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Abstract: The current COVID-19 pandemic has raised huge concerns about outdoor air quality due
to the expected lung deterioration. These concerns include the challenges associated with an increase
of harmful gases like carbon dioxide, the iterative/repetitive inhalation due to mask usage, and harsh
environmental temperatures. Even in the presence of air quality sensing devices, these challenges
can hinder the prevention and treatment of respiratory diseases, epidemics, and pandemics in severe
cases. In this research, a dual time series with a bi-cluster sensor data-stream-based novel optimized
regression algorithm was proposed with optimization predictors and responses that use an automated
iterative optimization of the model based on the similarity coefficient index. The algorithm was
implemented over SeReNoV2 sensor nodes data, i.e., a multi-variate dual time-series sensor, of the
environmental and US Environmental Protection Agency standard, which measures variables for
the air quality index using air quality sensors with geospatial profiling. The SeReNoV2 systems
were placed at four locations that were 3 km apart to monitor the air quality and their data was
collected at Ubidots IoT platform over GSM. The results have shown that the proposed technique
achieved a root mean square error (RMSE) of 1.0042 with a training time of 469.28 s for the control
and an RMSE of 1.646 in a training time of 28.53 s when optimized. The estimated R-Squared error
was 0.03, with the Mean-Square Error for temperature being 1.0084 ◦C, and 293.98 ppm for CO2.
Furthermore, the Mean-Absolute Error (MAE) for temperature was 0.66226 ◦C and 10.252 ppm for the
correlated-CO2 at a predicted speed of ~5100 observations/s. In the sample cluster for temperature,
45,000 observations/s for CO2 was achieved due to the iterative optimization of the training time
(469.28 s). The correlated temperature and a time of 28.53 s for CO2 were very promising in forecasting
COVID-19 countermeasures before time.

Keywords: indoor air quality; forecasting; machine learning; IoT; COVID-19; environmental mapping;
pandemic

1. Introduction

According to the WHO and US Environmental Protection Agency (EPA) guidelines,
the future of air quality and climatic conditions are a signature of life security for healthy
respiration. The quality of respiration and its associated life processes are directly related
to air quality, specifically in regard to oxygen (O2) and carbon dioxide (CO2) in a particular
geo-location at a tolerable temperature (WHO, 2021) [1]. The National Ambient Air Quality
Standards (NAAQS) report that the gradual deterioration in urban air quality is ambient
each year due to the increasing population, chemical emissions from machinery, and
depreciation in green ecology [2]. Several studies have concluded that a poor air quality
index (AQI) refers to a higher concentration of CO2 in the atmosphere and that temperature
extremities are more likely to be disastrous and fatal when it is inhaled/exhaled. Therefore,
its real-time monitoring is key to public safety [3]. Mandated measurement methods,
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like geo-spatially sensed outdoor gases, are a critical decision source in forecasting the
COVID-19 threat intensity at lower temperatures and higher CO2 concentrations [4]. Flu-
based pandemics and COVID-19 are becoming an increasing problem worldwide and so
require a more widespread research approach.

Globally, CO2 sensing time-series analysis and forecasting are the most widely capi-
talized approach in respiratory research i.e., an ensemble time-series model with machine
learning approaches as the projection benchmark has shown that China’s carbon peak will
be achieved by 2021–2026 with >80% probability [5] by using the logged dataset with a gap
in real-time CO2 sensing at regional temperatures. The Long Short-Term Memory (LSTM)
networks, DeepLMS, resulted in an average testing Root Mean Square Error (RMSE) < 0.009,
and an average correlation coefficient between ground truth and predicted values r ≥ 0.97
(p < 0.05) when tested on logged data from one database pre-COVID-19 and two during
COVID-19 pandemic years [6]. This study [6] had challenges with data interpretation
and collective forecasting from multiple real-time CO2 and temperature sensing units due
to data structuring challenges. The first step has been structuring the dual-series sensor
data into a decomposed time series, as mentioned in the reviews as either additive or
multiplicative by valued research [7–9].

The second challenge was to sort the time-series in preparation for the next stage,
called the time-series trend assessment using Theil-Sen’s Slope (TSS), Mann-Kendall (MK),
Modified Mann-Kendall (MMK), and Kendall Rank Correlation (KRC) tests, which need
the incorporation of improved trending for seasonality tests [8,9]. Several studies used
the above-mentioned tests effectively for the logged data but they had challenges with
real-time sensor data. The real-time processing, time-series decomposition methods (REG
and GAM based on OLS; FFT, FFT, AVG, LOESS, and LHM based on Backfitting [10])
had challenges with the stationarity assessment. Various time-series hypothesis tests, the
Durbin-Watson test (DWT), Box-Pierce (BPT), Ljung-Box tests (LBT), Breusch-Godfrey test
(BGT), Jarque-Bera test (JBT), and Augmented Dickey-Fuller test (ADFT) were used for
stationarity and seasonality assessment and are useful for the auto-regressive moving
average (ARIMA); however, the advanced Seasonal autoregressive integrated moving
average model (SARIMA) [11] needed a clustered approach for real-time forecasting of
multi-variate sensor data. The statistical techniques and machine learning approaches
mentioned above were found to have the sensors’ dependent and wireless sensor network-
based anomalies’ dependent results.

