runoff from 2031 to 2070 and the historical runoff from 1961
to 2000.

Figure 10 shows the inter-annual variability of the projected runoff. Similar to the
baseline period, the largest projected runoff will occur in summer (49%), followed by
autumn (20%), spring (18%), and winter (13%). The projected runoff differs in different
seasons and months and is expected to increase or decrease compared to the baseline period.
It is projected to increase the most in winter (88.5%), followed by spring (30.8%). However,
the runoff is predicted to decrease in some months in summer and autumn (September,
October, July, and August). The greatest decrease is projected to occur in September (18%),
which may be caused by the lower precipitation in this month, as shown in Figure 6.
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Figure 10. The inter-annual projected and historical runoffs in the study area.

The projected runoff extremes are also considered since they are more sensitive to
climate change at the regional scale. Figure 11 and Table 4 show the statistical results of the
projected high- and low-flow series. The mean value of the high-flow series is projected to
decrease slightly by 3%, the maximum value (229.3 m3/s) is predicted to increase by 13%,
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and the minimum value (67.15 m3/s) is predicted to decrease by 15%. The coefficient of
variation is projected to increase by 27%, indicating an increase in the degree of variation of
the high flows. The data suggest an increased flood risk during the wet season, resulting in
challenges in water resource allocation and management.
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Figure 11. Box plot of historical and future high flows and low flows.

Table 4. Statistical values of runoff.

Series Mean Flow High Flow Low Flow

Periods Baseline
1961–2000

Future
2031–2070

RC
(%)

Baseline
1961–2000

Future
2031–2070

RC
(%)

Baseline
1961–2000

Future
2031–2070

RC
(%)

Maximum 68.00 66.45 −2 202.60 229.30 13 16.08 26.60 65
Minimum 32.24 32.99 2 79.34 67.15 −15 9.20 20.20 120

Mean 47.62 51.28 8 138.88 134.15 −3 12.35 24.27 97
Std 7.11 7.92 11 30.62 37.14 21 1.76 1.50 −15

Median 46.97 50.79 8 138.60 129.45 −7 11.96 24.25 103
Range 35.76 33.46 −6 123.26 162.15 32 6.87 6.40 −7

Cv 0.15 0.15 0 0.22 0.28 27 0.14 0.06 −57

The mean and extreme values of the low flows are projected to increase substantially
compared to the baseline period, with percentages of 97%, 65%, and 120% for the mean,
maximum, and minimum values, respectively. The degree of variation tends to decrease
according to the coefficients of variation and standard deviation. This finding indicates a
higher availability of water resources in the dry season, reducing the potential of water
scarcity in the dry season in the future.

4.4. Results of Frequency Analysis of Projected Runoff and Extremes

The K-S test and A-D tests were used to evaluate the GEV distribution. The critical
values are 0.19 and 2.50 for the two tests, respectively, at the 0.05 significance level. If the
statistic value is lower than the critical value, the data set has a GEV distribution; otherwise,
it does not. Table 5 shows that all the statistic values are lower than the critical values,
indicating that the data series has a GEV distribution. The optimal parameter values of the
series are presented in the table.

Figure 12 shows the estimated return levels of the annual mean flow and the extremes.
The solid lines are for data with the theoretical GEV distribution, and the dots are from
data with the empirical distribution, which is calculated from P = i−0.44

n+0.12 , where i indicates
the order, and n indicates the length of data (i = 1, 2, . . . , n). The blue and yellow lines
represent the historical data and future estimations. It is notable that the annual mean flow
is expected to increase in the future at different return periods, e.g., 8.7% increases for a
5-year return level, 8.4% increases for a 10-year return level, and 7.8% increases for a 20-year
return level (Figure 13). These results suggest that water shortages will be alleviated in
the future.
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Table 5. Fitting results from GEV distribution.

