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Abstract: The Caribbean basin is a geographical area with a high prevalence of asthma due to
mineral dust. As such, it is crucial to analyze the dynamic behavior of particulate pollutants in
this region. The aim of this study was to investigate the relationships between particulate matter
with aerodynamic diameters less than or equal to 2.5 and 10 µm (PM2.5 and PM10) using Hilbert–
Huang transform (HHT)-based approaches, including the time-dependent intrinsic correlation (TDIC)
and time-dependent intrinsic cross-correlation (TDICC) frames. The study utilized datasets from
Puerto Rico from between 2007 and 2010 to demonstrate the relationships between two primary
particulate matter concentration datasets of air pollution across multiple time scales. The method first
decomposes both time series using improved complete ensemble empirical mode decomposition with
adaptive noise (ICEEMDAN) to obtain the periodic scales. The Hilbert spectral analysis identified
two dominant peaks at a weekly scale for both PM types. High amplitude contributions were
sustained for long and continuous time periods at seasonal to intra-seasonal scales, with similar
trends in spectral amplitude observed for both types of PM except for monthly and intra-seasonal
scales of six months. The TDIC method was used to analyze the resulting modes with similar
periodic scales, revealing the strongest and most stable correlation pattern at quarterly and annual
cycles. Subsequently, lagged correlations at each time scale were analyzed using the TDICC method.
For high-frequency PM10 intrinsic mode functions (IMFs) less than a seasonal scale, the value of
the IMF at a given time scale was found to be dependent on multiple antecedent values of PM2.5.
However, from the quarterly scale onward, the correlation pattern of the PM2.5-PM10 relationship
was stable, and IMFs of PM10 at these scales could be modeled by the lag 1 IMF of PM2.5. These
results demonstrate that PM2.5 and PM10 concentrations are dynamically linked during the passage
of African dust storms.

Keywords: PM2.5; PM10; multiscale analysis; time-dependent intrinsic cross-correlation;
Caribbean area

1. Introduction

With global urbanization and industrialization, particulate matter has become one
of the most significant components of atmospheric pollutants [1]. Particulate matter in
different forms can have a significant impact on climate [2,3], and can induce adverse health
effects, such as respiratory and cardiovascular diseases [4–6]. Researchers have extensively
studied the relationship between particulate matter and meteorological parameters, with
most studies reporting multiscale characteristics of this behavior [7,8]. Particulate matter
with aerodynamic diameters less than or equal to 2.5 and 10 µm (PM2.5 and PM10) are
among the most referenced particulate pollutants in the literature [9–12].

In the field of air pollutants, PM2.5 and PM10 often exhibit non-linear and non-
stationary behavior, showing the coexistence of different spatial–temporal scales [13–16].
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Li et al. [17] used a seasonal-trend decomposition procedure based on LOESS (STL)
coupled with a wavelet analysis to conduct a spatial–temporal analysis of the Air Pollution
Index (API) and its relationship with meteorological factors in Guangzhou, China, from
2001 to 2011. They found a negative relationship between API, temperature, relative
humidity, precipitation, and wind speed, and a positive relationship between API, the
diurnal temperature range, and atmospheric pressure in the annual cycle. Fu et al. [18]
analyzed the association between PM2.5 and other pollutants, such as O3, CO, SO2, NO2,
in China, in addition to different meteorological parameters, considering the 2014–2018
datasets of daily and monthly scales, using the ensemble empirical mode decomposition
(EEMD). In general, most of the past studies independently examined the association
between PM2.5 and PM10 with the meteorological factors or concentrations of other
pollutants.

Apart from such studies, it is highly important to assess the mutual association
between the two pollutants to accurately model air pollutants. Filonchyk et al. [19]
investigated a linear association between PM2.5 and PM10 in 11 cities of Gansu Province
in 2015. Munir et al. [20] examined the association between PM2.5 and PM10 and their
relationship with meteorological parameters in Makkah, Saudi Arabia. The Caribbean basin
is a strategically important area for studying the impacts of mineral dust on PM2.5–PM10
behavior because it is an intermediate zone located between the Caribbean Sea and the
Atlantic Ocean with low anthropogenic activity, in contrast to megacities [21]. It is well
known in the literature that this area is frequently affected by the major long-range Saharan
dust transportation from West African desert sources [22–27].