The third major challenge was the absence of an optimized and adaptive real-time
forecasting approach for the networked CO2 and temperature measurement sensor nodes.
For this, many air quality sensing systems were studied. The top sensing systems AirNut,
PA-I and PA-II, Egg, PATS+, and S-500, CairClip, Portable ASLUNG, AirSensEUR, Met One,
AQY v0.5, Vaisala AQT410, 2B Tech, and AQMesh V3.0 systems had measurement capabili-
ties for specific pollutants and gases [12]. This was impacted by real-time health monitoring
systems [13] and the infrastructure and architectures of specialized platforms [14]. FIS SP-
61, O3-3E1F, AirSensEUR v.2, S-500, and AirSensEUR used a built-in AlphaSense OX-A431
limited to O3 [15]. Likewise, the PMS1003 and PMS3003 by Plantower; DC1100 PRO and
DC1700 by Dylos; and OPC-N2 by AlphaSense only had sensing support for particulate
matter (PM) and so, from a multi-agent perspective, had challenges in the clinical biomarker
space of COVID-19 using feature selection and prognosis classification for the time-series
forecasting problem [16]. The networked sensing errors found in the previously mentioned
works using CO-3E300 by City Technology; CO-B4 by Alphasense, MICS-4515 by SGX
Sensortech, and Smart Citizen Kit by Acrobotic, and the RAMP had wireless sensor network
errors that can be corrected by the multi-objective prediction monitoring algorithm [17–19].
All the above-mentioned research was suited for a fixed network of sensing systems but
had to face the challenge of threshold updates that gave errors in forecasting spatially
placed sensing node clusters [20].

In clustered sensing for CO2 and temperature, there was a pressing need for a concur-
rent forecasting chain in addition to a dimensionality reduction using matrix factorization
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(MF) [21] for the air quality nodes, with parametric ML model deployment support on
embedded systems like SeReNoV2 [22]. Considering the recent studies conducted at the
European Commission, Joint Research Centre (JRC) [23] on the impact of masks on CO2
concentration zones in the breathing zones, it was concluded that the increase in CO2 was
due to breathing exhaled air temperature as well [24].

The existing O-AQNs, Urban AirQ, Smart Citizen Kit, Air SensUR 4.0, SeReNo V1,
and AirQ Mesh needed improvement for the AQI-dependent principal component ap-
proach [25] in the scope of automated optimization of forecasting. The multi-time series-
based forecasting required a novel melioration in linear regression and a tree-based time-
series learning, regression, and forecasting tree to be an innovative step in the SeReNoV2
AQM systems.

The recent environmental data forecasting works (2022, 2023) were also reviewed. The
hybrid additive regression and data-driven models [26,27] were monthly based and for
arid environmental conditions had the gap of annual forecasting using real-time sensing
systems [12–19]. The hybrid metaheuristic algorithms-based estimation of reference evap-
otranspiration [28] had challenges in real-time IoT-based sensing. The hybrid machine
learning-pedotransfer Function (ML-PTF) based on a novel Genetic Algorithm (GA) for
the prediction of the spatial pattern of saturated hydraulic conductivity [29] was more
concentrated in the water patterns and needed improvements in real-time IoT-based envi-
ronmental systems integrated data. The recent work in Runoff-Rainfall (R-R) [30] was a
better contestant for several data-driven models, namely, multiple linear regression (MLR),
multiple adaptive regression splines (MARS), support vector machine (SVM), and random
forest (RF), but needs improvement in the IoT-based environmental and health integrated
forecasting domain. Furthermore, very recent work in forecasting conducted a feasibility
study to examine the feasibility and effectiveness of the Random Subspace (RSS) model
and its hybridization with the M5 Pruning tree (M5P), Random Forest (RF), and Random
Tree (RT). It was based on the data from the Standardized Precipitation Index (SPI) [31] case
study in Jaisalmer, India and needed improvements in real-time IoT-based environmental
sensing. A noticeable work was a study of the evaluation of the adaptive neuro-fuzzy
inference system (ANFIS)-, artificial neural network (ANN)-, and wavelet-based artificial
neural system (WANN)-based models [32] that estimated the discharge by using 12 years
of daily data (2007–2018) but needed improvement in the IoT-based real-time sensing
data and health integration application domain. The study of two different agro-climatic
zones, that employed the data intelligence model and meta-heuristic algorithms-based pan
evaporation modelling using the data from a case study from Northern India [33], needed
an investigation into the same methods of the real-time IoT-based environmental data. The
summary of enhancements is presented in Table 1.

