
Citation: Zheng, H.; Zhang, Y.; Chen,

Q.; Yang, Q.; Huang, G.; Wang, D.;

Liu, R. Bayesian Analysis of Spatial

Model for Frequency of Tornadoes.

Atmosphere 2023, 14, 472. https://

doi.org/10.3390/atmos14030472

Academic Editor: Jimy Dudhia

Received: 18 November 2022

Revised: 3 February 2023

Accepted: 17 February 2023

Published: 27 February 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

atmosphere

Article

Bayesian Analysis of Spatial Model for Frequency of Tornadoes
Haitao Zheng 1, Yi Zhang 1, Qiaoju Chen 1, Qingshan Yang 2, Guoqing Huang 2,*, Dahai Wang 3 and Ruili Liu 2

1 Department of Statistics, Southwest Jiaotong University, Chengdu 610031, China
2 School of Civil Engineering, Chongqing University, Chongqing 400044, China
3 School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan 430062, China
* Correspondence: ghuang1001@gmail.com

Abstract: Frequency analysis of tornadoes is very important for risk analysis and disaster control. In
this paper, the annual frequency of tornadoes that occurred in the United States from 1967 to 2016
is analyzed. The simple analysis shows that frequencies of tornadoes of different sites are spatially
correlated and over-dispersed. To explain the two characteristics of the data, the Bayesian hierar-
chical model is proposed. For comparison purposes, the Bayesian model with negative binomial
distribution, Poisson distribution, Polya distribution, and first-order, non-negative, integer-valued au-
toregressive model with Bell innovations(BL-INAR(1)) are considered to fit the frequency of tornado.
The distribution parameters of all sites are assumed to be spatially correlated, and the corresponding
Bayesian hierarchical models were established. MCMC (Markov Chain Monte Carlo) method is
applied to parameter estimations and relative statistical inference. By comparison of the analysis
results, the negative binomial distribution is recommended to analyze the overdispersion and spatial
correlation among the sites of the data. The comparison between the simulated frequencies based
on the proposed model and the actual frequencies also verifies that the proposed method is a better
model for the data.

Keywords: negative binomial distribution; Poisson distribution; spatial correlation; Bayesian
hierarchical model; MCMC

1. Introduction

A tornado is a small-scale vortex flow with strong destructive force. The United
States is the country with the most tornadoes in the world. According to the records of
the National Oceanic and Atmospheric Administration (NOAA) (spc2016) [1], a total of
62208 tornadoes occurred from 1950 to 2016. Almost every year, tornadoes cause damage
to property and the economy and also result in deaths and injuries. Tornadoes are a
major concern in the United States. In order to estimate tornado damages, risk analysis
is needed [2].