Atmospheric circulation conditions drive the transport of mineral aerosols across the
Atlantic towards the Lesser Antilles, which are mostly affected by desert dust plumes from
May to August, constituting the high dust season for Caribbean islands. Outside of this
period, dust episodes are significantly less frequent [23,28–30]. The intensity and frequency
of dust events strongly depend on the distance from African coasts and the phenomenon
of dust particle loss all along the route of dusty air masses. This factor significantly reduces
air quality and results in a significant increase in the concentrations of PM10 and PM2.5
measured in the surface layer of the atmospheric boundary layer [31]. PM10 particles
are mainly representative of the size range of Saharan dust particles from sand haze
episodes, while PM2.5 particles are less representative of desert aerosols. However, in this
geographical area, only a few studies have investigated the behavior of PM2.5 and PM10
simultaneously, and all their results are based solely on statistical methods [32–34].

Even though the relationship between PM2.5 and PM10 has been studied, the multi-
scale correlation between these pollutants has not yet been fully investigated. In this paper,
a multiscale decomposition framework is used to dynamically investigate the relationship
between PM2.5 and PM10. The EMD method, which is an adaptive time-frequency data
analysis technique, was first introduced by Huang et al. [35]. Its objective is to decompose
any time series into a sum of different intrinsic mode functions (IMFs) through a sifting
procedure [36,37]. Although this method has revolutionized the understanding of physical
processes, it may introduce a serious drawback known as the mode mixing problem [38].
The mode mixing problem comes about when very similar oscillations are present in dif-
ferent modes [39]. Wu and Huang [40] proposed the EEMD technique, which involves
adding white noise series to the original time series to aid in the sifting process and prevent
mode mixing. However, this method does not completely eliminate white noise during
the reconstruction of the time series [41]. Thus, Torres et al. [42] introduced the complete
EEMD with adaptive noise (CEEMDAN) approach, which attempts to reduce residual
noise in the modes. However, this method can still introduce spurious modes and noisy
components in the early stages of the decomposition. To address these issues, Colominas et
al. [43] proposed the improved CEEMDAN (ICEEMDAN), which is designed to produce
components with less noise and more physical meaning.

The time-dependent intrinsic correlation (TDIC) analysis is a multiscale correlation
method based on the EMD method or its variants to assess the correlation between two



Atmosphere 2023, 14, 468 3 of 17

time series [44]. In the literature, the TDIC method has often been used to investigate
the relationship between a pollutant and meteorological parameters [7,8,45,46]. In the
Caribbean area, African dust storms have strong impacts on solar radiation (SR), air
temperature (T), wind speed (U), rainfall (R), and visibility (V) [7,8]. During the high dust
season, PM10 is positively and negatively correlated, respectively, to SR-T-U and R-V. The
correlations between PM10 and PM2.5 evolve over time depending on the duration and
intensity of dust events. However, to our knowledge, no study has used the multiscale
decomposition framework to analyze the relationship between these two pollutants. In
addition to the popular TDIC analysis [47–54], the lagged influence of correlations also
needs to be analyzed for developing predictive models with improved accuracy. This can
be achieved using the time-dependent intrinsic cross-correlation (TDICC) approach [55,56].
Therefore, the aims of this study are (i) to investigate the multiscale periodic features of
PM10 and PM2.5 using ICEEMDAN, (ii) to find the multiscale association between PM10
and PM2.5 using TDIC, and (iii) to analyze the lagged influence of correlations between
PM10 and PM2.5 using the TDICC method.

2. Experimental Data

Puerto Rico (PR) is located at a latitude of 18.23 degrees north of the equator and longi-
tude 66.50 degrees west of the prime meridian. This United States territory
has a population of 3.194 million inhabitants and is situated at the top of the Lesser
Antilles in the Caribbean area, covering an area of 9104 km2 (see Figure 1).

Figure 1. Map of the Caribbean area with Puerto Rico (PR) at the top of the Lesser Antilles.

