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Abstract: Surface downward longwave radiation (SDLR) is significant with regard to surface energy
budgets and climate research. The uncertainty of cloud base height (CBH) retrieval by remote
sensing induces the vast majority of SDLR estimation errors under cloudy conditions; reliable CBH
observation and estimation are crucial for determining the cloud radiative effect. This study presents
a CBH retrieval methodology built from 10 thermal spectral data from Himawari-8 (H-8) observations,
utilizing the random forest (RF) algorithm to fully account for each band’s contribution to CBH. The
algorithm utilizes only infrared band data, making it possible to obtain CBH 24 h a day. Considering
some factors that can significantly affect the CBH estimation, RF models are trained for different
clouds using inputs from multiple H-8 channels together with geolocation information to target
CBH derived from CloudSat/CALIPSO combined measurements. The validation results reveal that
the new methodology performs well, with a root-mean-square error (RMSE) of only 1.17 km for all
clouds. To evaluate the effect of CBH on SDLR estimation, an all-sky SDLR estimation algorithm
based on previous CBH predictions is proposed. The new SDLR product not only has a resolution
that is noticeably higher than that of benchmark products of the SDLR, such as the Clouds and the
Earth’s Radiant Energy System (CERES) and the next-generation reanalysis (ERA5) of the European
Centre for Medium-Range Weather Forecasts (ECMWF), but it also has greater accuracy, with an
RMSE of 21.8 W m−2 for hourly surface downward longwave irradiance (SDLI).

Keywords: cloud base height; surface downward longwave radiation; Himawari-8; machine learning;
surface energy budget

1. Introduction

Surface downward longwave radiation (SDLR) is a crucial component of the sur-
face energy budget and one of the significant drivers of climate change, as well as a
critical forcing parameter in many hydrological and land surface models [1–4]. There-
fore, accurate SDLR retrieval is essential for understanding Earth’s energy cycle and in
climate research [5,6].

Remote sensing significantly benefits SDLR estimates due to its global/regional cov-
erage, regular monitoring, and a high spatial resolution as compared to ground-based
observations and reanalysis data [7,8]. SDLR estimation algorithms based on remote sens-
ing have been created for clear-sky and cloudy-sky situations. The clear-sky SDLR are
frequently derived from air temperature and vapor pressure or relative humidity in much of
the literature [9–11]. However, these parameters are difficult to obtain from satellite signals.
Wang et al. [12] demonstrate the availability of the general parameterizations that rely on
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the land surface temperature (LST) and the precipitable water vapor (PWV) in retrieving
clear-sky SDLR; both parameters can be easily estimated from space [13–19]. Contrary
to clear-sky data, it is challenging and complex to retrieve cloudy-sky SDLR from space.
The thermal contribution for cloudy-sky SDLR is divided into two components: besides
the thermal radiation from the atmosphere under the cloud layers, the radiation from the
cloud layers is another important factor that cannot be disregarded. Numerous research
studies have shown that SDLR estimates of cloudy skies are controlled by the temperature
and height of the cloud base [5,20–22]. Moreover, the uncertainty of cloud base height
(CBH) retrieval from the satellites induces a large number of SDLR estimation errors un-
der cloudy conditions [23,24]. Some researchers often employ surrogated variables, such
as cloud fraction [25,26], ice water path (IWP) or liquid water path (LWP) [27,28], and
cloud top temperature (CTT) [12] to quantify the cloud contribution, whereas few studies
have used CBH directly. This practice will inevitably cause some additional errors in
SDLR estimations [7]. The accurate acquisition of CBH is the key to estimating SDLR [12].

Effective methods for retrieving CBH include ground-based observations, polar-orbiting
observations, and geostationary satellite observations. Ground-based observations often
provide precise CBH, but these are restricted to a small region around the observation
site [29,30]. Polar-orbiting observations can be active or passive, among which active
observation satellites carry radar and lidar (CPR/CloudSat and CALIOP/CALIPSO) to
explore the cloud profile globally [31]. Still, narrow scanning strips limit the observation
coverage. Passive polar-orbiting observations, such as NPP/VIIRS, Aqua/MODIS, and
Terra/MODIS, may yield CBH estimates with extensive horizontal coverage [32] and can
measure targets with high spatial and spectral precision, but cannot be utilized to identify
stationary areas continually due to the polar orbit. Recently, new geostationary satellites
with much better spatial, spectral, and temporal resolutions, such as FY-4, Himawari-8, and
GOES-R, have opened up new possibilities for accessing the CBH [33–35]. Using upstream
cloud products from the Advanced Himawari Imager (AHI) on Himawari-8 and the Ad-
vanced Geostationary Radiation Imager (AGRI) on Fengyun-4A (FY-4A), Tang et al. [36,37]
recently utilized a random forest algorithm to retrieve CBH. Additionally, the Advanced
Baseline Imager (ABI) level-1b data from the Geostationary Operational Environmental
Satellite-R Series (GOES-16), together with the fifth-generation reanalysis (ERA5) data
from the European Centre for Medium-Range Weather Forecasts (ECMWF), were used by
Lin et al. [38] to estimate CBH. However, because these all rely on visible/near-infrared
data, they could not estimate CBH at night, which limits their applications during night-
time. Due to the fact that the majority of presently used algorithms are based on cloud
property products or reanalysis data, the errors from upstream retrieval will accumulate
in CBH estimation [39]. In addition, most of those algorithms target daytime situations,
and few research studies have committed to deriving the all-day CBH.