The risk analysis of tornadoes requires building an appropriate model. In general,
the characteristics of tornadoes can be described by physical parameters such as path
length and width, moving direction, moving speed, and wind speed model, as well as
statistical parameters such as annual frequency and seasonal characteristics. Banik [3] used
the frequency, intensity, path length, and width of tornadoes to establish a tornado risk
assessment model in southern Ontario, Canada. Shen [4] and Coleman [5] established a
tornado risk assessment model in the United States by using the frequency of tornadoes.
Tamura [6] established a tornado risk analysis model for Japanese tornado data according to
the frequency, length, width, and moving direction of tornadoes. In the above risk analysis,
frequency analysis is an important part of tornado analysis. Generally, meteorological
variables such as tornadoes have many uncertainties. The Bayesian hierarchical model
is often used in the study of the probability model of meteorological variables [7]. For
example, Cheng [8] established the probability model by using a Bayesian hierarchical
model for the frequency of tornadoes in Canada. Sang [9] also adopted the spatial model
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for building extreme temperature values with space-time attributes. Potvin [10] used
Bayesian hierarchical modeling to estimate tornado reporting rates and expected tornado
counts in the central United States from 1975 to 2016. To improve estimates of tornado
frequency in the central United States, Potvin [11] developed a sophisticated statistical
model that accounts for these population-dependent tornadoes. Moore [12] analyzed the
spatial distribution characteristics of tornadoes in the United States; they [13] looked at
the relationship between tornado activity in the United States and the El Nio/Southern
Oscillation in all four seasons and across multiple regions. Coffer [14] used Random Forest
classification to predict tornadoes. Allen [15] employed Kernel Density Estimation for
spatial pattern analysis and space-time cubes to visualize the spatiotemporal frequency
of tornadoes and potential trends. Gensini [16] analyzed the spatial trends in the United
States’ tornado frequency. They focused on an environmental covariate approach to exam-
ine potential changes in United States tornado frequency. Cao [17] developed a statistical
framework to quantitatively explain two-way interconnections between long-term climate
trends and internal variabilities. Some of the studies might consider the spatial correlation
of tornadoes [18–21] but have not considered the characteristics of dispersion. The afore-
mentioned literature used Poisson distribution to fit the data but did not check if it was
appropriate for the data. Recently, Huang [22] has proposed a new first-order, non-negative,
integer-valued autoregressive model with Bell innovations(BL-INAR(1)) to analyze the
count data, and the model is suitable for counts exhibiting overdispersion. The data is non-
negative and integer-valued Poisson distribution is usually used for count data analysis
and sometimes generalized linear model since the data is a non-negative integer-value. The
count data with repeated measures may have a dispersion issue, which is often ignored
in engineering practice.

The simple analysis of the annual frequency of tornadoes in various regions of the
United States from 1967 to 2016 shows that the spatial correlation and overdispersion
phenomenon exists. To account for those phenomena, the Bayesian method is applied to
analyze the annual frequency of tornadoes with three distributions, i.e., Poisson distribution,
negative binomial distribution and Polya distribution. The parameters of each distribution
are assumed to vary with the grids to account for the inhomogeneity in the dataset. Spatial
correlation is assumed by the a priori distribution of spatial model parameters. MCMC
(Markov Chain Monte Carlo) method is used for posterior parameter estimation. Finally,
the simulation analysis is carried out by using the established spatial model. The numerical
characteristics and spatial correlation of the simulated tornado frequency are compared
with the actual data to show the effectiveness of the proposed method.

We organize the rest of this article as follows. In Section 2, we briefly introduce the
Bayesian hierarchical model and the three discrete distributions, including its definition
and some properties. Section 3 introduces the method of data processing and analysis, and
explains why we adopt the method in this paper. In Section 4, we use the MCMC algorithm
to estimate the parameters of the model and then compare the results with other models to
show the superior performance of the proposed model, and the simulation analysis also
shows the practicability of the model. The paper concludes in Section 5.

2. Methodology

Here we attempt to establish a probability model of the annual frequency of tornadoes
by using the Bayesian inference technique. Firstly, the annual frequency of tornadoes in
each region is assumed to follow a discrete distribution, and the discrete distribution is
decomposed into a series of conditional probability models to obtain a Bayesian hierarchical
model. X, Y, and Z are random variables and their joint probability density function can be
expressed as P(X, Y, Z) = P(Z|X, Y)P(X|Y)P(Y).

Hypothesis: D, observation data set; Θ, parameter set; Φ, hyperparameter set.
The Bayesian hierarchical model simplifies complex problems into three main parts:
Sampling distribution: P(D|Θ, Φ)
Priors for Θ: P(Θ|Φ)
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Priors for Φ: P(Φ)
The first part is mainly concerned with the sampling distribution function or likelihood

function of the observed values under the condition that the relevant parameters of the
observed data are given. The second part is concerned with the prior distribution, which
is the probability distribution of the parameters of the data model in part one under the
condition of hyperparameters. The last part is the prior distribution of the hyperparameters,
also known as the super prior distribution. In application, these parts can be subdivided
into some sub-stages to construct a multi-stage hierarchical model, which makes the model
more flexible.

