
Citation: Dong, Z.; Jin, S.; Chen, G.;

Wang, P. Enhancing GNSS-R Soil

Moisture Accuracy with Vegetation

and Roughness Correction.

Atmosphere 2023, 14, 509. https://

doi.org/10.3390/atmos14030509

Academic Editors: Li Li and

Pengfei Xia

Received: 19 February 2023

Revised: 5 March 2023

Accepted: 6 March 2023

Published: 6 March 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

atmosphere

Article

Enhancing GNSS-R Soil Moisture Accuracy with Vegetation
and Roughness Correction
Zhounan Dong 1,2, Shuanggen Jin 3,4,* , Guodong Chen 1,2 and Peng Wang 1

1 School of Geography Science and Geomatics Engineering, Suzhou University of Science and Technology,
99 Xuefu Road, Suzhou 215009, China

2 Research Center of BeiDou Navigation and Remote Sensing, Suzhou University of Science and Technology,
Suzhou 215009, China

3 School of Surveying and Land Information Engineering, Henan Polytechnic University, Jiaozuo 454000, China
4 Shanghai Astronomical Observatory, Chinese Academy of Sciences, Shanghai 200030, China
* Correspondence: sgjin@shao.ac.cn; Tel.: +86-0391-3986663

Abstract: Spaceborne Global Navigation Satellite System-Reflectometry (GNSS-R) has been proven
to be a cost-effective and efficient tool for monitoring the Earth’s surface soil moisture (SSM) with
unparalleled spatial and temporal resolution. However, the accuracy and reliability of GNSS-R
SSM estimation are affected by surface vegetation and roughness. In this study, the sensitivity of
delay Doppler map (DDM)-derived effective reflectivity to SSM is analyzed and validated. The
individual effective reflectivity is projected onto the 36 km × 36 km Equal-Area Scalable Earth-Grid
2.0 (EASE-Grid2) to form the observation image, which is used to construct a global GNSS-R SSM
retrieval model with the SMAP SSM serving as the reference value. In order to improve the accuracy
of retrieved SSM from CYGNSS, the effective reflectivity is corrected using vegetation opacity and
roughness coefficient parameters from SMAP products. Additionally, the impacts of vegetation and
roughness on the estimated SSM were comprehensively evaluated. The results demonstrate that the
accuracy of SSM retrieved by GNSS-R is improved with correcting vegetation over different types of
vegetation-covered areas. The retrieval algorithm achieves an accuracy of 0.046 cm3cm−3, resulting
in a mean improvement of 4.4%. Validation of the retrieval algorithm through in situ measurements
confirms its stability.

Keywords: spaceborne GNSS-R; effective reflectivity; soil moisture; vegetation attenuation; roughness

1. Introduction

Soil moisture plays a crucial role in Earth’s surface water cycle and influences various
hydrological, meteorological, and ecological processes. Accurately measuring soil moisture
can aid in forecasting floods, droughts, and other extreme weather events and improve the
understanding of climate change [1]. L-band microwave signals have physical properties
that make them well-suited for remote sensing applications of surface soil moisture (SSM).
These signals have a longer wavelength and can penetrate through clouds and vegetation.
Microwave remote sensing has thus become a critical tool for measuring SSM, enabling
accurate and consistent measurements over large areas. Satellite-based microwave remote
sensing has made significant advances in recent years for the global-scale SSM monitoring.
Dedicated missions such as the Soil Moisture and Ocean Salinity (SMOS) mission [2] and
the Soil Moisture Active and Passive (SMAP) mission [3] use monostatic L-band microwave
scatterometer and radiometer instruments to provide valuable insights into the dynamics
of SSM on a global scale. However, these traditional satellite-based sensors have limited
spatial resolution, typically around 40 km, and a revisit time ranging from 2–3 days. These
limitations prevent their use in high-resolution applications, such as precision agriculture
and drought monitoring. Innovative technologies are needed to overcome these limitations
and enable high-resolution measurements of SSM for various applications.
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The development of Global Navigation Satellite Systems (GNSS) [4] has led to the
emergence of reflectometric remote sensing using a signal of opportunity transmitted by
GNSS satellites and reflected by the Earth’s surface, known as GNSS-Reflectometry (GNSS-
R) [5]. This technology has rapidly gained attention for its great potential applications
in remote sensing. The GNSS-R receiver collects GNSS signals reflected from the Earth’s
surface, it has lower power dissipation and lighter mass, making it easily deployable
on microsatellite platforms. This bridges the spatial-temporal gap in observations left
by dedicated monostatic SSM satellite-based sensors [6]. Since the reflected signal is
influenced by the properties of the geophysical parameters of the interface and exhibits
distortions in shape or reflected power, the geophysical parameter retrieval algorithm
can be developed by identifying the characteristics of the distortion and relating them to
relevant geophysical parameters.