In recent years, machine learning (ML) methods have been proven effective for many
nonlinear problems in remote sensing and meteorology, such as the estimates of CTH or
precipitation [40–42]. The correlation between CTH and brightness temperatures (BTs)
from infrared (IR) bands is apparent physically. However, CBH is complicated by the
strong absorption of the cloud in IR bands. ML methods are beneficial for solving such
a problem. The random forest (RF) technique of ML methods is used in this study. RF
constructs multiple learners to complete learning tasks, which is widely applied for solving
nonlinear fitting problems [36,43,44]. It is suitable for dealing with the complex relationship
between nonlinear inputs and prediction, and can significantly improve learning ability
and generalization in both sampling and features.

In this study, we present an ML approach for CBH retrieval using Himawari-8 level-1b
infrared data based on a RF algorithm, which was developed for all-day concentration
on single-layer clouds. Moreover, we try to see if the accuracy of CBH retrieval can be
improved and further applied to the estimation of SDLR. The Japan Meteorological Agency
(JMA) launched Himawari-8, the country’s first new-generation geostationary meteoro-
logical satellite, on 7 October 2014, and it started operating on 7 July 2015. The Advanced
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Himawari Imager (AHI) aboard Himawari-8 offers greater capabilities and better perfor-
mance than earlier Japanese geostationary meteorological satellites due to considerable
increases in spatial, temporal, and spectral resolutions [33]. Random forest (RF) has been
used extensively in remote sensing research in recent years [40,45] and is well suited to
handle the complex relations between nonlinear input and prediction. Cloud absorption
and scattering effects on electromagnetic waves make it more challenging to obtain CBH
information directly from satellite observations. An advanced RF algorithm can help to
solve this problem. The advantages of all-day infrared observations and the geostationary
satellite’s ability to continuously observe a large area at all times provided the CBH esti-
mation obtained in this study with the benefits of a high spatial and temporal resolution,
extensive spatial coverage, and all-day observation ability. Further SDLR estimations based
on this CBH retrieval will have the same characteristics. Compared to previous studies,
this research was dedicated to obtaining a reliable all-day CBH retrieval method with
high spatiotemporal resolution and less reliance on upstream retrieval. Further, the CBH
estimations were further applied directly to the SDLR retrieval to improve the accuracy
of SDLR estimations. The data used in this research and the CBH and SDLR estimation
methods are presented in Section 2. The estimated CBH and SDLR results are presented in
Section 3. Finally, conclusions are given in Section 4.

2. Materials and Methods

For the estimation of CBH and SDLR of the new-generation geostationary satellites,
the data used in this study include Himawari-8 (H-8) level-1B (L1B) infrared observation
data and level-2 cloud products (L2 CLP), CBH data from the combined measurements of
CloudSat and CALIPSO; LST and PWV products from the ERA5 reanalysis; SDLR data
from in situ radiation stations of four networks; and auxiliary data (latitude and elevation).
The H8 L2 CLP used in this study include both cloud type product and CTT data. The
cloud type product was utilized to classify the training data for CBH retrieval to build
RF models. Furthermore, CTT data was used as a surrogate parameter for CBH, and the
resultant accuracy increase from directly applying CBH to SDLR estimation was evaluated.
The following subsections present detailed data descriptions.

2.1. Input Data

In the CBH retrieval study, the training data of the RF model were first classified using
a cloud type product, the H-8 L2 CLP, and then the CBH was estimated from H-8 L1B
infrared data. The H-8 satellite started its operation in 2015 in geosynchronous orbit at
approximately 140◦ E. The Advanced Himawari Imager (AHI), which offers observations
with 16 different channels (Table 1), with center wavelengths ranging from 0.47 to 13.3 µm
and spatial resolutions ranging from 0.5 to 2 km, is the main instrument onboard H-8. At
10 min interval, the AHI scans the whole disk (a satellite’s view of the planet). To achieve
24 h continuous estimation, 10 infrared bands out of the 16 channels were used as input
data in this study. The most recent standard H-8 L1B data are available on www.eorc.
jaxa.jp/ptree/index.html (accessed on 15 February 2023) in HSD and netCDF formats.
The netCDF format (60◦ S–60◦ N, 80◦ E–160◦ W) is rearranged to 0.02◦ and 0.05◦ with
significantly poorer coverage due to margin cutting, whereas the HSD format keeps the
previous resolution. Since the H-8 L2 CLP is only available for daytime observation,
we used the CARE (Cloud, Atmospheric Radiation and Renewal Energy Application)
version 1.0 cloud type product obtained from H-8/AHI data for our study [44]; the 24 h
cloud top temperature product for the surrogated parameter algorithm used in the SDLR
estimation is also provided by the CARE.

www.eorc.jaxa.jp/ptree/index.html
www.eorc.jaxa.jp/ptree/index.html
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Table 1. Bands of H-8/AHI.