Table 1. A Summary of the Enhancements in Methods from the Literature Review.

Authors Methods Enhancements

Jiandong, C et al. (2022) [5] LSTM with RMSE estimation Real-time CO2 data processing

Sofia, B. et al. (2020) [6] DeepLMS
Attendance in COVID era

CO2 and temperature forecasting with
respect to COVID-19

Zhou, Y. et al. (2020) [7] Regression Analysis for CO2 Emissions CO2 and temperature co-related
forecasting for COVID-19.

Malik, A et al. (2020) [8] Spatio-temporal analysis using
parametric/non-parametric tests

Real-time data pre-processing for dual
variable forecasting.

Abbasi, S. (2014) [9] Statistical analysis using two-component
measurement error Real-time IoT-based sensor data

Santiago, M.-C. (2020) [10] REG and GAM based on OLS; FFT, FFT, AVG,
LOESS, and LHM based on Backfitting

Real-time IoT-sensor data
for COVID-19
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Table 1. Cont.

Authors Methods Enhancements

Stanislaus, S. U. (2020) [11]

Durbin-Watson test (DWT), Box-Pierce (BPT), and
Ljung-Box tests (LBT), Breusch-Godfrey test (BGT),

Jarque-Bera test (JBT), and Augmented
Dickey-Fuller test (ADFT)

Real-time IoT sensors data
for COVID-19

Mehrpooya, A., et al. (2022) [18] Dimensionality reduction by matrix factorization Dual-time series real-time sensor data

Tariq. H. et al. (2019) [19] 4th other stationarity and differential time-series
analysis for prediction Multi-variate time-series forecasting

Sadeghi, G., et al. (2022) [20] Data mining approaches for pre-processing of
data forecasting

Forecasting on real-time data from
COVID-19 prospective

Najafzadeh, M. (2022) [21] Reviewed AI-techniques for
temperature forecasting

Forecasting on real-time data from
COVID-19 prospective

Tariq, H. et al. (2020) [22] Multi-variate AQI mapping using dual time-series Forecasting on real-time data from
COVID-19 prospective

Geiss, O [23] 2020 Studied effect of face mask on CO2 in breathing Forecasting on real-time IoT data

Michelle, S. et al. (2021) [24] Studied impact of face masks increase as per
NIOSH definitions Forecasting on real-time IoT data

Abdaoui, A. et al. (2020) [25] Co-variance based gradient estimation of real-time
sensor data for AQI

Forecasting on real-time data from
COVID-19 prospective

Tariq, H. et al. (2019) [26] Developed real-time CO2 and temperature sensing
devices used in this work for forecasting

Forecasting on real-time data from
COVID-19 prospective

Elbeltagi, A. (2023) [27] Additive regression for forecasting monthly data Real-time IoT sensors data for
COVID-19 forecasting

Elbeltagi, A. (2022) [28] Hybrid metaheuristic algorithms for reference
evaporation estimation

Real-time IoT sensors data for
COVID-19 forecasting

Singha, V.K. et al. (2022) [29] Genetic Algorithm based on hybrid machine
learning pedo-transfer functions.

Real-time IoT sensors data for
COVID-19 forecasting

Singh, A.K. et al. (2022) [30] Statistical machine learning approaches for run-off
water forecasting

Real-time IoT sensors data for
COVID-19 forecasting

Elbeltagi, A. et al. (2023) [31]
Random Subspace (RSS) model and its

hybridization with the M5 Pruning tree (M5P),
Random Forest (RF).

Real-time IoT sensors data for
COVID-19 forecasting

Shukla, R. et al. (2022) [32] ANN, ANFIS, and WANN for dual time-series Real-time IoT sensors data for
COVID-19 forecasting

Kushwaha, N.L. et al. (2021) [33] Data intelligence model and meta-heuristic
algorithms for two different data sets.

Real-time IoT sensors data for
COVID-19 forecasting

The above literature review shows that COVID-19 and pandemics are an increasing
problem and that these diseases need a novel and ubiquitous solution. The main drive
behind this work is to support EPAs and state health agencies worldwide in improving
global healthcare and welfare by using out-of-the-box techniques that enable adequate fore-
casting and healthcare management. The innovative aspects and novel contributions of this
research are: (a) bi-cluster regression, i.e., real-time CO2 and temperature sensing systems
placed at different locations with different surroundings (different CO2 and temperature
curves) to be used for evaluation as a bi-cluster time-series interpolated with air quality
index (AQI) from principle pollutants; (b) a networked assessment to have multiple sensing
sources based on the dual-redundancy and resilience of real-time forecasting and machine
learning model (MLM) training; (c) the automated optimization to tune the scalable spatial
gradients with different thresholds; (d) automated iteration to achieve the minimum RMSE
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and MAE for the trackable similarity coefficient index (SCI) for accurate forecasting. The
research work is organized as:

1. The Real-time Gradient Aware Multi-Variable Sensing Model (GAM-VSM)
2. The Optimized Bi-Cluster Regression Machine Learning Model (OBR-MLM)
3. Case Study: Urban Scale IoT-based AQI Monitoring System.