The feasibility of the GNSS-R technology in detecting various geophysical parameters
in geoscience fields has been validated through numerous demonstration experiments [7].
The first suggestion to use the GNSS-R technique to monitor terrestrial SSM came from [8],
who was inspired by GNSS-R sea surface wind speed retrieval. Following this, several
ground, tower, and airborne experiments have been conducted to prove the viability of
GNSS-R in detecting changes in SSM [9–11].

At first, researchers focused on studying the correlation between delay-Doppler map-
ping (DDM) observables and SSM changes. These studies explained the variation in time
delay waveforms under different wet levels. However, owing to the lack of adequate air-
borne data, GNSS-R-based soil moisture detection was primarily limited to ground-based
studies for the next decade. Single- and dual-antenna pattern receivers have been used
to detect changes in SSM though interferometric reflectometry (IR) [12]. A soil moisture
monitoring network can be established using ground-based GNSS-IR by utilizing qualified
International GNSS Service Network (IGS) stations. However, the coverage of each ground
station is limited to a few hundred meters in its immediate vicinity, resulting in sparse
global coverage for the application of soil moisture data in related studies. Moreover, the
fundamental retrieval algorithm for spaceborne GNSS-R and ground-based GNSS-IR is
different. Ground-based GNSS-IR systems commonly rely on measuring SNR observation
data from a long arc on a single GNSS satellite frequency.

The successful launches of the UK Technology Demonstration Satellite-1 (TDS-1) in
2014 [13] and NASA’s Cyclone GNSS (CYGNSS) mission in 2016 [14] have made spaceborne
GNSS-R more accessible. In recent years, using satellite-based GNSS-R measurements to
retrieve SSM has gained considerable interest due to the freely available observations
provided by the two missions. Several studies have validated the sensitivity of the DDM-
derived observables to changes in land SSM [15–17]. The DDM signal-to-noise ratio, or
the DDM-derived effective reflectivity, has been verified as an indicator to detect changes
in SSM [18]. Ref. [15] has demonstrated that the DDM observables can detect spatial and
temporal variations in land SSM and exhibit consistency over similar land surfaces. The
sensitivity of DDM observables to SSM compared with other monostatic microwave ob-
servation systems was also studied. The sensitivity of DDM observables is influenced by
the amount of vegetation cover. Lower Normalized Difference Vegetation Index (NDVI)
values indicate higher sensitivity and Pearson’s correlation [16]. The attenuation of GNSS-
R signals by vegetation is mainly caused by branches and trunks in dense forests [19].
Additionally, the sensitivity of GNSS-R to SSM can be significantly altered by surface
roughness and inland water bodies [20]. After conducting exploratory studies, the key
issues in satellite-based GNSS-R SSM detection have become clearer. The effective re-
flectivity determined as the feature quantity is capable of responding to changes in soil
moisture, but it is also influenced by factors such as vegetation, surface roughness, and
terrain. However, this knowledge provides a solid foundation for the further development
of inversion algorithms.