The three parts are introduced to study what distribution the process and parameters
of interest follow given the observed data, that is, the posterior of the parameters and
processes. The expression is given by Bayes’ rule:

P(Θ, Φ|D) ∝ P(D|Θ, Φ)P(Θ|Φ)P(Φ) (1)

In Bayesian inference, assuming that the parameters of the model are not fixed values,
but random variables, the appropriate distribution of parameters can be assigned according
to experience and prior knowledge, that is, super prior distribution. For the selection of
prior distribution, the conjugate distribution of the likelihood function is generally selected
to facilitate iterative operation, or without prior information, the uninformative prior is
directly selected.

In this paper, under the condition that the annual frequency data of tornadoes in each
region are known, the distribution functions of frequency and parameters are assumed to
construct a Bayesian hierarchical model. Finally, the posterior parameters of the annual
frequency distribution are estimated by MCMC sampling.

2.1. Sampling Distributions

The data set Xs×t = (X1, X2, · · · , Xt) =


x1,1 x1,2 · · · x1,t
x2,1 x2,2 · · · x2,t

...
xs,1 xs,2 · · · xs,t

 is given,

where xk,i, 1 ≤ k ≤ s, 1 ≤ i ≤ t is the frequency of tornadoes in the k-th area in the
i-th year. Here, it is assumed that the distribution of tornado frequency in different years is
the same in the same year.

(1) Suppose that the annual frequency Xi = (x1,i, x2,i, · · · xs,i)
T of tornadoes in each

region in the i-th year follows a Poisson distribution under the condition of the
expected occurrence frequency λ = (λ1, λ2, · · · , λs)

T :

The probability density function of the Poisson distribution is:

Xi|λ, µ, Σ ∼ Poisson(λ) (2)

The probability density function of the Poisson distribution is:

f (Xi; λ|µ, Σ) = p(Xi|λ, µ, Σ) =
λXie−λ

Xi!
(3)

and the mean and variance of the Poisson distribution are equal.

(2) Suppose that Xi = (x1,i, x2,i, · · · xs,i)
T follows a negative binomial distribution with

parameters r = (r1, r2, · · · , rs)
T and p = (p1, p2, · · · , ps)

T :

Xi|r, p, µ, Σ ∼ NB(r, p) (4)
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The probability density function of negative binomial distribution, expectation, and
variance are respectively:

f (Xi; r, p|µ, Σ) = p(Xi|r, p, µ, Σ) =

(
Xi + r− 1

Xi

)
pki(1− p)r (5)

E(Xi|r, p, µ, Σ) =
r(1− p)

p
(6)

Var(Xi|r, p, µ, Σ) =
r(1− p)

p2 (7)

Equations (6) and (7) show that the mean value of the negative binomial distribution
is smaller than the variance.

(3) Suppose that Xi = (x1,i, x2,i, · · · xs,i)
T follows a Polya distribution with parameters

α = (α1, α2, · · · , αs)
T and β = (β1, β2, · · · , βs)

T :

Xi|α, β, µ, Σ ∼ Polya(α, β) (8)

The probability density function of polya [20] distribution, expectation, and
variance, respectively:

f (Xi; α, β|µ, Σ) = p(Xi|α, β, µ, Σ) =
Γ(ki + α)βki

Γ(ki + 1)Γ(α)(1 + β)α+ki
(9)

E(Xi|α, β, µ, Σ) = αβ (10)

Var(Xi|α, β, µ, Σ) = αβ(1 + β) (11)

2.2. Priors of Parameters

(1) Suppose that the parameter λ of the Poisson distribution follows the lognormal
distribution with parameters µ and Σ:

λ|µ, Σ ∼ LN(µ, Σ) (12)

where µ = (µ1, µ2, · · · , µs)
T . Covariance matrix Σ is a function of spatial distance,

which can be expressed as:

Σ ∝ e−
d
ρ (13)

The off-diagonal elements of the covariance matrix are not zero, indicating that there is the
correlation between the elements of a random variable λ. Where d is the spatial distance matrix,

taking the Euclidean distance, we have dm,n =
√
(sm1 − sn1)

2 + (sm2 − sn2)
2, where sm1, sn1

represents the latitude of m and n regions, and sm2, sn2 represents the
corresponding longitude.