According to the Köppen–Geiger classification [57], this island experiences a tropical rain-
forest climate (“Af”). PM2.5 and PM10 data were collected at Cataño (18.431◦ N 66.142◦ W,
sub-urban area) by the United States Air Quality Network and released by Air Now
agencies. Both measurements were made using the Thermo Scientific tapered element oscil-
lating microbalance (TEOM) (models 1400 ab and 1400-FDMS). The data were continuously
sampled and stored as 15 min averages, which were used to compute the daily average
concentrations analyzed in this study. The reliability of measurements was under the
control of the Environmental Protection Agency (EPA) in the United States. To ensure inter-
annual transitions, daily scale data are preferable; for performing multiscale analysis, long
and continuous data are required. During the hurricane season in the Caribbean islands,
i.e., from June to October [58,59], there are many holes in the PM2.5–PM10. Consider-
ing these aspects, we chose the period of 2007–2010 for the present study, during which
no major hurricane events occurred and the data are available in a long and continuous
manner.



Atmosphere 2023, 14, 468 4 of 17

3. Theoretical Framework

The overall framework of multiscale correlation analysis between two correlated
signals using Hilbert–Huang transform (HHT) involves: (i) the decomposition of candidate
signals, (ii) finding HT of the components, (iii) performing a running correlation analysis
between the IMFs, and (iv) analyzing the temporal evolution of the residue (low frequency
components of the signals).

In this study, the multiscale decomposition was performed using the improved com-
plete ensemble empirical mode decomposition with adaptive noise (ICEEMDAN) proposed
by Colominas et al. [43] and a multiscale correlation analysis using the TDIC frame and
its time-lagged extension. The basic details of these algorithms are presented in the next
sections.

3.1. ICEEMDAN

In the literature, CEEMDAN frameworks have been widely described [35,40,42,60].
For the original CEEMDAN, the first mode is obtained in the same way as in EEMD.
To extract the rest of the modes, a different noise must be added to the current residue.
That particular noise is the EMD mode of white noise. This operation generates strong
overlapping in the scales [61]. To reduce this overlap, Colominas et al. [43] proposed an
improved version of CEEMDAN to make no direct use of white noise. Here, we describe
the ICEEMDAN algorithm, which is based on the CEEMDAN frame. The main steps are as
follows [43]:

1. Compute by EMD the local means of I realizations s(i) = s + β0E1(w(i)) to obtain the
first residue:

r1 = 〈M(s(i))〉 (1)

2. For k = 1, compute the first mode:

ĨMF1 = s− r1 (2)

3. Estimate the second residue as the average of local means of the realizations r1 +

β1E2(w(i)); the second mode is defined as:

ĨMF2 = r1 − r2 = r1 − 〈M(r1 + β1E2(w(i)))〉 (3)

4. For k = 3, ..., K, compute the kth residue:

rk = 〈M(r(k−1) + β(k−1)Ek(w(i)))〉 (4)

5. Calculate the kth mode:

ĨMFk = r(k−1) − rk (5)

6. Repeat step 4 for the next k.

3.2. Hilbert Transform (HT)

The HT is the convolution of IMF(t) with the function g(t) = 1
πt . The HT of IMF(t)

is presented with the Cauchy principal value as:

H[IMF(t)] = PV
∫ +∞

−∞
IMF(τ)g(t− τ)dτ (6)

=
1
π

PV
∫ +∞

−∞

IMF(τ)
t− τ

dτ (7)

= − 1
π

lim
τ→0

∫ +∞

−∞

IMF(t + τ)− IMF(t− τ)

τ
dτ (8)
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where PV is the Cauchy principal value. Hence, any signal (X(t)) can be represented by
combining IMF(t) and its HT as follows:

X(t) = IMF(t) + iZ(t) = A(t)eiθ(t) (9)

where i =
√
−1, A(t) is the amplitude, θ(t) is the phase angle, which are defined as:

A(t) =
√

IMF2(t) + Z2(t) (10)

θ(t) =
Z(t)

IMF(t)
(11)

The Instantaneous Frequency (IF) is given by:

ω(t) =
dθ(t)

dt
(12)

IFs can describe both inter- and intra-wave frequency modulations, respectively, due to
non-stationarity and non-linearity. HHT can depict the amplitudes on the time-frequency
plane to obtain the time-frequency amplitude spectra. If the instantaneous frequencies and
instantaneous amplitudes of IMFs are obtained by Hilbert transformation of IMFs, the time
series X(t) can be expressed as:

X(t) = Re
[
∑K

k=1 Ak(t)ei
∫

ωk(t)dt
]
+ RK(t) (13)

The TF distribution of the amplitude is designated as the Hilbert spectrum, which is
defined by:

H(ω, t) = H[ω(t), t] = {Ai(t) on the curve [ω(t), t] : t ∈ R} (14)

where i = 1, 2, . . . , N is the index of IMFs.
Its integration over time gives the marginal Hilbert spectrum (MHS):

h(ω) =
∫ +∞

−∞
H(ω, t)dt (15)

3.3. TDIC

TDIC is a dynamic correlation method propounded by Chen et al. [44] to determine
the association between two time series in multiple scales. The steps of TDIC are as follows:

1. Decompose the two associated time series using ICEEMDAN;
2. Determine the HT of each IMF(t);
3. Find the minimum sliding window size (td) as the maximum instantaneous period

(IP) (reciprocal of IF) between the two IMFs at the current position tk, i.e.,
td = max(T1,i(tk), T2,i(tk)), where T1,i and T2,i are IPs;

4. Fix the size of the sliding window (SSW) as tn
w = [tk − ntd/2 : tk + ntd/2] where n is

a multiplication factor usually fixed as unity;
5. Find the TDIC of the pair of IMFs as Ri(tn

k ) = Corr(IMF1,i(tn
w), IMF2,i(tn

w)) at any tk,
where Corr is the correlation coefficient of two time series;

6. Examine the statistical significance of correlation by t-test;
7. Repeat steps 4 to 7 in an iterative manner until the boundary of the sliding window

exceeds the endpoints of the time series.

The TDIC correlation matrix will be of a triangular shape, in which the center position
of the sliding window and the vertical axis is the SSW and the colors indicate the strength
of the correlation. The base profile of the triangles depicts the IFs and, hence, a shift in the
plots to larger time scales can be noticed for low-frequency modes.
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3.4. TDICC

TDICC is an extended version of TDIC. The method is helpful in finding the lagged
correlation between two correlated signals in different time scales [44]. The steps of TDICC
are as follows:

1. Decompose the two associated time series using ICEEMDAN;
2. Apply HT on the IMFs to calculate the IF, then compute the instantaneous periods);
3. Fix the minimum sliding window size for the local correlation computation, which

is td = max(T1,i(tk), T2,i(tk − τ)), where T1,i and T2,i are instantaneous periods of the
two IMFs;

4. Find the size of the sliding window (SSW) as tn
w = [tk − ntd/2 : tk + ntd/2] for a

specific IMF of the first signal (say PM2.5) and tn
w, τ = [tk− τ− ntd/2 : tk− τ + ntd/2]

for the corresponding IMF of the second signal, (say PM10), where n is any positive
number, and is usually selected as 1 [62];

5. Determine the running correlation between the two modes along with their statistical
significance using the TDICC t-test. This can be repeated until the boundary of the
sliding window exceeds the endpoints of the time series.

The results of the TDICC analysis can be depicted as a triangular plot with time on
the x-axis and the SSW on the y-axis. The color scheme will convey the strength of the
correlation between the signals.

The overall framework followed in this study is presented in Figure 2.

Figure 2. Framework on the multiscale correlation analysis between PM10 and PM2.5.

4. Results and Discussion
4.1. Multiscale Decomposition

As the first step in the multiscale analysis of the air pollutant concentrations of
PM10 and PM2.5, both time series were decomposed using ICEEMDAN with a noise
parameter of 0.1 and an ensemble number of 300 (number of realizations). To validate
the correctness of the ICEEMDAN decomposition, the Index of Orthogonality (IO) of
the modes was computed as per the recommendations given by Huang et al. [35] with

IO = ∑T
t=0

(
∑n+1

j=1 ∑n+1
k=1

Cj(t)Ck(t)
X2(t)

)
; C represents the oscillatory modes, n is the number of

IMFs, X is the signal, and T is the index for the length of the time series. In this study,
IO values were 6.37× 10−4 and 5.72× 10−4, respectively, for PM10 and PM2.5, which are
much less than zero, validating the correctness of the ICEEMDAN decomposition. The
decomposition resulted in 8 IMFs and a residue, as shown in Figure 3. The first IMF mode
showed the fast fluctuations, while the last mode highlighted the slowest fluctuations.
Each IMF captured the local variation for a distinct time scale. During the study period,
the non-linear trends of both pollutant concentrations decreased. The residues of both
pollutants seemed to follow the same temporal behavior. The mean period of each mode
was computed using the zero-crossing method [63].
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Figure 3. Oscillatory modes of (a) PM10 and (b) PM2.5 obtained by ICEEMDAN.