Modeling the complexity of land surface scattering is challenging due to the presence
of multiple factors such as surface roughness, vegetation, and topographic relief. Previous
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studies have assumed that the coherent scattering component dominates over the land
surface and calibrates the effective reflectivity [21]. This assumption holds when the land
surface has a small-scale roughness compared with the GNSS carrier wavelength, such
as bare soil. However, as the surface roughness increased, the contribution of incoherent
scattering became more prominent. Therefore, the scattering field should consider both
volume scattering from plants and interactions between vegetation and the surface in
regions with vegetation cover [22]. Previous studies on spaceborne GNSS-R SSM retrieval
established empirical statistical models between DDM effective reflectivity and reference
SSM using linear regression and spatial averaging methods. In addition, the effects of
vegetation cover and surface roughness were considered in the algorithms in order to
obtain accurate estimates of SSM. In [23], the changes of effective reflectivity and SSM
were regressed using a linear model pixel-by-pixel, whereas [24] established a trilinear
regression model between effective reflectivity, vegetation opacity, roughness coefficient,
and SSM from all pixel matched parameters. To improve SSM inversion accuracy, many
studies have attempted to use machine learning and deep learning methods [25].

Although space-based GNSS-R SSM retrieval algorithms have been developed, few
studies have assessed the impact and correction of vegetation and surface attenuation on
SSM retrieval from existing models. Vegetation cover and surface roughness can affect soil
moisture measurements by influencing the amount of intercepted rainfall and rate of water
infiltration into the soil. Different land cover types, such as forest, cropland, and grassland,
have different vegetation cover and surface roughness and can therefore have different
soil moisture characteristics. This study aimed to retrieve land surface soil moisture using
CYGNSS data with correcting vegetation cover and surface roughness on different land
cover types and evaluate the impact of these factors on GNSS-R SSM retrieval. The adopted
data and method for spaceborne GNSS-R SSM remote sensing are introduced in Section 2.
Section 3 presents the results and the effects of vegetation and roughness. A discussion is
presented in Section 4. Finally, main conclusions are given in Section 5.

2. Data and Methods
2.1. Dataset
2.1.1. CYGNSS Data

The CYGNSS mission consists of eight microsatellites, which were initially designed
to detect ocean surface winds, and the specular points of the observed DDM are located
between 38◦ south and north latitude. The study reported in this paper utilized the V2.1
version of CYGNSS Level 1 data, which was made available in March 2017. To retrieve
soil moisture parameters, only ground-based samples were used. The dataset covers the
entire year of 2018, with the first six months of data utilized to develop the SSM retrieval
model, and the remaining data used to evaluate the accuracy of the GNSS-R-derived
SSM. Data were downloaded from the Physical Oceanography Distributed Active Archive
Center (PO.DAAC).

2.1.2. SMAP Product

The referenced SSM data used in this study are the SMAP v008 Level-3 SSM product
acquired from the National Snow and Ice Data Center, which is a daily update with a spatial
resolution of 36 km × 36 km Equal-Area Scalable Earth-Grid 2.0 (EASE-Grid2). While data
from satellite descending passes (a.m.) and ascending passes (p.m.) were saved separately
in the product files, they were averaged to provide a daily SMAP SSM product in this
study. Figure 1 displays the SMAP SSM data on 1 January 2018, showing the data coverage
and typical spatial variation of the SSM. The vegetation opacity and roughness coefficient
parameters included in the SMAP product were also averaged to facilitate subsequent
vegetation and surface roughness attenuation correction. To evaluate the accuracy of the
derived SSM for different land cover types, land cover classification data were also used.
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Figure 1. Averaged SMAP Level-3 soil moisture from satellite descending passes and ascending
passes on 1 January 2018.

2.2. Methods
2.2.1. SSM Retrieval Method from GNSS-R

Spaceborne GNSS-R SSM remote sensing is based on the sensitivity of effective reflec-
tivity to surface permittivity, which is primarily influenced by SSM. Several semi-empirical
models have been developed to estimate the dielectric constant of surfaces. Figure 2a shows
the complex permittivity under different SSM conditions at GPS L1 frequency using the
Dobson model [26]. The results indicate that the imaginary part of the complex permittivity
is almost impervious to the SSM, whereas the real part is strongly influenced by it. For
instance, when the mass fraction of sand content was 0.8, the mass fraction of clay content
was 0.07, and the soil bulk density was 1.25 g·cm−3, the change in SSM led to significant
variations in the real part of permittivity. Surface reflectivity can be derived as:
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where LR stands for the left circular polarized scattering with the incoming right circular
polarized signal. <vv and <hh are the vertical and horizontal linear Fresnel reflection
coefficient; they are the function of surface complex dielectric constant εr and signal
incidence angle θ. By combining the semi-empirical dielectric constant model, a physical
relationship between SSM and corresponding reflectivity can be obtained. Figure 2b
shows the relationship at various signal incidence angles. It can be observed that the
surface reflectivity exhibited a monotonous increase as the soil moisture content increased.
Furthermore, a larger incidence angle had a more significant impact on the reflectivity value.