(2) The value of parameter r of the negative binomial distribution is non-negative. As-
sume that uninformative prior is a lognormal distribution, that is:

r ∼ LN(0, 1) (14)

The value of parameter p ranges from 0 to 1. In order to consider the spatial correlation,
p

1−p is assumed to follow a lognormal distribution with parameters µ and Σ, i.e.,

p
1− p

|µ, Σ ∼ LN(µ, Σ) (15)

The assumption of covariance matrix Σ is the same as that of Poisson distribution.
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(3) Suppose that the parameter β of the Polya distribution follows an uninformative prior
of the uniform distribution,

β ∼ U(a, b) (16)

where a and b are non-negative integers.

Considering the spatial correlation, assume that the parameter α follows a lognormal
distribution with hyperparameters µ and Σ, i.e.,

α|µ, Σ ∼ LN(µ, Σ) (17)

The assumption of covariance matrix Σ is the same as that of Poisson distribution.

2.3. Priors of Hyperparameters

Assume that the elements µj(1 ≤ j ≤ s) of the mean µ of lognormal distribution are
independent and identically distributed, and its prior distribution is a normal distribution

µj ∼ N
(

µ0, σ2
0

)
(18)

where µ0 and σ0 are constants.
Suppose that the hyperparameter ρ follows the uninformative prior distribution of

N(µd, σd) in all three distributions, where µd = d = ∑s
m=1 ∑s

n=1 dm,n
s2 , σd = d

k , and
k is a constant.

3. Data Source and Data Pre-Analysis
3.1. Data Sources

The data comes from the National Oceanic and Atmospheric Administration (NOAA) [1].
The tornado frequency data of the United States from 1967 to 2016 is used in the analysis.
The tornado frequency here refers to the number of recorded tornadoes, not the actual
number of occurrences. The data also contains the time, latitude and longitude of the
tornado occurrence.

In the data, the latitude and longitude of tornadoes in the United States ranged
from −W81◦ to −W158◦ and N21.1◦ to N60◦. The smaller the grid is, the more grids
with 0 tornadoes will be covered by grids of equal size. However, areas that have never
experienced tornadoes in 50 years are meaningless for practical analysis. Some simple
analysis with different sizes of grids has been done. Too many grids with zero counts or
grids with large counts will complicate the analysis. To balance the number of grids and
the annual frequency of tornadoes in each grid, the longitude interval selected in this paper
is 6.7◦, and the latitude interval is 3◦, resulting in a 15 × 15 grid, shown as a black frame
line in Figure 1. The annual frequency of tornadoes in each grid is counted, and the data
set X225×50 is obtained. The subscript of the data set represents the number of grids and
the number of years, respectively, and the grid coordinate S(Latitude, Longitude) takes its
geometric center coordinate. Excluding the grids whose annual average frequency is less
than 1, the remaining 52 grids are shown in the white box in Figure 1, and the data set
X52×50 is obtained. The following analysis is based on this data set.

3.2. Descriptive Analysis
3.2.1. Spatial Correlation Analysis

Each row of the data set Xs×t represents the annual tornado frequency of a grid, and
the grid coordinates are S(Latitude, Longitude). Sorting each grid according to latitude,
and one row of the sorted dataset Xs×t still represents the annual tornado frequency
of a grid from 1967 to 2016. Calculate the correlation coefficient between rows, that
is, the correlation coefficient of the annual frequency series of tornadoes in each grid,
or the spatial correlation coefficient of tornadoes, and obtain the correlation coefficient
matrix (a) and correlation coefficient histogram (b) in Figure 2. The obvious correlation
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is shown in Figure 2a. It can also be seen from Figure 2b that the correlation coefficient
between some grids is more than 0.5, and the correlation coefficient of some grids is less
than −0.2, indicating that there is a non-negligible spatial correlation between the annual
frequency of tornadoes.
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Figure 1. Grid division of tornadoes in the United States from 1967 to 2016.
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Figure 2. Correlation coefficient matrix and histogram of annual tornado frequency in different grids.