Table 1 presents the mean period in days and the percentage of variability explained
by different modes. The multiscale decomposition of both time series is accurate as the
time scale increases with increasing IMF values. For PM10, the variability decreases from
IMF1 to IMF6. However, the variability increases for IMF7 and IMF8, i.e., for the semester
and annual scales. In the case of PM2.5, there is no significant trend observed over several
time scales. However, there is a high variability for the semester scale (IM7). The behavior
of both pollutants at the semester scale can be explained by the seasonal cycle of African
dust, which lasts around six months in the Caribbean area [22,23].

Table 1. Mean period (days) and variability (%) explained for the different modes of the PM10 and
PM2.5 time series.

PM10 PM2.5

Modes Mean Period (Days) Variability (%) Mean Period (Days) Variability (%)

IMF1 3.102 22.698 2.866 17.265
IMF2 6.403 18.962 6.844 14.432
IMF3 12.303 14.040 13.353 15.795
IMF4 23.297 7.331 24.333 6.477
IMF5 40.555 6.553 47.608 11.200
IMF6 73.000 3.486 91.250 10.264
IMF7 182.500 7.914 219.000 15.535
IMF8 365.000 13.676 365.000 5.451

Residue 1095.000 5.337 1095.000 3.577

4.2. Hilbert Spectral Analysis

The temporal changes in amplitude at each time scale were determined, which can be
visualized by plotting the IF trajectories associated with each IMF. In Figure 4, a high degree
of intermittency is noted in IMF1 (high-frequency mode), while more continuous spectra
are noted in the subsequent low-frequency modes for PM2.5. One can easily notice that
the contributions of the highest amplitudes are observed at different time instants/spells.
In the spectra of IMF2 to 5, the concentration of high amplitudes is highly localized in time,
whereas in the IMF6 and IMF7 of seasonal to intra-seasonal scales, the contribution of high
amplitudes is sustained for long and continuous periods. Similar observations can also
be made from Figure 5, depicting the time-frequency amplitude (TFA) spectra of different
IMFs of PM10. Singularities are noted in the spectra between 2006 and 2008 for IMF4 and
IMF5.
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Figure 4. Time-frequency amplitude spectra of IMFs for PM2.5.

Figure 5. Time-frequency amplitude spectra of IMFs for PM10.

The mean amplitude (MA) and mean frequencies (MF) of different IMFs of PM10
and PM2.5 are shown in Table 2. At annual cycles, the mean amplitudes are concentrated
around 8.7 µg/m3 and 0.98 µg/m3, respectively, for PM10 and PM2.5. The trends of
instantaneous amplitudes (IAs) of PM10 and PM2.5 at different scales are computed by
the Mann–Kendall test [64,65] at the 5% significance level. Except for the IA of IMF4, the
trends are of the same nature. For IMF4 (monthly scale), a significantly increasing trend
was noticed for the amplitudes of PM2.5, while a decreasing trend was noticed for the
amplitudes of PM10. At the intra-seasonal scales, a significantly increasing trend was
noticed in the amplitudes of PM10, while the trend was not significant for the amplitudes
of PM2.5.

Table 2. Mean and trend of instantaneous amplitudes along with the mean frequencies of different
IMFs. Z represents the Mann–Kendall value.

Parameter IMF1 IMF2 IMF3 IMF4 IMF5 IMF6 IMF7 IMF8

PM10
MA 8.690 7.164 6.049 4.587 4.828 3.994 5.320 8.667

Z value of IA −2.59 −8.06 −4.82 −1.75 −10.78 −15.50 15.61 28.61
MF 0.305 0.155 0.077 0.043 0.024 0.013 0.005 0.003

PM2.5
MA 1.609 1.459 1.511 0.999 1.302 1.372 1.645 0.983

Z value of IA −12.43 −4.99 −4.76 4.36 −3.13 −23.03 0.38 49.05
MF 0.324 0.145 0.072 0.041 0.021 0.011 0.005 0.002

From the marginal spectra shown in Figure 6, the maximum amplitudes were 369.48
µg/m3 and 48.13 µg/m3, respectively, for PM10 and PM2.5. From the marginal spectrum,
two dominant peaks around the weekly scale are evident in both PM types. In addition to
this, there are at least two more dominant peaks, ∼3 d are noted in the spectra of PM2.5.
Moreover, the spectrum of PM2.5 is more regular and stable. Multiple visible prominent
peaks exist in the spectra of PM2.5, which fall in daily to monthly time scales, indicating the
frequent disposal of pollutants. This can be due to the fact that PM2.5 is more representative
of anthropogenic activity [66,67]. In general, the typical behavior of frequent pollutant
disposal to the atmosphere is very much evident from the spikes of the marginal spectra of
both PM series.
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Figure 6. Marginal Hilbert spectrum of (a) PM10 and (b) PM2.5.