The DDM is a fundamental observable of spaceborne GNSS-R. It is generated by
the cross-correlation of the reflected signals and local replica code of the receiver, which
maps the scattered power over a time delay and Doppler frequency shift range. During
signal processing in current CYGNSS mission, the coherent integration time of DDM is
often set at 1 ms, followed by 0.5 s to 1 s of incoherent integration to reduce speckle and
thermal noise within a short-time correlation. The scattering mechanisms over the sea
surface can be approximately explained by the Z-V model [27]. The difference in surface
scattering between the ocean and land is that the former is dominated by an incoherent
component, whereas the latter is dominated by a coherent component. This implies that
the primary components of the power dispersed over land are from the specular reflection
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direction, corresponding to the first Fresnel zone around the specular point on the real
ground surface.
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Previous studies have demonstrated the effectiveness of both the DDM SNR and
DDM-derived reflectivity in detecting variations in SSM. The DDM SNR is calculated as the
ratio, expressed in decibels, between the highest value in a single DDM bin and the average
raw noise counts per bin. Reflectivity, in turn, is a function of surface permittivity, which
is mostly influenced by SSM [28]. Wet surfaces exhibit a greater dielectric constant and
reflectivity than dry surfaces do. An inversion methodology was developed to establish a
mapping relationship between the DDM SNR or reflectivity and the surface SSM. Typically,
the scattering field over land surfaces contains both incoherent and coherent scattering
components that can be simultaneously received by the spaceborne GNSS-R receiver. This
study assumes that coherent reflection predominates throughout the land surface, and
that the first Fresnel zones near the specular point are homogeneous. Consequently, the
received power asymptotically tends toward the value obtained using free-space propaga-
tion weighted by the reflection coefficient, and the total path length of the bistatic radar
system operation equals the sum of the path lengths [29]. Finally, DDM reflectivity, also
known as effective reflectivity, can be calibrated using the radar equation for a coherent
signal [30]

Γ(θ) =
(4π)2Pcoh(Rts + Rrs)

2

λ2GrPtGt
(3)

where Pcoh is the received DDM peak power, PtGt indicates the GNSS equivalent iso-
tropically radiated power (EIRP), Pt is the GNSS satellite transmit power, Gt is the GNSS
satellite antenna gain, Gr is the gain of the receiver antenna, λ is the carrier wavelength
of GNSS signal, Rts and Rrs are the distances from the GNSS transmitter to the specular
point and specular point to the receiver, respectively, and θ is the incidence angle of the
signal at the specular point. The GNSS-R receiver onboard the spacecraft directly generates
the DDM in the unit of the processing count. However, to convert the count into received
power in watts, a series of precise calibrations is necessary [31]. Fortunately, all parameters
required in (3) are included in the CYGNSS Level 1 data product. It is important to note
that, under the coherent assumption, the spatial resolution of individual observations from
spaceborne GNSS-R is primarily determined by the bistatic radar observing geometry and
is approximately 0.6 times the initial Fresnel zone size [28].

2.2.2. Effects of Surface Vegetation and Roughness

The reflectivity of the terrain surface can be affected by various factors, including
the roughness of the surface and the presence of vegetation. When the GNSS signal is
transmitted towards an area with vegetation, the signal can be attenuated by the plants, as
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shown in Figure 3. The signal passes through the plant canopy twice, resulting in intensity
attenuation each time [32]. In addition to vegetation, the rough surface of the ground can
also scatter the GNSS signal in different directions, weakening the intensity in the direction
of the specular point in accordance with energy conservation. To minimize the impact of
these perturbing factors, it is important to carefully consider the retrieval algorithm. In
passive microwave radiometry, the widely used tau-omega model is a basic zero-order
model [33] that accounts for vegetation attenuation with an exponent item and corrects the
effect of surface roughness [34].