The list of acronyms is presented in Table 2 given below.

Table 2. List of Acronyms.

Acronyms Description

IoT Internet of Things
COVID Corona Virus Disease

CO2 Carbon Dioxide
NAAQS National Ambient Air Quality Standards

FFT Fast-Fourier Transform
REG Regression

DeepLMS Deep Learning Management Systems
TSS Theil-Sen’s Slope
MK Mann-Kendall Method

MMK Modified Mann-Kendall Method
KRC Kendall Rank Correlation
DWT Durbin-Watson test
BPT Box-Pierce Test
LBT Ljung-Box tests
BGT Breusch-Godfrey test
JBT Jarque-Bera test

ADFT Augmented Dickey-Fuller test
ARIMA Auto-regressive moving average

OLS Ordinary Least Squares Regression
LHM Linear Hinges Model

LOESS Locally estimated scatterplot smoothing
WHO World Health Organization
EPA Environmental Protection Agency
GSM Global Service for Mobile
AQI Air Quality Index

2. Materials and Methods

The materials in this work are comprised of a real-time air quality monitoring system
and the methods consist of GAM-VSM and OBRM-MLM. The results section gives further
insights into this contribution

2.1. The Real-Time Multi-Variable Geospatial Gradient-Aware AQI Sensing Model (GAM-VSM)

To measure the precise impact of CO2 and temperature on COVID-19, a real-time
multi-variable structured data time-series vector was needed to proceed with the geospatial
profiling of gradient awareness as per our past work [25,26]. Let us consider an EPA
standard outdoor air quality index (O-AQI) real-time variables as temperature T in centi-
grade, pressure P in pascals, humidity H in %, volatile organic compounds VoC (ppm),
particulate matter as PM (ppm), Ozone as O3 (ppm), Nitrogen Dioxide as NO2 (ppm),
Carbon Monoxide as CO2 (ppm), and Sulphur Dioxide as SO2(ppm). The real-time O-AQI
data was proposed as a commutative time series multi-variable vector VO-AQI of two non-
linear time-series with t1 and t2 of environmental E and gas G sensors data at a particular
geo-location L, given as:

VO-AQI (t) = [E(t1), G(t2)]: L(t) (1)

where t = (0, 1, 2, 3, . . . }
The practicality of the response time of the heterogeneous sensors was taken into

account for the non-linear time-series decomposition t, with the gas sensor response time t2
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being greater than the response time of environmental sensors t1 with a relationship t2 > t1
given as:

t2 = 3t1 (2)

where [t1, t2] ε t
The environmental sensor variables function E for sensor array AE (T, P, H, VoC,

PM) as E (AE, t1); and gas sensors array AG (O3, NO2, SO2, CO) as G(AG, t2) and
position vector L as reference function GPS using GSM network cell locations (using
AT + CIPGSMLOC = (1, 1)) for LGPRS and GPS module as LGPS (using AT + CGPSINF). For
precise AQM the LGPS must belong to the slope of LGPRS1 and LGPRS2 in a particular slope
format by NEMEA specifier for consecutive cells and is given as:

LGPS (X, Y) ε [LGPRS1(X2, Y2), LGPRS2(X1, Y1)] (3)

The agreed LGPS was termed as L(t) where condition (3) was satisfied. From Equations (1)–(3)
the finalized AQM vector of VO-AQI was derived as:

VO-AQI (t) = [E(AE(T, P, H, VoC, PM),t1), G(AG(O3, NO2, SO2, CO), t2)]: L(t) (4)

Three bounded value conditions were applied on GAM programmed in the SeReNo
V2 firmware are presented in Figure 1:

(a) The mandatory gradient unit ∆1CO2 to monitor the CO2 gradient from inhaled air at
temperature ∆1T.

(b) The role of the gradient of the temperature of exhaled air ∆2T with ∆2CO2 recycled in
the breathing zone due to a mask.

