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Abstract: As the most abundant greenhouse gas in the atmosphere, CO2 has a significant impact on 
climate change. Therefore, the determination of the temporal and spatial distribution of CO2 is of 
great significance in climate research. However, existing CO2 monitoring methods have great limi-
tations, and it is difficult to obtain large-scale monitoring data with high spatial resolution, thus 
limiting the effective monitoring of carbon sources and sinks. To obtain complete Chinese daily-
scale CO2 information, we used OCO-2 XCO2 data, Carbon Tracker XCO2 data, and multivariate 
geographic data to build a model training data set, which was then combined with various machine 
learning models including Random Forest, Extreme Random Forest, XGBoost, LightGBM, and Cat-
Boost. The results indicated that the Random Forest model presented the best performance, with a 
cross-validation R2 of 0.878 and RMSE of 1.123 ppm. According to the final estimation results, in 
terms of spatial distribution, the highest multi-year average RF XCO2 value was in East China 
(406.94 ± 0.65 ppm), while the lowest was in Northwest China (405.56 ± 1.43 ppm). In terms of time, 
from 2016 to 2018, the annual XCO2 in China continued to increase, but the growth rate showed a 
downward trend. In terms of seasonal effects, the multi-year average XCO2 was highest in spring 
(407.76 ± 1.72 ppm) and lowest in summer (403.15 ± 3.36ppm). Compared with the Carbon-Tracker 
data, the XCO2 data set constructed in this study showed more detailed spatial changes, thus, can 
be effectively used to identify potentially important carbon sources and sinks. 
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1. Introduction 
Atmospheric carbon dioxide (CO2) is the most important greenhouse gas. Due to the 

disturbance of human activities, its concentration has increased from about 280 ppmv be-
fore the industrial revolution to 414 ppmv. At the same time, due to the emission of green-
house gases, the average global temperature has risen by about 1.09 °C over the past 100 
years, which has caused irreversible damage and impacted the global ecological environ-
ment [1,2]. The knock-on effects between ecosystems are huge and often inestimable. The 
international community has attached great importance to the issue of climate change. 
Many countries have successively signed the United Nations Framework Convention on 
Climate Change (UNFCCC) and the Paris Agreement. China has also proposed carbon 
peaking and carbon neutrality goals. How to accurately monitor carbon sources and sinks, 
reduce global CO2 emissions, and consequently reduce the greenhouse effect are currently 
major concerns worldwide. 
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Traditional CO2 observation methods rely on ground-based observations at ground 
stations, which have high precision and are continuous on the time scale. However, due 
to the low number and uneven regional distribution of monitoring stations, in addition to 
the fact that most of them are distributed in developed countries and densely populated 
areas [3], it is often difficult to obtain effective large-scale monitoring data, especially in 
regions, such as the oceans, polar regions, and deserts [4]. This leads to greater uncertainty 
in research on the temporal and spatial distribution and size of carbon sources and sinks. 
In 2002, the first global CO2 concentration observation map based on the Scanning Imag-
ing Absorption Spectrometer for Atmospheric Mapping (SCIAMACHY) was successfully 
constructed [5]. Technology using passive satellite remote sensing to detect CO2 by receiv-
ing information in the near-infrared band of the sun has developed rapidly, providing 
some of the most potent methods for monitoring the global distribution of greenhouse 
gases with high temporal and spatial resolution. Through remote sensing, some defects of 
the “bottom-up” model simulation method can be avoided, especially the huge uncer-
tainty in CO2 estimation due to the differences in ground emission inventory surveys [6–
8]. The originally designed satellites were not dedicated to atmospheric CO2 monitoring 
tasks. Although they can achieve continuous observation in time and space, they only 
have low observation resolution; for example, the ENVISAT and METOP-A satellites have 
observation footprints of 30 × 60 km and 50 × 50 km, respectively. With the emergence of 
dedicated carbon satellites, the CO2 observation footprint and accuracy have been greatly 
improved, and satellite observations have shown good consistency with the ground-
based Total Carbon Column Observation Network (TCCON) [9]. However, the scanning 
pattern of carbon satellites results in the sparse distribution of observation records, such 
as those obtained by China’s TANSAT, Japan’s GOSAT, and the United States OCO-2 sat-
ellites [10,11], all of which face the problem of discontinuous observations in time and 
space. As such, the current high temporal-spatial resolution continuous CO2 concentration 
monitoring capability is still insufficient at both regional and global scales. Rough obser-
vation spatial resolution or more significant data missing problems limit the application 
of relevant CO2 observation products in some aspects, such as terrestrial ecosystem carbon 
cycle monitoring, “carbon pollution from the same source” pollution traceability, assimi-
lation of model output results, and accurate estimation of carbon sources and sinks. 