ΓLR(θ; mv, kσ, τ) = AVWC(θ; τ)Arough(θ; kσ)Γ(θ; mv) (4)

AVWC(θ; τ) = e−2τ sec θ (5)

Arough(θ; kσ) = e−(2 cos θ)2(kσ)2
(6)

where θ is the incidence angle of the transmitted signal, mv is the soil moisture, k is the
wavenumber, σ is the standard deviation of surface height, kσ together represents the
roughness coefficient of the land surface, τ indicates the vegetation optical depth (VOD), 2τ
means the two-way vegetation opacity, and AVWC, Arough indicate the power attenuation
from land cover vegetation and surface roughness, respectively. Vegetation opacity can be
stated as τ = b×VWC(b is a proportionality value that depends on both the vegetation
structure and the microwave frequency; VWC is related to the vegetation water content).
The method for calculating VWC employs a series of land cover-based equations to estimate
the combined foliage and stem VWC from NDVI data [3]. The vegetation attenuation of
the L-band microwave signal is mainly due to the trunks and branches, whereas the leaves
are nearly transparent [35]. Therefore, the retrieval accuracy degrades in the dense forest
regions. The roughness coefficient depends on the polarization, frequency and geometric
characteristics of the ground surface and is parameterized to the standard deviation of the
surface height. The roughness coefficient was obtained from a look-up table provided in the
SMAP manual [3]. In this study, the two models were used directly to correct for the effects
of vegetation and surface roughness attenuation in spaceborne GNSS-R SSM retrievals.
The effects of these models for different land cover types were analyzed to evaluate their
performance in CYGNSS SSM retrieval.
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Despite the nonlinear correlation between soil moisture and reflectivity according
to the dielectric constant and Fresnel equation models, in practice, the range of annual
soil moisture variation is often limited for most land surfaces. Therefore, linear regression
models are often used, as shown in [23]. In this study, a GNSS-R SSM retrieval model was
proposed, which also uses a linear model for each grid cell. This model directly regresses
soil moisture and aggregated effective reflectivity. The flow chart in Figure 4 presents
the data processing and inversion algorithm-building process. As part of the GNSS-R
SSM retrieval process, the daily CYGNSS Level 1 product is first screened for valid data
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using specific criteria. These criteria include ensuring that the delay bin of the DDM peak
power falls within a 7–10 bin interval, the DDM SNR is greater than or equal to 2, the
receiver antenna gain in the specular point direction is greater than 0 dB, and the specular
incidence angle is less than or equal to 60◦. Once the nonconforming data are removed, the
effective reflectivity is computed at each analog power DDM peak using Equation (3). It is
worth noting that the noise floor was not considered in the computation of the effective
reflectivity because the results were worse when the peak power was subtracted from the
noise floor provided in the CYGNSS product. The incidence angle of the GNSS signal is
also an important factor affecting GNSS-R reflectivity, and its sensitivity to SSM decreases
as the incidence angle increases, as shown in Figure 2b. To correct this, the approach
proposed in [27] was applied. The individual reflectivity values were then gridded into a
36 km × 36 km EASE-Grid2 grid using mean value to match the SMAP SSM product on
the same day, generating training data sample pairs.
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Correction for the attenuation effects of vegetation and surface roughness on effective
reflectivity was made using the vegetation and roughness coefficient parameters provided
in the SMAP product, as described in Equations (5) and (6), respectively. A grid point value
was marked as invalid in the collocation process if the total number of specular effective
reflectivity values in the same grid cell was less than five. The grid cells marked in the
SMAP product as inland, urban, and hilly areas were also filtered. Once the masking
process is complete, the linear model is fitted pixel-by-pixel using all collocated training
datasets. The entire models can be represented as follows.

MGNSS−R
v =AΓgridded+B (7)

The established linear model included a coefficient matrix A, an intercept matrix B,
the gridded GNSS-R reflectivity Γgridded, and the predicted SSM from GNSS-R, denoted as
MGNSS−R

v . The formed model can be used to predict daily SSM values in the future.