The optimization scalar is presented as (CO2 is in ppm):

Mask(∆CO2) = ∆1CO2 × ∆1T + ∆2CO2 × ∆2T (5)
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2.2. The Optimized Bi-Cluster Regression Machine Learning Model (OBR-MLM)

The GAM reduced the bulk time-series curation operations needed for forecasting.
The dual time-series data was queued to OBRM with (AQI, CO2) and (AQI, Temperature)
vectors at the same time with the t1 and t2 time series. The iterative regression parameter
setting was performed based on default parameters (RMSE, RSS, and MAE). On every
cycle, these parameters were optimized as per the KPI requirements. The two simultaneous
regression models were trained for AE(t1) and AG(t2) vectors. The root-mean-square error
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(RMSE), and mean absolute error (MAE) were the common KPIs that were analyzed before
model approval. The approved model was set for forecasting from the SeReNoV2 test data
and disapproved data was fed to an optimizer that used a configurable tree-based machine
learning approach by variable iterations based on the similarity coefficient index (SCI). The
generic regression model Y for

Yt = ∑i
m=1 βmXm,t + ε = β1X1,t + β2X2,t + . . . + βiXi,t + ε (6)

The flowchart of OBRM is presented in Figure 2 below.
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As per the proposed bi-cluster networked forecasting of the regression models Yt-CO2
(AQI, CO2) and Yt-Temperature (AQI, Temperature), the regression models must have an
acceptable similarity of >85%. If the forecasted time-series curves from two similar sensors
installed at two different locations have curve-similarity concerning their AQI curves,
termed as similarity coefficient index (SCI) as less than 85%, the iterations will keep running
automatically. For RMSE < 1.5, statistically the SCI < 0.85 conditions should be satisfied in
real-time. The US EPA AQI standard for outdoor air quality is presented in Table 3 below:

Table 3. Pollutants and Epidemiological Baseline.

Breakpoints

AQI Epidemiological
Impact/CategoryO3 (ppm)

8-h
O3 (ppm)

8-h
PM10

(µg/m3)
PM2.5

(µg/m3)
CO

(ppm)
SO2

(ppm)
NO2

(ppm)

0–0.064 – 0–54 0–15.4 0–4.4 0–0.034 (2) 0–50 Good

0.65–0.84 – 55–154 15.5–40.4 4.5–9.4 0.035–0.144 (2) 51–100 Moderate

0.85–0.104 0.125–0.164 155–254 40.5–65.4 9.5–12.4 0.145–0.224 (2) 101–150 Unhealthy for
sensitive groups

0.105–0.124 0.165–0.204 255–354 65.5–150.4 12.5–15.4 0.225–0.304 (2) 151–200 Unhealthy

0.125–0.374
(0.155–0.404) 4 0.205–0.404 355–424 150.5–250.4 15.5–30.4 0.305–0.604 0.65–1.64 201–300 Very Unhealthy

(3) 0.405–0.504 0.425–0.504 250.5–350.4 30.5–40.4 0.605–0.804 1.25–1.64 301–400 Hazardous

(3) 0.505–0.604 0.505–0.604 350.5–500.4 40.5–50.4 0.805–1.004 1.65–2.04 401–500 Hazardous
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The AQI is generically estimated as:

IP= [(Ihigh − Ilow)/(B P−high− BP−low)]× (CP − BP−low) + Ilow (7)

Every pollutant was formulated using Equation (7) and given by Equations (8) to (12).

IPM= [(Ihigh − Ilow)/(BPM−high − BPM−low)]× (CPM − BPM−low) + Ilow (8)

INO2= [(Ihigh − Ilow)/(BNO2−high − BNO2−low)]× (CNO2 − BNO2−low) + Ilow (9)

ISO2= [(Ihigh − Ilow)/(BSO2−high − BSO2−low)]× (CSO2 − BSO2−low) + Ilow (10)

IO3= [(Ihigh − Ilow)(BO3−high − BO3−low)]× (CO3 − BO3−low) + Ilow (11)

ICO= [(Ihigh − Ilow)/(BCO−high − BCO−low)]× (CCO − BO3−low) + Ilow (12)

From the AQI equations the resulting relative regression models for CO2 (Im−CO2,t)
and Temperature (Im−T,t) are given as:

Yt−CO2 = ∑i
m−CO2=1 βm−CO2Im−CO2,t + εCO2 (13)

= β1-CO2I1-CO2,t + β2-CO2I2-CO2,t + . . . + βi-CO2Ii−CO2,t + εCO2

Yt−T = ∑i
m−T=1 βm−TIm−T,t + εT Ii−T,t + εT (14)

= β1-TI1-T,t + β2-TI2-T,t + . . . + βi-TIi-T,t + εT

The function Iµ has been used to express the rate of change in AQI at the corresponding
time derivative.

(Iµ)n =
∆AQI

∆t
=

2kre2

(1 + e−rt)2 × t + . . . = 0, 1, 2 . . . (15)

To compare the relative influence level among the various influencing factors, the
regression coefficients were normalized.