Channel Band (µm) Spatial Resolution (km) Use or Not

Visible
1 0.46 1
2 0.51 1
3 0.64 0.5

Near−Infrared
4 0.86 1
5 1.6 2
6 2.3 2

Infrared

7 3.9 2
√

8 6.2 2
√

9 7.0 2
√

10 7.3 2
√

11 8.6 2
√

12 9.6 2
√

13 10.4 2
√

14 11.2 2
√

15 12.3 2
√

16 13.3 2
√

We used the LST and PWV products from the ERA5 reanalysis to derive clear-sky
SDLR. The CBH estimated in this study was added to the inputs with LST and PWV
to derive cloudy-sky SDLR, and the surrogated parameter algorithm employed for the
comparison of results used the CARE-CTT described previously. The LST and PWV data
were provided by the European Centre for Medium-Range Weather Forecasts (ECMWF)
next-generation reanalysis (ERA5) (https://cds.climate.copernicus.eu/cdsapp#!/dataset/
reanalysis-era5-single-levels?tab=overview, accessed on 15 February 2023), which have a
1 h temporal resolution and a 25 km spatial resolution. The spatial resolution and temporal
resolution of our CBH estimate and CARE-CTT were 5 km and 10 min, respectively. We
used bilinear interpolation to resample the spatial resolution of the ERA5 LST and PWV
data to 5 km to retain consistency in the spatial and temporal resolution of the inputs in the
SDLR estimation [46]. The CBH estimation and CARE-CTT were averaged on an hourly
scale to obtain the hourly products.

2.2. Validation Data

We employed the combined measurements from CloudSat and CALIPSO, which are
members of the A-Train constellation and have equator-crossing periods in the afternoon
(1330, local time), to determine the intended CBH output. Except for precipitating clouds
and optically thin cirrus, CloudSat’s 94 GHz cloud profiling radar (CPR) can identify
vertical cloud boundaries [47]. The Cloud-Aerosol LIDAR with Orthogonal Polarization
(CALIOP) aboard CALIPSO has a greater vertical resolution and is more sensitive to thin
cirrus [48]. The most well-known cloud profile product worldwide is the combined 2B-
GEOPROF-LIDAR (geometric profile, GEOPROF; light detection and ranging, LIDAR)
product of CPR and CALIOP, which offers more specific information on cloud vertical
structure [49]. The 2B-GEOPROF-LIDAR product has a vertical resolution of 60 m and
a horizontal spatial resolution of 1.1 km. It contains information on cloud boundaries
(layer top and layer base) for a maximum of five layers. Our spatial matching method
exclusively utilizes H-8 pixels closest to CloudSat/CALIPSO profiles in terms of position.
The objective CBH in the RF training procedure is the lowest height of the cloud layer
nearest to the ground.

A total of thirty-five in situ radiation stations from four networks situated in H-8
full-disk zones were utilized to verify the predicted SDLR in this study: thirteen sites
from the Australian Governments Bureau of Meteorology (BOM), four sites from the Nam
Co Watershed (NMC), seven sites from the Global Moored Buoy Array (GTMBA), and
eleven sites from the Baseline Surface Radiation Network (BSRN) [50,51]. The World
Climate Research Programme created the BSRN, which seeks to provide high-accuracy

https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels?tab=overview
https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels?tab=overview
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validation data at 1 min intervals. For the worldwide SDLR, the measurement uncertainties
are about 10 W/m−2 [52]. The Second Tibetan Plateau Scientific Expedition and Research
Program (STEP) initiative constructed the NMC, a ground observation network, and the
accompanying measures include surface downward shortwave radiation (SDSR), SDLR,
and net radiation. These four stations are also all located at elevations of more than 4.5 km.
Given that certain BOM sites are also members of the BSRN, the properties of BOM data
should be equivalent to those of BSRN. Regarding the GTMBA, daily and weekly programs
are used to carry out data quality control formally [53]. High-frequency SDLR observations
of one to three minutes are offered by these stations. These full-disk regions of H-8 sites
from various networks serve as examples of SDLR validation. When the files had quality
flags, all of the high-quality in situ data were included in the research. Low-quality data
were excluded after manually checking non-quality highlighted data.

2.3. Algorithm Description

The flowchart in Figure 1 was followed for the construction of the algorithms that
produce the CBH and all-sky SDLR products. First, RF models for CARE cloud types are
generated separately by training using the 10 infrared channel data of H-8 L1, the digital
elevation model (DEM), latitude (Lat), and the CBH of 2B-GEOPROF-LIDAR. Second, RF
models for cloudy-sky and clear-sky SDLR are trained using the CBH estimation, ERA5
LST and PWV products, and ground-based SDLR observations. Third, validation of the
estimated CBH and SDLR is performed using data from active observation satellites and in
situ radiation stations.