3. Results and Analysis
3.1. SSM Retrieval from GNSS-R

To evaluate the performance of the SSM retrieval algorithm, we conducted an experi-
ment using the training dataset to regress the GNSS-R-derived effective reflectivity without
vegetation and surface roughness correction. Regression was performed by generating a
linear model for each EASE-Grid2 grid cell using the half-year spatial average effective
reflectivity and SSM from the SMAP product. Figure 5 displays the resulting slope of the
linear model was relatively smaller in arid regions where effective reflectivity was very low
and soil moisture content was small and stable, whereas the intercept tended to be negative
in such regions. Figure 5b clearly illustrates this trend.
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Figure 5. The slope (a) and intercept (b) of the linear SSM retrieval model.

Figure 6 depicts the density scatterplot of the matched SMAP SSM and CYGNSS-
derived SSM from the testing dataset and the retrieval error distribution. The black dashed
line represents a 1:1 diagonal and the red line shows the linear regression line in Figure 6a.
The total number of SSM data pairs matched for model testing was 7,736,769. The results
indicated that the total bias and RMSD of the CYGNSS-derived SSM were 0.009 cm3cm−3

and 0.048 cm3cm−3, respectively. The slope of the linear regression equation between the
reference SSM and the inversed SSM was 0.981, and the scatter points were closely aligned
with the linear regression line, suggesting a good match between the two datasets. The
distribution of bias mainly falls between −0.05 cm3cm−3 and 0.05 cm3cm−3, confirming
the accuracy of the retrieval model.
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Figure 7a,b show the spatial map of the relative errors between the CYGNSS-retrieved
SSM and SMAP SSM for each EASE-Grid2 grid cell from the testing dataset. The blue area
indicates where GNSS-R underestimates the surface SSM, whereas the red area represents
where it overestimates the SSM. In Figure 7a, the average bias is essentially small and
mainly falls between −0.05 cm3cm−3 and 0.05 cm3cm−3. Figure 7b shows that the soil
moisture inversion accuracy is less than 0.06 cm3cm−3 in most areas, except for a few
wetter regions such as the Sudanian Savanna and Peninsular India. However, the standard
deviations (STD) of CYGNSS-derived SSM and SMAP SSM in the last half-year of 2018 as
shown in Figure 7c,d, respectively, indicate good consistency, demonstrating that CYGNSS
can detect daily variation in soil moisture. Nonetheless, large deviations still exist in some
areas, such as central and eastern parts of South America and central Africa.
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3.2. Effects of Vegetation and Roughness

This section evaluates the performance of three retrieval configurations under different
land cover types defined by the International Geosphere-Biosphere Programme (IGBP) to
assess the impact of vegetation and surface roughness on the quality of CYGNSS-derived
SSM. The first configuration involves directly using effective reflectivity to construct re-
trieval models, ignoring the effects of vegetation and roughness, as described in Section 3.1.
The second configuration modifies the specular effective reflectivity with vegetation trans-
missivity for vegetation attenuation, using Equation (5). The third configuration further
corrects for surface roughness attenuation using the roughness coefficient in Equation (6).

Compared to the first configuration, the accuracy of the retrieved SSM improved
marginally when the effective reflectivity was modified with the vegetation effect. The
bias and RMSD of the GNSS-R-derived SSM were 0.009 cm3cm−3 and 0.046 cm3cm−3,
respectively. However, there was no significant improvement when the third configuration
was utilized compared to the second configuration.

The retrieval accuracy of the GNSS-R SSM retrieval model over different land cover
types was evaluated by comparing the results with those of the SMAP product. The
statistical results are presented in Table 1. The highest retrieval error was found for the land
cover with cropland/natural vegetation mosaics, and woody savannas, whereas barren
and open shrublands showed the best inversion performance. The discrepancy in retrieval
accuracy among different land cover types is partly due to the variation in the volume
of local SSM content. After correcting for vegetation attenuation, the performance of the
retrieval algorithm improved on vegetated terrain covered with deciduous-broadleaf-forest,
mixed-forest, woody savannas, savannas, croplands, grasslands, and cropland/natural
vegetation mosaics. The mean improvement was 4.4%. It is worth noting that the spatial
resolution of the CYGNSS observations was higher than 36 km. Therefore, using the spatial
average method for surface geophysical parameter processing instead of true values on the
GNSS-R specular point may explain the lack of significant improvement with vegetation
and roughness correction. Additionally, the uncertainty of the SMAP SSM product itself
could have influenced the results.