β′m = βm ×
σXm
σY

(16)

where β’m is the normalized regression coefficient of the mth driving force, and βm is the
regression coefficient of the driving force. σXm is the standard deviation of the driving
force, and σY is the standard deviation of the dependent variable. The RMSE will be the
first step in ML model testing and optimization and is given as:

RMSE =

√
1
n ∑n

i=1 (Mi − RMi)
2 (17)

This indicates the magnitude of the error and retains the variable’s unit; is sensitive to
extreme values and outliers; tends to vary as a function of the standard deviation of the
RM. Based on the RMSE the iteration will be performed by eliminating the temperature
effect ET and CO2 ECO2 effect respectively from Equations (13) and (14) using:

ET =
n ∑n

i=1 Yi−TCi −∑n
i=1 Yi−T ∑n

i=1 Ci

n ∑n
i=1(Yi−T)

2 − (∑n
i=1 Yi−T)

2 (18)

ECO2 =
n ∑n

i=1 Yi−CO2Ci −∑n
i=1 Yi−CO2 ∑n

i=1 Ci

n ∑n
i=1(Yi−CO2)

2 − (∑n
i=1 Yi−CO2)

2 (19)
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sensitivity coefficient C for the measurement influencing variable and finally:

RSS = ∑∞
i=1(γi−b0 − b1xi)

2 (20)

The RSS is measured as the sum of the square of residuals as the final step in the
iterative optimization. In the results section, an ambient role of magnitudes of two variables
can be observed, but the RMSE and MAE are not enough to resolve the sensor data with
different scales and orders of magnitude for this SCI. The SCI for CO2 (SCICO2) and
temperature (SCIT) will be the tacking gradient (real-time difference divided by their
average) ratio of two cluster nodes 1 and 2 given as:

SCICO2 = 2 × |SCICO2−1− SCICO2−2

SCICO2−1+SCICO2−2
| (21)

SCIT = 2 × |SCIT−1− SCIT−2

SCIT−1+SCIT−2
| (22)

SCI = β′m × |
(SCI T × ECO2) + (SCIT × ECO2)

2
| (23)

The present probability of infection (PInfection-Present) is based on present data and
the future probability of infection (PInfection-Future) is based on forecasted data. Based on
previous research mentioning the COVID-19 relationship with temperature and CO2 and
Mask(∆CO2) (cycling the CO2 into the lungs that gradually weakens the lungs) from
Equation (5) and relative influence level based on β′m (Equation (16)) the probability
(PInfection) of trans-respiratory pandemics and COVID-19 is given by:

PInfection−Present = |
SCI

RMSE × Iµ
| (24)

PInfection−Future = (PInfection−Present ×
1
Iµ

) + (Mask(∆CO2)× |Yt−CO2

Yt−T
|) (25)

The proposed automated iterative optimization for COVID-19 and other pandemics
that are based on some sensing variables is independent of personal immunity and the
infection capability or the strength of pathogens as a medical science research area.

2.3. A Case Study: Urban Scale IoT-Based AQI Monitoring System

The proposed model and applied algorithm were tested and validated using our
TRL7 autonomous AQI mapping system from past research [25,26]. A 1-1 correspondence
electronics and instrumentation system was designed in a single package, i.e., SeReNoV2
presented in Figure 3 presented below.
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Three SeReNo V2 nodes were fabricated and deployed in QU for outdoor testing. The
fabricated SeReNo V2 was deployed based on the efficient utilization of GAM, i.e., QU
Greenhouse exhibited in the Figure 4 below.
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Figure 4. The SeReNo V2 Deployment in QU to utilize the GAM-based OBRM: (a) The Greenhouse
Site Details and (b) The Bi-cluster data-fusion at the central site.

The GAM reduced the bulk time-series curation operations needed for forecasting.
The dual time-series data was queued to OBRM with (AQI, CO2) and (AQI, Temperature)
vectors at the same time with the t1 and t2 time series. The iterative regression parameter
setting was performed based on default parameters (RMSE, RSS, and MAE). On every cycle,
these parameters were optimized; AQI refers to a structured chart with a bio-tolerable
threshold of specific pollutants and bio-hazardous gases recommended by EPA in the area
under a specified border agency18–24. The top 10 environmental protection agencies (EPAs)
unanimously agreed on the standard of four core gases for outdoor.

3. Results and Discussion

After the long-haul deployment of six months, the data results obtained were displayed
on the Ubidots IoT platform as shown in Figure 5.
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The eleven real-time variables were exhibited in Figure 4, sending data through the
GSM model QuecTel M10. The bi-cluster is considered in this special data-fusion case
for data collected at the central site, i.e., QU Greenhouse. The two variables CO2 and
temperature were double interpolated from four sites (top: QU H10 and QU C05) and
presented in Figure 6 below from the Ubidots IoT platform.

Atmosphere 2023, 14, x FOR PEER REVIEW 11 of 20 
 

 

data collected at the central site, i.e., QU Greenhouse. The two variables CO2 and temper-
ature were double interpolated from four sites (top: QU H10 and QU C05) and presented 
in Figure 6 below from the Ubidots IoT platform. 