3.2.2. Divergence Analysis

Poisson distribution is commonly used for count data. It has an important property
that the mean and variance are equal. If the sample variance of the count data and
estimated variance based on the assumed distribution are not equal, it is called uneven
dispersion, including two situations: the estimated variance is less than the sample variance,
which is called over-dispersion, and vice versa, it is called under-dispersion. For Poisson
distribution, the dispersion exists when the sample mean and sample variance are not
equal. The data set X52×50 is analyzed by the divergence. The mean and variance of each
grid are shown in Figure 3. Table 1 shows the mean and variance data of six randomly
selected grids. It can be seen that the variance in the given grid is significantly larger than
the mean, which indicates that the data of X52×50 has obvious over-discrete characteristics.
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For the data with overdispersion, Poisson distribution may lead to large errors in
data fitting. Therefore, it is necessary to consider a more accurate distribution. For count
data, some suitable distributions have been proposed, such as the Poisson distribution
based on the Quasi Likelihood and random effect model [23–25]. For the tornado counting
data in this paper, we consider the Poisson distribution, negative binomial distribution,
and Polya distribution. Note that Poisson distribution is just a special case of negative
binomial distribution. By randomizing the distribution parameters, we establish a Bayesian
hierarchical model on the premise of considering the spatial correlation of parameters. Then
we use the MCMC method to estimate the posterior parameters and compare them with
the actual data to evaluate which distribution is more suitable and whether the proposed
Bayesian hierarchical model is effective.

4. Analysis Results
4.1. Estimation Algorithm

After establishing the Bayesian hierarchical model, a series of parameters of posterior
distribution can be sampled by the MCMC method. The MH (metropolis Hastings) algo-
rithm in the MCMC method is adopted in this paper. The basic steps of this algorithm are
as follows:

(1) Select the appropriate proposed distribution g(.|Xt) , and f is the objective function.
(2) Generate X0 from the proposed distribution g as the initial value of the sampling sequence.
(3) Repeat the following steps until the sampling sequence converges to a stable state

according to some criteria.
(3.1) Generate candidate values Y from g(.|Xt) .
(3.2) Generate a random number u from the uniform distribution U(0, 1).
(3.3) If u < f (Y)g(Xt |Y)

f (Xt)g(Y|Xt)
, accept Y, Xt+1 = Y, and the sampling sequence is updated in

step t + 1, otherwise Xt+1 = Xt, the sampling sequence has not been updated in step t + 1.
(3.4) Increase the value of t.
In the Bayesian hierarchical model in this paper, the likelihood function P(D|Θ, Φ)

is the target distribution, and the super prior distribution P(Θ|Φ)P(Φ) is the proposed
distribution. On the premise of known observation data, the estimated values of parameters
and super parameters are obtained through multiple iterations; that is, the estimated values
of parameters λk, rk, pk, αk, βk(1 ≤ k ≤ s).
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4.2. Comparison between Simulation Frequency and Actual Frequency

According to the Bayesian hierarchical model established above, the posterior param-
eter estimates of three distributions λ̂k, r̂k, p̂k, α̂k, β̂k (1 ≤ k ≤ s) are obtained by the MH
algorithm. The parameters of Polya’s interpretation model in Section 2.2 are a = 0, b = 10;
the values of µ0 and σ0 in the parameter model in Section 2.3 are µ0 = 0.1 and σ0 = 1.5
in the Poisson distribution; In the negative binomial distribution, µ0 = 0, σ0 = 10; In
Polya distribution, µ0 = 0, σ0 = 1; k= 100 in Poisson distribution and negative binomial
distribution, k = 20 in Polya distribution. It can be seen from the data model in Section 2.1
that if the parameters of the probability distribution are known, the mean and variance
of the distribution function can be estimated from the parameters. Therefore, after the
posterior parameter estimates are obtained, the mean and variance corresponding to each
grid distribution function are calculated and then compared with the mean and variance
calculated from the actual data.