Fortunately, the rich information obtained by multi-source remote sensing enables a 
series of feasible methods for producing CO2 data with fine spatial resolution and conti-
nuity in time and space. On the one hand, from the perspective of multi-source CO2 ob-
servation satellites, CO2 reconstruction methods based on data fusion have been devel-
oped. For example, Hai Nguyen [12] has used the data fusion method of dimensionality 
reduction Kalman smoothing and the Spatial Random Effects model to realize CO2 obser-
vation data fusion between GOSAT, AIRS, and OCO-2. Although the data fusion method 
can reduce the differences in CO2 observations by different satellites to a certain extent, it 
is still unable to reconstruct the continuous spatial distribution of CO2, largely due to the 
insufficient information on CO2 observed by satellites. On the other hand, geostatistical 
technology, as a common method for completing spatial information, has also been ap-
plied to the spatial completion and refinement of CO2 information. A large number of 
studies have shown that using CO2 footprints from satellite observations, combined with 
ordinary Kriging interpolation [13], space-time Kriging interpolation [14], sliding window 
Kriging interpolation [15], and other methods, allows for the production of a fine CO2 
spatial distribution. However, as geostatistical methods require a large number of tempo-
rally and spatially similar input samples, the spatial resolution of the output results must 
be increased at the expense of temporal resolution. At the same time, spatial interpolation 
is likely to smooth the spatial features of CO2. These smoothed features can not be ignored 
in some applications, such as pollution source research. 

In recent years, based on multi-source big data such as human activity information, 
atmospheric condition information, and geospatial information, regression technology 
has been widely used for the reconstruction of CO2 data with high temporal and spatial 
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resolution. With the assistance of multi-source data, even a simple multiple linear regres-
sion model (ML) can obtain a good fitting effect, with a multi-region verification coeffi-
cient of determination (R2) typically ranging between 0.57 and 0.75 [16]. However, due to 
the complexity of the transport process of CO2 between terrestrial ecosystems, marine eco-
systems, and the atmospheric environment, linear models face the problem of insufficient 
fitting ability. In order to overcome this bottleneck, many nonlinear models have been 
used for the reconstruction of CO2 remote sensing data, which have been richly developed 
in recent years. Siabi [17] has used the multi-layer perceptron (MLP) model to construct 
the nonlinear correspondence between the XCO2 of the OCO-2 satellite and multi-source 
data, successfully filling the gaps in satellite observations. Furthermore, the XGBoost 
model constructed by I. A. Girach [18] and the CO2 reconstruction model based on 
LightGBM constructed by He [19] has achieved good objective fitting accuracy. Based on 
the Extreme Random Forest and the Random Forest models, Li [20] and Wang [21] have 
generated continuous spatiotemporal atmospheric CO2 concentration data at global mod-
erate and regional scales. Compared with the direct CO2 satellite observation data, the 
reconstructed CO2 data can achieve daily global coverage, thus having has richer applica-
tion value. In a recent study, Zhang [22] combined a neural network model and the GWR 
model to develop a new geographically weighted neural network (GWNN) model, which 
can effectively capture the spatial heterogeneity of CO2, and the model accuracy has been 
further improved. It can be seen that machine learning algorithms have strong applicabil-
ity for CO2 reconstruction. 

Some recent studies have successfully captured the nonlinear correspondence be-
tween the XCO2 of GOSAT and OCO-2 and multi-source data using machine learning 
algorithms, such as multi-layer perceptron (MLP) [17], LightGBM (LGBM) [18], and Ex-
treme Random Forest (ERT) [19], successfully filling the gaps in the satellite observations. 

To produce CO2 data with high precision and high spatiotemporal resolution using 
the coarse resolution CO2 data output by Carbon Tracker, supplemented by multi-source 
data (e.g., temperature, air pressure, vegetation indices, and elevation), we compared 
mainstream machine learning models, including random forest, extreme random forest, 
XGBoost, LGBM, and Catboost, in terms of reconstructing the CO2 data observed by OCO-
2, and evaluated the different characteristics of various machine learning models. At the 
same time, the daily value of XCO2 in China was estimated, and the temporal and spatial 
distribution of CO2 in China from 2016 to 2018 and its reasons for formation were ana-
lyzed. Our reconstructed data set is expected to facilitate applications in many regional 
studies of carbon sources and sinks. 

2. Materials and Methods 
2.1. Satellite Data 

The CO2 column concentration data used in this study were derived from the OCO-
2 satellite product (OCO2_L2_Lite_FP), the first dedicated carbon observation satellite 
launched by the National Aeronautics and Space Administration (NASA) in July 2014 to 
measure the CO2 column concentration (XCO2), monitoring near-surface carbon sources 
and carbon sinks. The satellite at a local overpass time of approximately 13:30, the spatial 
resolution is 2.25 km × 1.29 km and its revisit period is 16 days [23]. Compared with other 
CO2 observation satellites, the OCO-2 satellite data has a better spatial resolution, and its 
monitoring accuracy is higher [10]. The XCO2 data used in this study were from 1 January 
2016 to 31 December 2018, and, through quality screening, XCO2 data with a quality frac-
tion of 0 were selected and resampled to a 0.1° grid. Consequently, 108,665 records were 
generated and used for model training. 