Figure 1. Flowchart for the estimation of CBH and the all-sky SDLR based on H-8.

2.4. RF-CBH Model Development

The RF algorithm [54] is a machine learning technique that constructs multiple learn-
ers to complete learning tasks. It is suitable for dealing with the complex relationship
between nonlinear inputs and prediction, and can significantly improve learning ability
and generalization in both sampling and features. Although the RF algorithm is attempted
here, readers may use other machine learning techniques instead, such as support vector
machines and extremely randomized trees. We fully considered our choice of inputs for
the RF model. To retrieve the all-day CBH, we used all of the 10 infrared channel data
of H-8 L1 as input parameters, which carry, more or less, cloud base information. The
scatter plot of the H-8 infrared band vs. cloud geometric thickness (Figure 2) also confirms
a correlation between all infrared bands and cloud geometric thickness. The cloud types
and geographical characteristics (e.g., latitude, altitude, etc.) have been shown to affect
CBH estimates [49,55]. To demonstrate the impact of several sets of input parameters on
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the CBH, we built a sensitivity analysis of those parameters (Table 2). We observed that,
when compared to all other groups, the performance of the RF model with all 10 input IR
bands, DEM, latitude, and cloud types was the best.

Figure 2. Scatter plots of H-8 infrared band vs. cloud geometric thickness.

Table 2. Different input groups and their validation of CBH retrieval.

Different Groups
(Channel Number)

Cloud Base Height (km)
RMSE MBE R

All IR bands, DEM, Lat, cloud types 1.17 −0.02 0.92
All IR bands, DEM, Lat 1.53 0.08 0.82

All IR bands, DEM 1.61 0.17 0.81
All IR bands 1.63 0.21 0.80

8,9,10,11,12,13,14,15,16 1.67 0.19 0.80
9,10,11,12,13,14,15,16 1.67 0.18 0.79
10,11,12,13,14,15,16 1.69 0.16 0.79

11,12,13,14,15,16 1.77 0.16 0.77
12,13,14,15,16 1.82 0.17 0.75

13,14,15,16 1.88 0.13 0.73
14,15,16 2.07 0.18 0.67

15,16 2.96 0.29 0.35

The infrared channels of H-8 may support the model’s ability to predict the CBH
more accurately, and they should all be considered in relation to the retrieval technique,
according to Table 2. Therefore, we extracted training data according to cloud types and
produced RF models suitable for different cloud types while inputting latitude and altitude
data to the models to optimize the training effect.

The construction of the RF-CBH models starts with the preparation of the training
data. In this work, we used brightness temperature data in bands 7 to 16 of H-8 L1, CARE
cloud types, and the CBH obtained from 2B-GEOPROF-LIDAR, DEM, and latitude data
that covered two whole years, from 2016 to 2017, as the training dataset in order to reduce
the effects of seasonal variation. Although the spatiotemporal matching strategies for all
data have been described before, we would like to state some key points again. The CARE
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product and the H-8 data have the same spatiotemporal resolution. The only H-8 pixels
that are spatially matched are those whose positions are closest to the CloudSat/CALIPSO
profiles, and the time intervals between the matches are limited to 5 min. All clouds are
regarded as single-layered to streamline the CBH retrieval procedure. The goal CBH in the
RF training process is the lowest height of the CloudSat/CALIPSO cloud layer closest to
the ground.

Finally, we obtained 5,508,920 matchups divided according to different cloud types.
We allocated 20% of these filtered samples as a test dataset for algorithm validation and
80% as a training dataset for RF model training. During the training phase, we set the
number of trees to 10, which incrementally increased by 10 until 500 was reached, and all
other settings were left at their default values. Finally, the number of trees that performed
optimally on the test dataset was selected. The optimal number of trees for all RF-CBH
models ranged from 220 to 290, with the minimum number of cumulus (Cu) being
220 and the maximum number of deep convective clouds (Dc) and altocumulus (Ac)
being 290.

2.5. RF-SDLR Model Development

The SDLR estimate methods were created for two different sky conditions: clear skies
and cloudy skies. With the use of LST and PWV as inputs, we derived clear-sky SDLR; with
CBH, LST, and PWV as inputs, we derived cloudy-sky SDLR. The surrogated parameter
algorithm of Wang et al. [12], which is based on CTT, LST, and PWV to derive cloudy-sky
SDLR, was also attempted in this study.

In the preparation of the training data, we used the LST and PWV of the ERA5 re-
analysis, the CBH estimation derived from our study, and the SDLR of in situ radiation
stations that was obtained for a whole year in 2017. The spatiotemporal matching strate-
gies for ERA5 reanalysis and CBH are described in Section 2.1. The geographical and
temporal resolutions of the inputs to RF models were 5 km and 1 h, respectively. Radia-
tion stations offer high-frequency observations lasting one to three minutes, which were
resampled to 1 h. The CBH pixels whose locations were nearest the radiation stations were
matched spatially.