4.3. TDIC Analysis

From the TDIC plots in Figure 7, it can be seen that there are rich dynamics in the
correlation between PM2.5 and PM10 at all timescales of less than a month. The maxi-
mum strength was deciphered at quarterly (IMF6 = ∼2.5 to 3 months) and annual scales
(IMF8 = 1 year), and the correlation was found to be strongly positive. This behavior may
be due to the seasonality of African dust. Numerous studies have shown that there is a low
dust season in the Caribbean area from October to April and a high dust season from May
to September [22–25,68]. Euphrasie-Clotilde et al. [23] highlighted that the peak of the high
dust season is from June to August, i.e., a 3-month period. During a sand haze, PM2.5 and
PM10 concentrations increase significantly [33,34].

Figure 7. TDIC plots of PM10 vs. PM2.5 at different scales. The white spaces imply that the
correlation is not significant at the 5% level.

However, there is a switchover from positive to negative in most of the time scales,
over the time period. A strong negative correlation was noticed at an intra-annual time scale
of 1.5 months (IMF5) in the period of the highest pollutant concentrations (in 2007). After
dust outbreaks, i.e., high PM2.5 and PM10 concentrations, the rainfall helps restore the
particulate matter atmospheric balance [69] by the wet scavenging process [70,71]. Since
PM10 particles are larger than PM2.5, they are more easily trapped by water droplets.
Thus, the wet scavenging process is less effective for PM2.5 [72]. Consequently, the
PM2.5 remains suspended in the atmosphere longer than PM10, which may explain
this strong negative correlation. At a periodic scale of 6 months (IMF7), the correlation was
mostly negative, which may be due to the rainfall cycle, which is crucial in influencing the
PM2.5–PM10 relationship. In Puerto Rico, the rainy season occurs from May to Novem-
ber [73] during the hurricane season.
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4.4. TDICC Analysis

As the next phase of our analysis, we computed time-lagged correlations between
PM10 and PM2.5 by invoking the TDICC analysis. We captured lagged information for
up to a week for each mode (time scale), which provided some interesting observations in
terms of correlation patterns at different scales.

At the high-frequency IMF (∼3 d), the TDIC plot in Figure 8 shows a positive associa-
tion, but from lag 1 onward, there is a negative correlation. Moreover, unlike the TDIC plot
at lag 0, more insignificant spaces are present in the correlation patterns when considering
the antecedent pollutant information.

Figure 8. TDICC analysis of high-frequency (IMF1). The white spaces imply that the correlation is
not significant at the 5% level.

Upon considering the TDICC analysis of IMF2 in Figure 9, the correlation is positive at
lag 1, but between lag 2 to lag 5, the correlations are primarily negative. Here, in lag 3 and
lag 4, the correlation is in the long range, over the complete time spell and time window,
indicating a stable correlation pattern, which makes it significant for the prediction of IMF2.
Thus, IMF2 can be computed as IMF2(t) = f (IMF2(t− 3), IMF2(t− 4)).

Figure 9. TDICC analysis of IMFs at the weekly time scale (IMF2). The white spaces imply that the
correlation is not significant at the 5% level.

Regarding IMF3 in Figure 10, for the first three lags, the correlation is primarily
positive, while in the remaining lags, we can see that the correlation is negative with more
stable patterns for lag 6 and lag 7. The TDICC analysis of IMF4 in Figure 11 shows a stable
positive pattern up to lag 3; thereafter, the correlation is negatively dominated and the
stable pattern is noticed at lag 6. In general, the correlation patterns were similar for IMF2,
IMF3, and IMF4. These results show a behavioral uniformity between PM10 and PM2.5
for time scales between ∼1 and 3 weeks.
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Figure 10. TDICC analysis of IMFs at the ∼2-week time scale (IMF3). The white spaces imply that
the correlation is not significant at the 5% level.