Time series K-S A-D Parameter value

Annual flow
(1961–2000)

0.088 0.269 k = −0.18923 s = 6.66
m = 44.848

Annual flow
(2030–2070)

0.069 0.180 k = −0.2659 s = 7.9221
m = 48.402

High flow
(1961–2000)

0.077 0.218 k = −0.25261 s = 30.813
m = 127.4

High flow
(2030–2070)

0.130 0.490 k = −0.169 s = 34.249
m = 119.36

Low flow (1961–2000) 0.099 0.236 k = −0.19532 s = 1.7079
m = 11.646

Low flow (2030–2070) 0.075 0.260 k = −0.47249 s = 1.5974
m = 23.883
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Compared to the baseline period, the return levels of the high flows are expected to
increase over a 10-year return period, with 3.9%, 5.1%, 6.6%, and 8.4% increases in the
20-year, 30-year, 50-year, and 100-year return periods (Figure 13), respectively, suggesting
that the high flows will be more extreme, i.e., for a given return level of high flows, the
return period will become shorter. For instance, the return period for a 200 m3/s high flow
was 37 years during the historical period and will be 21 years in the future. These results
indicate that this area will experience more flooding in the future, resulting in increased
challenges related to local flood control.
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In addition, much more low flows are expected in the future. For instance, the low flow
for the 20-year return period is 9.56 m3/s in the baseline period; it increases to 21.54 m3/s
in the future, a more than two-fold increase. The low flow for the 100-year return period
is expected to exceed 20 m3/s, much larger than the maximum low flow in the baseline
period. An increase in the low flow means that spring droughts will be alleviated, which
benefits agriculture in the middle reach and natural ecosystems in the lower reach.

4.5. Discussion

The total and extreme runoffs under future climate change were projected, and the
frequency variations of these events were obtained. The future total runoff is expected
to increase by 8% compared with the baseline period. This result is comparable with the
findings of previous studies. For example, Wu et al. (2015) predicted a 9.8% increase in
runoff during 2006–2030 compared to 1981–2005 due to climate change [6]. Zhang et al.
(2016) observed an 11.4% increase in runoff from 2021 to 2050 compared to 1981–2010 [7].
Li et al. (2020) estimated a 5.6–6.7% increase in runoff due to increased precipitation [8].
However, it should be emphasized that not all studies predicted increased runoff in the
future. Some predicted a decrease in the runoff. For instance, Wang et al. (2018) predicted a
decrease in the runoff by approximately 5 mm/10 a by 2060 when considering the effects of
global warming [47]. Zhang et al. (2015) projected that the runoff would decline regardless
of which cases were considered, i.e., only the effects of climate change or the combined
impacts of climate change and LUCC [23]. Wu et al. (2015) estimated that the land-use
change would result in a 1.8% decrease in the runoff, whereas climate change would cause a
runoff increase of 9.8% from 2006–2030 [6]. The inconsistencies of these results are related to
many factors, such as the simplification of complex hydrological processes, the diversity of
hydrological models, and the difference in the time span of historical and future scenarios.

Our study predicts that the annual mean and the high and low flows will increase in
the future. The increases in the annual mean runoff and the high flows can be attributed
to increased precipitation. As shown in Figures 5 and 6, an average precipitation increase
of 16.5% is predicted in the future compared to the baseline period, and 27%, 15%, and
5% increases will occur in June, July, and August, respectively; these are the periods
with the highest probabilities of high flows. An increase in precipitation would cause
runoff increases. In addition, temperature increases would also contribute to an increased
runoff because more water would be released from glaciers, snow, and permafrost. It
was estimated that 25% of the annual average runoff was attributed to snowmelt, and 4%
resulted from glacier melt [48]. Wu et al. (2015) found that glacial melt increased runoff by
about 2.3 mm, contributing 8.9% to runoff in 2010 [24].

Increased temperatures in the future would have a more significant effect on low
flows, which generally occur in spring or winter, than on high flows. Wang et al. (2006)
concluded that about 75% of the spring runoff was attributed to snowmelt and glacier
melt [49]. Zhang et al. (2016) predicted that the mean snowmelt amount would increase by
4.3–5.8% if the mean temperature increased by 1.2–2.1 ◦C [7]. In this study, the minimum
and maximum temperatures in spring are projected to rise by 2.8 ◦C and 2.6 ◦C, on average,
in the future. If this occurred, glaciers, snow cover, and permafrost in the study area would
contribute more to river runoff in the dry season. Although some studies have reported
that approximately 90% of the glaciers in the HRB are expected to disappear by the 2040s
or 2060s, glacier runoff will increase before this period and decrease after [47,48]. Therefore,
the contributions of glacier melting to runoff in the dry season under warming scenarios
cannot be ignored, especially in the near future. Although the projected increase in low
flows in the future can be explained by increases in glaciers and snow melting due to
increased temperatures, it should be noted that overestimations of historical low flows will
result in overestimations of future low flows. As shown in Figures 7 and 8, the baseflow
simulation result was not as good as that of other flows; it was overestimated during the
baseline period, which may lead to overestimations of the baseflow in the future.
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Given the significant changes in future runoffs and extremes, the water resource
availability and seasonality in the study area would vary. Thus, water use in the middle
and lower reaches should be adjusted to adapt to these changes. This study can help local
water resource managers and decision-makers develop adaptive strategies for effective
water resource and ecological management under a changing climate.