Finally, we obtained 206,136 matchups, comprising 125,720 records for clear skies
and 80,416 records for cloudy skies. We allocated 20% of these filtered samples as a test
dataset for algorithm validation and 80% as a training dataset for RF model training. The
RF-SDLR model training method is the same as that for RF-CBH: set the number of trees to
10, incrementally increase by 10 until 500 is reached, and leave all other settings at their
default values. Finally, the number of trees that performed optimally on the test dataset
was selected. In the end, the optimal number of trees for the clear-sky SDLR model was
290, and for the cloudy-sky model was 260.

3. Results and Discussion
3.1. Spatial Features of the Cloud Geometric Properties and SDLR

Figure 3 shows the spatial features of the H-8 full-disk cloud geometric properties
and SDLR. Both CTH and CBH increase as the latitude decreases, and clouds with a high
CBH are mainly generated near the equator. The subfigure of CGT shows that thick clouds
also often form close to the equator, and most of them are deep convective clouds with
significant convection phenomena. High latitudes will have more cloud coverage than low
latitudes. The spatial distribution of 35 radiation stations from four networks is shown
in Figure 3f.

Because clouds have the ability to block longwave radiation transmitted to space
from the surface and lower atmosphere, as well as emit longwave radiation to the
surface, ultimately warming the Earth–atmosphere system, cloud cover tends to raise
the SDLR.
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Figure 3. Spatial features of the H-8 full-disk cloud geometric properties and SDLR on
September 1, 2018: (a) bands 3, 2, and 1 for RGB of the H-8 true color image; (b) CARE cloud
top height product; (c) H-8 cloud base height derived using the RF models; (d) cloud geometry
thickness derived from the difference between CTH and CBH; (e) H-8 SDLR derived using the RF
models; and (f) spatial distribution of radiation stations from four networks (BOM, GTMBA, BSRN,
and NMC) used to validate the performance of the estimated SDLR. Different symbols stand for
various networks.

3.2. Validation of the CBH Estimation

We chose a suitable case to show the performance of the new CBH product. Super
Typhoon Meranti approached the southeastern coast of China on 13 September 2016. In
particular, we focused on three areas, as shown in Figure 4: the super typhoon (domain B),
the high clouds over the Chinese Bohai Rim (domain C), and the low clouds over the
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southern Australian coast (domain D). This example was selected because it covers a
variety of clouds, including deep convective, low, and high clouds. This enabled us to
develop a better comprehension of the RF-CBH performance for various cloud types.

Figure 4. Case study of Super Typhoon Meranti and low/high clouds on 13 September 2016: (a) AHI
Natural True Color images starting at 05:00:41 UTC, with the start time and direction indicated in the
right-side legends; the orange lines represent the CALIOP scanning tracks. The CBH calculated by
the RF-CBH corresponding to areas B, C, and D in panel (a) is shown in panels (b–d).

Corresponding to Figure 4, the cross sections along CALIOP scanning tracks for Super
Typhoon Meranti and low/high cloud case study were shown in Figure 5. For all cloud
types, the CBH estimations (black upward triangles) and the CALIOP observations (red
squares) correspond pretty well, as shown in the cross-section view in Figure 5a–c. The
majority of CBH estimations, particularly for low clouds, have uncertainties of less than
1 km. The CBH estimates from RF-CBH are highly accurate. For the CBH of Typhoon
Meranti, which is the most interesting to us, it can be seen that the typhoon’s center has a
high CTH and very low CBH in CALIOP observations. Even so, the RF-CBH works well in
estimating CBH. The RF-CBH accurately reveals that the closer to the edge of the typhoon,
the higher the CBH. It should be noted that the estimation errors increase significantly in
multilayer clouds (green downward triangles), and the CBH estimates will be higher than
the observations. In this study, all clouds are considered single-layered, and the influence
of multilayer clouds on CBH has not been studied. Therefore, multilayer clouds need to
be considered in the future to improve the accuracy of the RF-CBH. In this example study,
all cloud types exhibit strong CBH estimation using the RF-CBH with respect to accuracy.
Although estimating CBH based on geostationary satellites is challenging, the RF-CBH
successfully obtains those CBH estimates.