 
(a) 

 
(b) 

Figure 6. The Bi-cluster formation from QU-H10 and QU-C05 data-captured was during 8 h from 
CO2 and Temperature Variables: (a) The double-interpolated CO2 from QU-H10 and QU-C05 data-
captured during 8 h in ppm and (b) The double-interpolated Temperature from QU-H10 and QU-
C05 data-captured during 8 h in °C. 

Since trans-respiratory diseases, as per WHO and US EPA, get worst due to poor 
AQI, from (8) to (12) the Cumulative AQI of four sites is given in Figure 7.  

Figure 6. The Bi-cluster formation from QU-H10 and QU-C05 data-captured was during 8 h from
CO2 and Temperature Variables: (a) The double-interpolated CO2 from QU-H10 and QU-C05 data-
captured during 8 h in ppm and (b) The double-interpolated Temperature from QU-H10 and QU-C05
data-captured during 8 h in ◦C.

Since trans-respiratory diseases, as per WHO and US EPA, get worst due to poor AQI,
from (8) to (12) the Cumulative AQI of four sites is given in Figure 7.
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Figure 7. The Cumulative AQI of Four SeReNo V2 nodes using Equations (8)–(12).

The application of GAM enabled only meaningful data to be sent to the cloud, which
made the time series more non-linear as only gradient-impacted values were being trans-
mitted. The accuracy of bi-clustered data measurements in terms of the autonomous AQI
system by applying our previous work is exhibited in Figure 7. The following plots of
individual variables give more insight into GAM in the SeReNoV2. The KPIs of GAM
contributed to the accuracy and efficiency of the OBRM.

The impact of GAM can be warm times below 1.83 s throughout 5 months. The
reduced warm-up times reduce the boot time power spike and result in the stable voltage
above 3.3 V needed for the sensors. The typographic error observed is around 3.1 to 3.4,
which is much less. A minute typographic error can be observed due to the correlation of
the GPS and GPRS-assisted cell network locations scheme. The key performance indicators
(KPIs) of GAM efficiency on SeReNoV2 were the major contribution that enabled all the
outcomes presented in Figures 8–17, as detailed in Figure 17.
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imum similarity can be observed in magnitudes of 21 °C to 24.5 °C. In the next process, 
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line and negative if they are below the regression line. If the regression line passes through 
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Figure 8. The GAM KPIs for SeReNo V2.

The dual-time series regression of OBRM is presented as CO2 being the top concern in
Qatar. This outcome contributed to potential safety precautions during COVID-19. A four-
step procedure was followed for OBRM. First, the predicted response was assessed and the
ML KPIs, mentioned in Table 1, were streamlined. Then the comparison was performed
between real and predicted; at this step, the trained model residuals were estimated and
finally, the optimization was performed as per conditions.

Figure 9a exhibits the temperature response for model 1, termed OBRM1. The real
data is in blue and the predicted is in orange. It was measured for one month. The RMSE
of 1.0042 was almost ideal and needed no further tuning and verification. Figure 9b is a
realization of a close prediction, as the predicted and actual are almost overlapping with
RMSE 1.7+.
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Figure 9. The Bi-cluster formation from QU-H10 and QU-C05 data captured during 8 h from CO2
and Temperature Variables. (a) The OBRM1 Response for CO2 (ppm) and (b) The OBRM2 Response
for Temperature (◦C).

In Figure 10a, the wrapping of blue markers or bubbles over the ideal or accurate
prediction shows the accuracy of the prediction using customized linear regression. Maxi-
mum similarity can be observed in magnitudes of 21 ◦C to 24.5 ◦C. In the next process, the
residual was estimated as the vertical distance between a data point and the regression line.
Each data point has one residual. They are positive if they are above the regression line
and negative if they are below the regression line. If the regression line passes through the
point, the residual at that point is zero.
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Figure 10. The SeReNo V2 Deployment in QU to utilize the GAM: (a) The Greenhouse Site Step-wise
Linear prediction and (b) The Bi-cluster data-fusion at the central site.

The RMSE of 1.7+ is extremely small for magnitudes like 6000, thus the comparative
plot for the predicted and true is almost overlapping in Figure 10b.

In Figure 11a, the magnitudes of 9+ for residuals are non-convex and impact the error
in the prediction by OBRM1 for temperature. The AE(t1) cluster was not optimized due
to RMSE 1.0042. The optimization was performed for RMSE > 1.5 for AG(t2), presented in
Figures 9–12. The residuals for temperature and CO2 are presented in the Figure 11.
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The tracking and alignment performed by OBRM3 for the observed and predicted 
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Figure 11. The Bi-cluster formation from QU-H10 and QU-C05 data-captured during 8 h from CO2
and Temperature Variables: (a) The OBRM1 Response for Temperature (◦C) and (b) The OBRM2
Response for CO2 (ppm).

The 200 residual magnitudes for amplitudes of PPM like 4500+ are minute, i.e.,
200/4500 = 0.044 shown in Figure 11b.