Table 1. CYGNSS soil moisture retrieval accuracy over different landcover types (unit: cm3cm−3).

Landcover
ID Land Classification

No Vegetation and
Roughness
Correction

Add Vegetation
Correction

Add Vegetation and
Roughness
Correction

Bias RMSD Bias RMSD Bias RMSD

4 Deciduous-Broadleaf-Forest −0.0040 0.0555 −0.0102 0.0544 −0.0100 0.0543
5 Mixed-Forest −0.0083 0.0478 −0.0051 0.0466 −0.0051 0.0465
6 Closed Shrublands −0.0058 0.0420 −0.0062 0.0408 −0.0060 0.0409
7 Open Shrublands −0.0045 0.0345 −0.0048 0.0344 −0.0048 0.0344
8 Woody Savannas −0.0090 0.0710 −0.0103 0.0679 −0.0102 0.0677
9 Savannas −0.0028 0.0619 −0.0047 0.0579 −0.0047 0.0577

10 Grasslands −0.0160 0.0580 −0.0164 0.0557 −0.0164 0.0556
11 Wetland 0.0025 0.0667 0.0012 0.0656 0.0014 0.0657
12 Croplands −0.0188 0.0667 −0.0127 0.0606 −0.0126 0.0605
14 Cropland/Natural Vegetation Mosaics −0.0314 0.0722 −0.0268 0.0707 −0.0264 0.0703
16 Barren −0.0068 0.0285 −0.0068 0.0285 −0.0068 0.0285

3.3. Validation of Soil Moisture by In Situ Observation

The reliability of the GNSS-R SSM retrieval methodology and the performance of
attenuation correction were evaluated by comparing the results with in situ SSM data from
the International Soil Moisture Network (ISMN). The in situ SSM measurements have a
raw time resolution of 10 min and a probe depth of 0.0~0.05 m. To align the SSM data from
different sources, the in situ measurements were resampled to a daily average value. The
GNSS-R SSM values were selected for the nearest grid point values to the corresponding
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in situ station. Figure 8 compares the time series from the in situ SSM, SMAP SSM, and
GNSS-R-derived SSM for both the training and testing data. The Yuma_27_ENE, Knox_City,
and Vernon sites exhibited high consistency between the measured and predicted SSM.
The predicted SSM from the developed linear model remained stable for six months of
extrapolation, although there was a significant systematic difference between the predicted
SSM and in situ measurements at the Newton_8_w station. This discrepancy may be due
to representative errors for different spatial resolution scales.
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Table 2 presents the validation results at the four different sites using various correction
strategies. The Yuma_27_ENE station, located in a very arid area, exhibited relatively stable
SSM levels throughout the year, and the CYGNSS-derived SSM also showed high stability.
For the grassland stations of Knox_City and Vernon, the results showed a somewhat
contradictory situation, with the retrieval model underestimating the last season of 2018 at
Vernon. The model performed well at Knox_City, whereas the SMAP SSM exhibited the
opposite behavior. The addition of attenuation corrections had an impact on the derived
SSM at the two stations. At the Newton_8_w station, the vegetation correction improved the
overall statistical RMSD value of the retrieved SSM, which was 0.082 cm3cm−3 compared to
0.076 cm3cm−3 for the SMAP SSM. Although there is a difference between global statistics
due to the different spatial resolutions of the two datasets and the relatively small testing
sample, the in situ validation confirms the ability of spaceborne GNSS-R reflectivity to
sense changes in SSM compared to the SMAP radiometer. The systematic error for absolute
SSM retrieval can be addressed using rescaling methods with larger datasets [36].