We chose the CBH of 2B-GEOPROF-LIDAR for two whole years, from 2018 to 2019,
to compare and statistically assess the performance of new CBH products. The results for
different cloud types are shown in Figure 6, where the RMSE of stratus (St) is the smallest
at 0.47 km, and that of altocumulus (Ac) is the largest at 1.56 km. The general RMSE of
all cloud types is 1.17 km, with a mean bias error (MBE) of −0.02 km and a correlation
coefficient (R) of 0.92. The performance of RF-CBH for different cloud types is shown in
Table 3. The comparison demonstrates that the CBH estimations produced from the H-8
achieve good performance.
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Figure 5. The cross sections along CALIOP scanning tracks for Super Typhoon Meranti and low/high
cloud case study: (a–c) The cross sections refer to the orange dot lines in Figure 4b–d. The black
upward triangle markers represent CBH estimates, and the red square, green downward triangle,
and blue leftward triangle markers are the CBH of the lowest clouds, the CBH of the topmost clouds,
and the CTH of the topmost clouds from CALIOP observations, respectively. Note that the lowest
cloud can be either single- or multilayered, and the green downward triangle markers only exist in
multilayer clouds.

Figure 6. RF-CBH performance: (a) the performance of RF-CBH for different cloud types. Ci: cir-
rus, Cs: cirrostratus, Dc: deep convection, Ac: altocumulus, As: altostratus, Ns: nimbostratus,
Cu: cumulus, Sc: stratocumulus, St: stratus; (b) the performance of RF-CBH for all cloud types.
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Table 3. The performance of RF-CBH for different cloud types.

Cloud Type RMSE (km) MBE (km) R N

Ci 1.27 0.10 0.91 59,061
Cs 1.53 0.06 0.89 139,910
Dc 1.21 −0.04 0.79 72,470
Ac 1.56 −0.04 0.87 36,213
As 1.00 0.02 0.84 129,807
Ns 0.63 0.07 0.82 59,098
Cu 1.35 −0.13 0.71 118,066
Sc 1.05 −0.04 0.68 286,754
St 0.47 −0.01 0.75 46,163

All types 1.17 −0.02 0.92 947,542

Regarding the comparison of CBH results, a relatively large deviation from the 1:1 line
occurs with some cloud types, especially for the overestimation of high clouds such as Cs,
Ac, and As and the underestimation of low clouds such as Cu and Sc. Overestimation is
mainly concentrated in low observations due to neglecting the influence of precipitation
clouds on CBH estimation. The radar echo signal of precipitation clouds is powerful until
it reaches the surface, and thus, it retrieves a very small CBH in observations. As for the
RF-CBH, the estimations of CBH are only determined by the model inputs, and all clouds
are considered non-precipitation clouds, leading to overestimation compared to the results
obtained through observation. Underestimation is due to the misclassification of cloud
types. Since the RF-CBH is based on separate models for different cloud types, there will
be significant differences between the models. When a high cloud is misclassified as a low
cloud, the RF-CBH estimate will be underestimated. The errors caused by misclassification
should exist for all cloud types, i.e., low clouds misclassified as high clouds will also be
overestimated by the RF-CBH, and thus, the Cu and Sc clouds are misclassified more easily
in this study. We believe that the CBH estimation accuracy will be improved if precipitation
clouds are considered and better cloud type products are used.

The errors of the RF-CBH may also come from two other aspects. One is the errors
carried out by 2B-GEOPROF-LIDAR itself. It is still challenging to obtain the CBH for
clouds with strong convective effects and a high optical thickness by depending only on
satellite data, such as for deep convective clouds, even though the combination of radar
and lidar can identify the cloud profile effectively and produce a pretty accurate CBH. The
other is the errors of the RF model training. There are still errors in the CBH estimates of
the RF-CBH models compared with the results obtained with active observations, and the
optimization of the ML algorithm chosen in this study can improve the estimation accuracy.

3.3. Validation of the SDLR Estimation

Figure 7 shows the spatial features of the H-8 full-disk SDLR and RF inputs on
1 September 2018. The spatial resolution of ERA5 SDLR is coarse at 25 km, and the product
has noticeable regular stripes, which is unreasonable. The RF-SDLR estimates closely
match the ERA5 SDLR spatially with a 5 km spatial resolution and show more details in
the graph. Comparing the differences between these two SDLR products under cloudy-
sky and clear-sky conditions, as shown in Figure 7c, and the spatial features of CBH,
LST, and PWV, as shown in Figure 7d–f, respectively, can lead us to some interesting
conclusions. Firstly, the regions where the SDLR difference is close to 0 tend to have
a high PWV, and the difference increases when the PWV decreases. Second, the RF-
SDLR estimations are higher in the Northern Hemisphere than those of ERA5 and lower
in the Southern Hemisphere under clear-sky conditions. The differing ground-based
observation networks used in the Northern and Southern Hemispheres may be to blame
for this performance. The main networks used in the Northern Hemisphere are the BSRN
and NMC, where NMC is a network established to observe the Tibetan Plateau with
reliable SDLR observations in the region. In a further study of the comparison between
the ERA5 SDLR and in situ radiation observations, as shown in Table 4, the ERA5 SDLR is
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seriously underestimated compared with NMC observations. The employment of the NMC
observations can correct the underestimation of SDLR estimations in the plateau. The main
network used in the Southern Hemisphere is the BOM. The RF-SDLR generated by the BOM,
which the Australian government provides, should reasonably describe the truly SDLR in the
Southern Hemisphere. Finally, for cloudy-sky conditions, high values of SDLR differences
tend to include a high CBH and low PWV, and low difference values tend to include a low
CBH and low PWV, which is related to the radiation effects of different CBHs. According to
Stephens et al. [23], the underlying water vapor that leads to the highest cloud sensitivity
for the SDLR happens in the colder, drier parts of the Earth, and dramatically modulates
the SDLR. On the contrary, when PWV is high, SDLR is insensitive to clouds. A high CBH
results in a lower cloud base temperature, substantial longwave radiation absorption and
emission from the cloud base to the surface, and a significant warming effect of clouds, which
increases SDLR. In contrast, when the CBH is low, longwave radiation from the surface is
less blocked; thus, more longwave radiation is sent into space, and the SDLR is reduced.