In addition to climate change, human activities (e.g., land use/land cover change,
the construction of water conservancy projects, and human water use) are major factors
affecting runoff changes. The reasons for not considering the impacts of human activities
in this study are as follows. First, many studies have shown that climate change impacts
on runoff in our study area were more significant than other factors [2,3,19,20,23], and the
contribution of climate change to runoff increased over time [5] and by 87% from 2004 to
2014 [1]. Second, more than 96% of the study area is covered by forest, grassland, and
unused land, and only less than 0.5% is covered by buildings and cropland [8]. Human
activities are limited in the study area due to the high altitude (1674 to 5108 m) and small
population (less than 1.5 million). Furthermore, there are many glaciers and areas with
snow cover, permafrost, and alpine meadows, with patches of shrubs and forests above
3600 m. These areas would be affected more by climate change. Thus, we focused on the
effects of future climate change.

Two other issues were not considered in this study: non-stationarity and uncertainty. A
time series is often assumed to be stationary in frequency analysis. Although non-stationary
runoff caused by climate change or human activities has been reported in the literature [50],
the identification of physical processes and other factors influencing non-stationarity is
challenging and difficult to model, preventing reliable predictions [51]. No solid consensus
has been reached on whether non-stationary hydrological frequency analysis is always
superior to stationary hydrological frequency analysis [51]. Non-stationary frequency
analysis is more complex and has higher uncertainty than stationary application frequency
analysis due to a more complex model structure and more model parameters [52]. Therefore,
we assumed that the runoff regimes were stationary in this study, resulting in model
uncertainty. Additional uncertainty sources include the model type (including GCM, SWAT,
GEV, and the bias correction method), model input data, and model parameters and their
transferability. For example, we assumed that the parameters of the hydrological model
were the same in the past and in the future, which may result in prediction uncertainties.
In addition, only one GCM model was employed in this study. Although it was proven
to be superior to other GCMs and applicable to the HRB [8,9], uncertainty cannot be
avoided. Some researchers used the mean of multi-model ensembles (MMEs) [53] rather
than choosing an optimal model. Other studies found that an MME was a potential solution
to limitations of hydrological projections under a changing climate [54]. Climate signals
are also highly uncertain, and using only one GCM does not adequately represent the
uncertainty of future climate signals. Therefore, the uncertainty need to be investigated in
subsequent studies.

5. Conclusions

This study used meteorological data from the CSIRO-M-K-3-6-0 model and the SWAT
model to predict future runoff due to climate change in the upper reaches of the HRB in
China. The probability distributions of future runoff and extreme values were calculated
using the GEV model. The main conclusions are as follows:

(1) The temperature and precipitation were projected to increase in the future. The
minimum and maximum temperatures were predicted to increase by 2.4 ◦C and 2.6 ◦C
compared with the baseline period (1961–2000). The precipitation was projected to
increase by 16.5%, with the largest increases exceeding 50% in January, May, and
December and decreases of 5% in September and October.

(2) The multi-year average runoff in the basin was predicted to increase by 8%, and
the highest increase would occur in winter (89%). In contrast, decreases in the av-
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erage runoff were predicted in summer and autumn, with the largest decline in
September (18%).

(3) Higher annual mean runoffs with different return periods were predicted, with 6.3–7%
increases in the 50–100 year return period, 7–8% increases in the 10–50 year return
period, and more than 8% increases in the 10-year return period. High flows were
projected to increase by 3.9%, 6.6%, and 8.4% in the 20-year, 50-year, and 100-year
return periods, respectively. The low flows were predicted to increase two-fold
compared to the baseline period, alleviating water shortages, especially in the dry
season, but increasing the flood risk in the rainy season in the basin.
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