From dataset X52×50, eight grids were randomly selected. The mean and variance
of the tornado frequency series of each grid are shown in Table 2. At the same time, the
values of mean and variance obtained from the estimation of posterior parameters in the
corresponding grids under several distributions and BL-INAR(1) model are given. The
results are also shown in Table 2.

Table 2. The mean and variance of tornado frequency of partial grids under different distributions.

Girds Statistic Actual Value Poisson
Distribution

Negative Binomial
Distribution

Polya
Distribution BL-INAR(1)

G1
Mean 2.46 2.29 2.34 6.12 2.49

Variance 7.07 8.05 12.86 4.76

G2
mean 2.96 2.72 2.93 2.56 3.01

Variance 11.18 12.55 4.87 4.88

G3
Mean 3.30 3.00 3.31 4.06 3.29

Variance 13.81 12.99 6.33 6.46

G4
Mean 4.22 3.56 4.47 6.25 4.32

Variance 16.66 13.75 11.04 8.66

G5
Mean 11.68 10.48 12.92 5.62 11.60

Variance 87.04 56.85 10.29 30.83

G6
Mean 15.22 13.83 15.14 8.35 15.29

Variance 174.62 297.51 14.22 36.86

G7
Mean 21.36 19.40 24.80 11.83 21.66

Variance 173.58 227.09 19.98 58.11

G8
Mean 49.22 52.33 50.52 66.58 49.56

Variance 1011.97 1502.40 182.07 155.77

The results in Table 2 show that under the three distribution assumptions and BL-
INAR(1) model, the mean value calculated by the posterior parameters is relatively close
to the actual mean value, except for Polya. It was found that the mean values of the
negative binomial distribution and BL-INAR(1) model were close to the actual value. The
mean of the Poisson distribution was not bad, but the Polya distribution was not suitable
for the data. The variance range of the actual data in each grid was 1.24–1111.56, which
fluctuated greatly. It was seen that the variance estimated by the posterior parameters of
the negative binomial distribution was closer to the real variance, and better described the
volatility and overdispersion of the data, only slightly overestimated. BL-INAR(1) model
can closely estimate the mean values and explain part of the overdispersion of the data, but
its variances were much smaller than the actual data. Note that the BL-INAR(1) model did
not consider the spatial correlation among the sites. It means that the BL-INAR(1) model
is a potential method if it can be modified by different distributions of spatial structure
in the parameters. By comprehensive comparison analysis, the Bayesian hierarchical
model, considering spatial correlation, was effective, and the model with negative binomial
distribution was the best, which had more consistent results with the actual data.
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After obtaining the estimates of the posterior parameters of the three distributions,
the established models are used to simulate the annual tornado frequency of each grid.
We used a histogram to compare the distributions of simulated data and real data. The
simulation study did not consider the BL-INAR(1) model since it can not simulate the
spatial correlation among the sites. It can be seen from Figure 4 that the simulated data of
Poisson distribution and negative binomial distribution are closer to the actual data. More
details from Figure 4 are as follows:

(1) The zero frequency of Poisson distribution simulation data is close to that of the real
data. The number of grids falling into the first interval of Poisson distribution is
higher than that of the real data in the 9–12 interval, and slightly lower than that in
the last few intervals.