Figure 7. Spatial features of the H-8 full-disk SDLR and RF inputs on 1 September 2018: (a) H-8 SDLR
derived using RF models; (b) ERA5 reanalysis SDLR product; (c) the difference between H-8 SDLR
and ERA5 reanalysis SDLR product under cloudy-sky and clear-sky conditions; (d) H-8 CBH derived
using the RF models; (e) ERA5 reanalysis LST product; and (f) ERA5 reanalysis PWV product.
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Table 4. The validation results of RF-SDLR, the surrogated parameter algorithm, ERA5 reanalysis,
and CERES against different ground networks. Note that there are three stations used in this study
that belong to both the BOM and BSRN networks.

RF(CBH)−SDLR RF(CTT)−SDLR ERA5 CERES
NRMSE MBE R RMSE MBE R RMSE MBE R RMSE MBE R

BOM
Clear−sky 23.6 −1.1 0.88 23.6 −1.1 0.88 28.9 −7.7 0.85 33.8 −3.5 0.77 101,775

Cloudy−sky 19.5 0.8 0.92 26.8 2.6 0.88 25.1 −7.1 0.89 28.5 0.5 0.83 30,861
All−sky 22.7 −0.6 0.89 24.3 −0.2 0.88 28.1 −7.6 0.86 32.6 −2.6 0.79 132,636

BSRN
Clear−sky 19.4 2.1 0.94 19.4 2.1 0.94 22.1 −2.9 0.92 26.6 3.1 0.89 67,303

Cloudy−sky 17.0 −0.8 0.97 25.2 3.7 0.95 22.2 −7.7 0.95 23.6 −1.5 0.93 41,257
All−sky 18.5 1.0 0.95 21.6 2.7 0.94 22.1 −4.7 0.94 25.5 1.3 0.91 108,560

GTMBA
Clear−sky 11.5 0.9 0.82 11.5 0.9 0.82 13.0 −2.6 0.79 12.0 −1.4 0.80 19,850

Cloudy−sky 9.2 −0.3 0.68 12.4 0.7 0.52 12.7 −6.1 0.54 12.0 −5.8 0.57 9686
All−sky 10.8 0.5 0.84 11.8 0.8 0.82 12.9 −3.8 0.80 12.0 −2.8 0.81 29,536

NMC
Clear−sky 31.0 1.3 0.79 31.0 1.3 0.79 43.8 −32.6 0.84 40.2 −17.9 0.76 11,006

Cloudy−sky 29.7 5.1 0.86 34.2 7.4 0.88 37.6 −22.1 0.87 38.4 −1.0 0.79 14,929
All−sky 30.2 3.5 0.83 32.8 4.8 0.85 40.3 −26.5 0.86 39.2 −8.1 0.77 25,935

All
Clear−sky 22.5 0.9 0.93 22.5 0.9 0.93 27.1 −7.2 0.92 30.5 −2.2 0.89 161,160

Cloudy−sky 20.5 0.9 0.97 25.9 3.0 0.95 26.1 −10.0 0.96 28.0 −1.1 0.94 85,515
All−sky 21.8 0.9 0.95 23.7 1.7 0.94 26.8 −8.2 0.94 29.6 −1.8 0.91 246,675

We chose the SDLR of in situ radiation data for a whole year in 2018 to compare and
statistically assess the performance of new SDLR products. In this work, we compared the
validation results of the RF-SDLR, the surrogated parameter algorithm, ERA5 reanalysis,
and CERES. The RF-SDLR uses CBH as the input parameter, whereas the surrogated
parameter method uses CTT. The SDLR of ERA5 reanalysis is discussed in Section 2, and
the Clouds and the Earth’s Radiant Energy System (CERES) is one of the few missions
that delivers global all-sky surface SDLR outputs. The ERA5 and CERES SDLR products
are widely verified and determined to perform well [11,23]. The validation results are
displayed in Figure 8.