Figure 11. TDICC analysis of IMFs at the ∼3-week time scale (IMF4). The white spaces imply that
the correlation is not significant at the 5% level.

For the TDICC analysis of IMF5, which has a periodicity of ∼1.5 months (as seen
in Figure 12), the correlation pattern is similar at all lags, except for the magnitude of
correlations. It is evident that during the colder period leading up to the peak (2007–2008),
the correlation is strongly negative at smaller time windows. In general, the correlation
is weakly positive over long ranges at all time lags. For the quarterly scale in Figure 13
(IMF6), the correlation is much stronger and more stable. For the 3-month, 6-month (see
Figure 14), and annual cycle IMFs (see Figure 15), the correlation patterns are very strongly
positive and long-range. Thus, lag 1 may be sufficient for modeling IMF5 to IMF8.

Figure 12. TDICC analysis of IMFs at the intra-annual time scale of ∼1.5 months (IMF5). The white
spaces imply that the correlation is not significant at the 5% level.



Atmosphere 2023, 14, 468 12 of 17

Figure 13. TDICC analysis of IMFs at the quarterly time scale (IMF6). The white spaces imply that
the correlation is not significant at the 5% level.

Figure 14. TDICC analysis of IMFs at the semester time scale (IMF7). The white spaces imply that
the correlation is not significant at the 5% level.

Figure 15. TDICC analysis of IMFs at the annual time scale (IMF8). The white spaces imply that the
correlation is not significant at the 5% level.

Moreover, we determined the zero-mean series of residue components and plotted
them in Figure 16. The residue components show a very strong correlation of 0.996.
Moreover, the zero-crossing of these modes occurs at nearly the same time instant (∼after
70 days, in 2008) and the modes show a similar pattern of evolution.
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Figure 16. Temporal evolution of low-frequency components of PM10 and PM2.5.

A large number of machine learning, deep learning, and hybrid variants have been
developed to model air pollutants either in a time series or a cause–effect approach [74–77].
The multiscale correlation analysis performed in this study will be helpful in identifying
the most relevant predictors for developing hybrid decomposition–machine learning or
deep learning models for predicting air pollutants. Frameworks for such models have
already been reported in literature studies for predicting different kinds of geophysical
series [49,50,78]. Therefore, this study has great potential to improve the forecasts of air
quality parameters.

5. Conclusions

The Caribbean basin has some of the highest incidences of asthma on the planet due
to dust outbreaks. Therefore, it is crucial to have accurate information on the behavior of
particulate pollutants in order to model and predict them.

HSA was used in this study to identify two dominant peaks around the weekly scale for
PM2.5 and PM10. The concentrations of high amplitudes persisted for long and continuous
time periods at seasonal to intra-seasonal scales, while the trends of spectral amplitudes
were found to be similar for both PM types, except for monthly and intra-seasonal scales of
six months.

The relationships between PM2.5 and PM10 were studied using a multiscale approach.
A novel ICEEMDAN-TDICC coupled framework is proposed to investigate the association
between the two pollutants. For the time scales of less than a month, the TDIC analysis
showed rich dynamics in the PM2.5–PM10 correlation due to local and mesoscale sources.
For larger time scales (quarterly and annual scales), the correlation was strongly positive
due to the dust haze from African deserts. This large-scale source will significantly increase
PM2.5–PM10 concentrations. Consequently, the TDICC analysis highlighted that the
PM2.5–PM10 relationship is stable on a quarterly scale and a lag 1 IMF of PM2.5 is enough
to model PM10. These results show that it will be easier to model PM10 from PM2.5
during the passage of sand mists because these large-scale events will homogenize the
behaviors of particulate pollutants in the atmosphere.

To summarize, we investigated the association between PM2.5 and PM10 using a
multiscale approach. The nature and strength of the association between the two variables
were found to be dynamic over different timescales and time spans. However, the reasons
behind these transitions were not explored in the present study. Furthermore, various local
meteorological factors and large-scale climatic oscillations govern the behavior of PM2.5
and PM10. Exploring such teleconnections within a multiscale framework may help in
understanding the mutual association between PM2.5 and PM10. Therefore, the findings
of the study should be extended to improve predictability efforts.
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