Table 2. The CYGNSS soil moisture retrieval accuracy at different in situ stations (unit: cm3cm−3).

Station Scene Name

No Vegetation and
Roughness Correction

Add Vegetation
Correction

Add Vegetation and
Roughness Correction

Bias RMSD Bias RMSD Bias RMSD

Yuma_27_ENE Open Shrubland −0.015 0.030 −0.015 0.030 −0.015 0.030
Knox_City Grassland 0.015 0.038 0.020 0.039 0.021 0.039

Vernon Grassland −0.051 0.069 −0.054 0.069 −0.053 0.070
Newton_8_W Cropland 0.092 0.057 0.107 0.046 0.108 0.047

4. Discussion

This study reports on the results of the CYGNSS SSM retrieval algorithm and analyzes
the performance of vegetation and surface roughness attenuation correction across different
land cover types. The findings indicate that spaceborne GNSS-R can be used for SSM
estimation, with the accuracy of CYGNSS-derived SSM being relatively stable. The daily
CYGNSS-derived SSM shows small changes in temporal bias and RMSD against SMAP
SSM during the testing period, as illustrated in Figure 9, with RMSD values of less than
0.06 cm3cm−3. This indicates the stability and reliability of the model. However, on
13 December 2018 there was a rapid increase in the bias and RMSD metrics, which was
thought to be related to the CYGNSS observation quality on that day. The inversion error
in various SSM bins shows that CYGNSS increasingly overestimates the ground SSM when
the SSM is greater than 0.22 cm3cm−3. While the RMSD at different bins indicates a steady
increase, the uncertainty remains stable at larger than 0.05 cm3cm−3 when the reference
value is greater than 0.14 cm3cm−3. Based on the assessments conducted, it can be inferred
that the accuracy of soil moisture estimates derived from CYGNSS is comparable to that of
satellite-based radiometers.

In the retrieval of SSM using spaceborne GNSS-R, the dielectric properties of the land
interface are affected by SSM, vegetation and surface roughness. The effective reflectivity
of GNSS-R is directly related to its dielectric property. In regions with dense vegetation,
vegetation attenuation can significantly impact SSM retrieval. While the tau-omega model
has been used in previous research, it is not suitable for terrains with dense vegetation. To
improve the accuracy of GNSS-R estimates, a better understanding of the scattering process
over rough surfaces is necessary, and more reliable reference geophysical parameters must
be selected. Furthermore, the entire GNSS-R inversion algorithm must be improved to
accurately quantify the impact of other factors on retrieval accuracy. Vegetation correction
improved the SSM inversion results from 0.048 cm3cm−3 to 0.046 cm3cm−3. However, when
applying the correction method to various land cover types, the impact on CYGNSS SSM
retrieval was not significant, indicating inconsistency with previous simulation results [37].
The limited improvement observed with the SMAP roughness parameter suggests that
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factors such as correction model, uncertainty in the SMAP parameters, and representation
errors may have contributed to this outcome.
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5. Conclusions

This study examines the potential of spaceborne GNSS-R for estimating land SSM. An
empirical statistical model was developed using SMAP Level-3 SSM products as reference
data. The accuracy of the CYGNSS-based retrievals of SSM was adversely affected by
the attenuation effects of vegetation and surface roughness. However, after correcting
for these effects, modest improvements were observed in SSM retrieval over vegetated
areas. Nonetheless, the surface roughness correction method was found to be limited
due to the absence of reliable small-scale surface roughness data and refined correction
methods. The derived SSM had an accuracy of 0.046 cm3cm−3 with vegetation correction.
The retrieval model developed in this study demonstrated stable performance, as assessed
using in situ and SMAP data. It is evident that the current state of spaceborne GNSS-R
SSM remote sensing requires the use of external auxiliary data for statistical modeling,
and the impact of additional terrestrial geophysical factors must be carefully quantified.
Future research should focus on developing models for vegetation and surface roughness
correction in satellite-based GNSS-R to improve our understanding of the effects of vege-
tation cover and surface roughness on soil moisture variability over different land cover
types. This study contributes to the advancement of remote sensing technology for soil
moisture measurements.
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