The RMSE of the RF-SDLI against the ground observations is 21.8 W m−2 for the
full-disk H-8, which is better than 26.8 W m−2 for the ERA5 reanalysis, 29.6 W m−2 for the
CERES, and 23.7 W m−2 for the surrogated parameter algorithm. The MBE of the RF-SDLI
in this study is only 0.9 W m−2, whereas the SDLR products of CERES and ERA5 show
an apparent underestimation. This is especially true for the ERA5, with MBE values of
−1.8 W m−2 and −8.2 W m−2. Table 4 shows the performance of the four SDLR products
for validation against different ground networks.

It can be seen in Table 4 that the RF-SDLR has a better performance compared to the
other SDLR products in the comparison of each ground network for all indicators such
as RMSE, MBE, and R. In addition, the performance of all SDLR products on the ocean is
significantly better than that on land, as the accuracy of the SDLR observations on land
will be influenced by the differences in the background.

More interestingly, the CERES performs the worst of the four SDLR products in
the BOM and BSRN networks, and ERA5 performs poorly in the GTMBA and NMC
networks; we believe that ERA5, as a worldwide reanalysis data system, references
the World Radiation Monitoring Center’s Baseline Surface Radiation Network (WRMC-
BSRN), making it perform better for the BSRN and BSRN-like BOM. Furthermore, the
SDLR of ERA5 reanalysis shows a severe underestimation of MBE values for all net-
works in almost all cloud-sky, clear-sky, and all-sky situations, which is consistent with
many studies [24,56].

In summary, the RF-SDLR created in this work performed well in the validation
compared to the ground observations, which can also show the effectiveness of the RF-CBH
for the estimation of CBH. The SDLR estimates have the advantages of extensive coverage
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and high spatiotemporal resolution. We think the conceptual framework and research
results might inspire fresh approaches to Earth radiation balance.

Figure 8. The validation results of RF-SDLR, the surrogated parameter algorithm, ERA5 reanalysis,
and CERES against the ground observations.

4. Conclusions

The uncertainty of CBH retrieval by remote sensing induces a large number of SDLR
estimation errors under cloudy conditions. This paper proposes a CBH retrieval method-
ology based on 10 thermal spectral data from H-8 observations utilizing the RF approach
and using models trained individually for distinct cloud types to obtain more precise CBH
data with a high spatiotemporal resolution. The algorithm can estimate the CBH 24 h a day,
and has less reliance on upstream retrieval. After the models are trained, as long as there
are appropriate inputs, the CBH can be independently estimated. The validation results of
the RF-CBH show an effective performance, with the RMSE of stratus being the smallest at
0.47 km, and that of altocumulus being the largest at 1.56 km. The general RMSE value of
all cloud types is 1.17 km.

After deriving a good CBH product, this study estimates all-sky SDLR based on
the RF-CBH, and ERA5 reanalysis LST and PWV products using the RF approach. We
innovatively utilized the CBH directly to the SDLR retrieval, so that the accuracy of
SDLR estimations can be improved. Hourly RF-SDLI validation findings reveal an RMSE
value of 21.8 W m−2 compared to ground observations, which is significantly better
than 26.8 W m−2 for ERA5 reanalysis, 29.6 W m−2 for CERES, and 23.7 W m−2 for the
surrogated parameter algorithm. The RF-SDLR also has a better performance compared to
other SDLR products, as determined through the comparison of each ground network for
all indicators, such as RMSE, MBE, and R, proving that using CBH to estimate the SDLR is
an effective idea.
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There are some limitations of the RF-CBH and RF-SDLR. For RF-CBH, all clouds
are regarded as single-layered to streamline the CBH retrieval procedure. In reality, the
multilayer clouds are complex with multiple cloud bases and signal reduction, leading to a
potential error for CBH estimates. Precipitation clouds with strong radar signals will cause
the wrong CBH of the training data. Precipitation clouds should be filtered out in further
research to adopt a suitable method to estimate CBH. Finally, RF-CBH is also influenced
by the cloud types products, and accurate cloud classification can improve the accuracy
of CBH estimations. For RF-SDLR, the ERA5 data used in this study are not available
in real-time or near real-time and have some limitations on the applications with high
timeliness requirements.

The RF method used in this study can provide high-accuracy retrieval for CBH and
SDLR, with high-speed performance after training the RF models. The algorithm is appli-
cable to new-generation geostationary meteorological satellites. We must acknowledge,
however, that the current iteration of this new approach still has much room for improve-
ment. For instance: (1) the RF method is one of the more commonly used ML methods,
and further attempts can be made using other methods such as the LightGBM method or
extremely randomized trees to select the optimal method for estimation; (2) we ignored
the influence of precipitation clouds on CBH estimation, as it retrieves a very small CBH
in radar observations, but precipitation clouds should be filtered out in further research
to adopt a suitable method to estimate CBH; (3) in the extraction and matching of model
training data, the inputs and targets come from different satellites, and there are differences
in the altitudes and observation angles of the satellites at the time of observation, and
thus, we can add a parallax correction for the matching of training data to strengthen the
training dataset; and (4) we can find more accurate cloud types products and superior
LST and PWV products with higher spatiotemporal resolution to improve CBH and SDLR
estimations, respectively.
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