(2) For the simulated data with a negative binomial distribution, the number of grids
in the first two intervals is slightly higher than the actual value, the number of grids
in the 5–15 intervals is slightly lower than the real number, and the number of grids
in the subsequent intervals is higher than the real number. The simulated values
of the negative binomial distribution are more dispersed and can better reflect the
characteristics of the original numbers.

(3) The grid number of simulated data of the Polya distribution is concentrated in the
first interval, and the grid number of subsequent intervals is basically lower than that
of real data. The simulation value of tornado occurrence times of Polya distribution
in each grid is obviously small, and its effect is the worst compared with the first two
distributions.

It can be seen that the distribution of the simulated frequencies of tornadoes with a
negative binomial model is quite close to the distribution of the real value. Such a result
reflects the superiority of the proposed method.

4.3. Analysis of Posterior Parameter Estimates

The spatial correlation of the original data is established by the prior distribution of the
parameters in the model. Therefore, the spatial correlation of posterior parameters should
be similar to the spatial correlation of actual data. The sample of parameters of Poisson
distribution, negative binomial distribution, and Polya distribution is obtained through
MCMC, the spatial correlation coefficients of the stabilized parameters λ, log p

1−p and α are
calculated, respectively. The spatial correlation coefficient matrix of the parameters adopts
the same eigenvector angular ordering method as the spatial correlation coefficient matrix
of the original data, and the correlation coefficient matrix shown in Figure 5 is obtained.
The results show that the posterior parameters have an obvious spatial correlation. The
correlation coefficient matrix of Poisson distribution parameters is shown in Figure 5a.
It can be seen that the Poisson distribution also reflects the spatial correlation, but its
characteristics are significantly different from those in Figure 2a. The correlation coefficient
matrix of the negative binomial distribution parameters is shown in Figure 5b, and its
correlation matrix is more similar to the correlation matrix of the original data (Figure 2).
The correlation coefficient matrix (c) of Polya distribution parameters is similar to that of
the Poisson distribution and does not really reflect the spatial correlation of the original
data. The correlations of the posterior parameters of the three distributions are different
since they are related to their distribution characteristics and parameter assumptions. In
addition, the posterior parameters of different distributions retain an obvious correlation.
Thus, it is feasible to set the superparameters of the model as a function of spatial distance
so as to consider the spatial correlation of tornado occurrence frequency.
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5. Conclusions

In this paper, three distributions, including Poisson distribution, negative binomial
distribution, and Polya distribution, and BL-INAR(1) models are used to fit the annual
tornado frequency data. Considering the spatial correlation of the data, probability models
of the annual tornado frequency in each region is established based on the Bayesian
hierarchical framework. The means and variances of the data were compared with those of
the posterior analysis. The established models were also used to simulate the frequencies
of tornadoes and the corresponding spatial relationship. The results are summarized as
follows:

(1) The posterior analysis shows that estimated means and variances of negative binomial
for each grid are closer to those of actual data and provide a better explanation of
overdispersion shown in the data. These statistics are better than those by existing
distributions, such as the Poisson distribution.

(2) The distributions of the simulated frequency based on a negative binomial is close
to the distribution of the actual data, meaning the negative binomial model is more
suitable for the data.

(3) The analysis of raw data reveals the spatial correlation of data. The proposed spatial
correlation analysis based on negative binomial distribution is consistent with the
results of actual data.

Overall, the proposed method with a negative binomial model can better describe the
spatial correlation and overdispersion of tornado frequencies. That has a certain guiding
significance for the disaster reduction and prevention of tornadoes. However, it should be
noted that the occurrence of tornadoes may be related to time and many meteorological
factors, such as temperature, air pressure, vertical wind shear, and even illumination and
rainfall, etc. The observed data may also be affected by non-meteorological factors such as
monitoring equipment, stations, period, and so on. Therefore, data collection of tornadoes
with more variates is needed for more accurate analysis. Furthermore, the advanced models
can be developed, such as BL-INAR(1) model with different distributions and spatially
correlated parameters, semiparametric models with consideration of overdispersion and
spatial structure, etc.
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