The results in Figure 12 lead to level 2 optimization of the OBRM1 based on the leaf size 3.
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The tracking and alignment performed by OBRM3 for the observed and predicted
CO2 (PPM) is up to 4400 ppm in Figure 13.
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Figure 13. SCI based Iterative Optimization of the OBRM2 for CO2: (a) Iterative Optimization of
OBRM1 to OBRM2 and (b) OBRM3 Prediction Response.

The offset or residual of 150/4800 = 0.03125 ppm is almost perfect or accurate as
examined in Figure 14. The 200 residual magnitudes for amplitudes of PPM like 4500+ are
minute, i.e., 200/4500 = 0.044 shown in Figure 14.
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Figure 14. The Bi-cluster formation from QU-H10 and QU-C05 data captured during 8 h from CO2
and Temperature Variables. The OBRM3 Response for CO2 (ppm).

The leaf size of 2 with 100 iterations delivered fine-tuned optimization and tracking
for the precise prediction observed in Figure 16. Later, the generated model was tested over
test data for predicting the CO2 for the years 2021 and 2022. This is presented in Figure 16.
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Figure 16. SeReNo V2 Deployment in QU to utilize the iterative OBRM3 optimization for
PInfection-Present and PInfection-Future: (a) The forecasted CO2 data by OBRM3 for the years 2021–22 and
(b) The PInfection-Present and PInfection-Future from Equations (24) and (25) for Yt-CO2 and Yt-T for Iµ
using SCI.

The PInfection-Future for CO2 by OBRM3 was almost similar; it was ambient from
Figure 16 with a numerical explanation and highlights for SCI computation. The OBRM3
had a very minute difference between the present and forecasted data.

The parameter setting for an optimized linear regression and optimized tree are
presented in Table 4. The training time and predicted speed are related as they are reciprocal
to each other.

The probability of errors in the magnitude range set {0.06, 0.15} is 0, observed in Figure 17.
A comparison of the results with other studies was not possible, as shown in Table 1, because
none of the past studies used real-time sensor data forecasting for two time-clustered IoT node
measurements, and so these results are exclusively based on our data.
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Table 4. Regression Parameter Setting.

Optimized Bi-Cluster Regression MLT

Parameters SWL (Temperature) OBRM3 (CO2)

Time Series Vector [E(AE(T, P, H, VoC, PM),t1)] [G(AG(O3, NO2, SO2, CO), t2)]
No. of Predictors 11 11

RMSE 1.0042 1.646
R-Squared 0.97 1.0

MSE 1.0084 293.98
MAE 0.66226 10.252

Prediction Speed ~5100 obs.s ~45,000 obs/s
Training Time 469.28 28.53
Model Type Step-wise Linear Surrogate Split

Steps 1000 N/A
Iterations N/A 100

Hyperparameter N/A LS (1~577)
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4. Limitations and Future Recommendation

This experiment and study were based on AQI sensing at different locations within
Qatar University. The 4 SeReNo V2 AQI sensors nodes were in two buildings with similar
conditions and two buildings with different conditions. A dual installation was per-
formed to avoid any measurement errors, as per Figure 9, based on previous studies
(Hasan et al., 2020). Since the trans-respiratory pandemics, especially COVID-19, are more
impactful at gatherings and populated premises, the university was chosen and the equa-
tions and their respective figures provided a precise route map of forecasting. Based on
Equations (24) and (25) using SCI, countermeasures can be easily taken by raising the tem-
perature to the un-survivable limit for COVID-19 pathogens and by using CO2-capturing
units and O2 cylinders to cycle fresh air.

This study will be more impactful if such AQI nodes are installed in hospitals and
measured for COVID-19-tested positive and negative patients. Our research group is
looking forward to conducting this research in hospitals which was not possible during the
pandemic times due to social isolation.

5. Conclusions

A novel similarity coefficient index-based forecasting method for COVID-19 and trans-
respiratory pandemics is proposed using the SeReNoV2 nodes. A multi-time series-parallel
automated iterative optimization of regression models was performed with interesting
results. The presented work highlighted the practical time-series challenge of duality and
multi-cluster vector forecasting for COVID-19 safety with the impact of masks. To the best



Atmosphere 2023, 14, 534 19 of 20

of our knowledge, this is the first real-time bi-cluster dual time-series forecasting machine
learning approach for real-time multi-source sensor temporal data forecasting. The results
can be summarized in three key milestones. The optimized regression methodology was
able to: (1) implement a dual-time series analysis for a non-linear composite time series
vector, compensating for the commutative anomalies in the bi-cluster sensor network;
(2) the selected KPIs for the data preprocessing by hardware resulted in reduced training
time and improved prediction speeds of the machine learning model training; (3) the
forecasted results were overlapping being a justified precision in forecasting methodology
accuracy for COVID-19 infections. The proposed method can serve as a role model for dual
time-series problems in COVID-19 and other complex pandemics.
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