2.2. Supplementary Data 
We used the Carbon-Tracker model CO2 column concentration data (CT XCO2) and 

multiple geographic variables to model the true XCO2 (Table 1). Geographic variables 
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included elevation, population density, landuse, normalized difference vegetation index 
(NDVI), and meteorological data. In addition, latitude and longitude were also used as 
model predictors. 

2.2.1. Carbon-Tracker 
Carbon Tracker (CT) is a CO+ measurement and modeling system developed by the 

National Oceanic and Atmospheric Administration (NOAA) to track CO+ sources and 
sinks around the world. We used daily CT2019B XCO2_1330LST data from 1 January 2016 
to 31 December 2018, which provides the global XCO2 distribution at 13:30 local time with 
a spatial resolution of 3° × 2° [24]. 

2.2.2. Elevation 
The Shuttle Radar Topography Mission (SRTM) is an 11-day international project in-

itiated by the National Geospatial Intelligence Agency (NGA) and the National Aero-
nautics and Space Administration (NASA) to acquire and generate near-global high-res-
olution land elevation products [25]. The data set used in this study was SRTM3, with a 
spatial resolution of 90 m. 

2.2.3. Population Density 
WorldPop is a global population data assessment project initiated by the University 

of Southampton in October 2013. This data covers population density, comprehensive 
population, age and gender structure, birth rate, population flow, flight connections, and 
so on [26]. The population density data used in this study were obtained from the 
WorldPop population density data set, with a spatial resolution of 1 km. 

2.2.4. Land-Use and NDVI 
Land-use data (MCD12Q1) and NDVI data (MOD13C1 and MYD13C1) were re-

trieved from the Moderate Resolution Imaging Spectroradiometer (MODIS) satellite 
[27,28]. The spatial resolutions of the land-use and NDVI data were 500 m and 0.05°, re-
spectively. Among them, the land-use data followed the IGBP classification standard. 

2.2.5. Meteorological Data 
The meteorological data were obtained from the ECMWF Fifth Generation Reanaly-

sis (ERA5) dataset with a spatial resolution of 0.25° × 0.25°, including temperature, dew 
point temperature, wind speed, and atmospheric pressure [29]. The above meteorological 
data all comprise the data between 13:00 and 14:00, corresponding to the satellite transit 
time. 

Table 1. Auxiliary data and related information. 

Data Source Type Spatial Resolution Time Resolution 
Carbon Tracker XCO2 3° × 2° 3 h 

MODIS 
NDVI 0.05° × 0.05° 8 d 

Land-Use(LU) 500 m × 500 m 1 y 

ERA-5 

2 m temperature (t2m) 

0.25° × 0.25° 1 h 
2 m dewpoint temperature (d2m) 

Surface pressure (sp) 
10 m v-component of wind (v10) 
10 m u-component of wind (u10) 

World Pop Population density (pop) 1 km × 1 km 1 y 
SRTM DEM 90 m × 90 m - 

For data with a spatial resolution less than 0.1°, such as elevation, population density, 
landuse, and NDVI, we resampled it to 0.1° using the nearest neighbor method. On the 
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other hand, the inverse distance weight interpolation method was used to interpolate 
coarser data to the 0.1° grid, such as ERA5 weather analysis data and CT2019B XCO2 data. 

2.3. Model Description 
Compared with previous studies [16–19], we utilized a variety of machine-learning 

methods to model and estimate XCO2. The machine learning methods used in this re-
search can be divided into Bagging and Boosting algorithms, according to the integration 
method. 

2.3.1. Models Based on Bagging Ensemble Methods 
 Random Forest (RF) 

A Random Forest (RF) model [30] is a machine-learning algorithm that can be used 
for both classification and regression. In the random forest model, the decision tree is the 
basic unit of the model. By using the bootstrap sampling method to randomly extract sam-
ples of the same size from the total data sample multiple times, a large number of decision 
trees are established without any pruning. Finally, an ensemble of these decision trees is 
trained to compute classification or regression results. The random forest model is not 
sensitive to multicollinearity in the data and has the advantages of high precision, fast 
calculation speed, robust calculation results, and strong generalization ability. 
 Extreme Random Forest (ERT) 

Compared with Random Forest, Extreme Random Forest [31] uses the entire data set 
to train a single decision tree, which ensures the utilization of training samples and can 
reduce the final prediction bias (Bias) to a certain extent. To ensure the structural differ-
ence between each decision tree, the extreme random tree introduces greater randomness 
in node division: the division threshold of each feature from the sub-data set is randomly 
selected, and the best division according to the specified threshold feature is chosen as the 
optimal partition attribute. 

2.3.2. Models Based on Boosting Ensemble Methods 
 eXtreme Gradient Boosting (XGBoost) 

eXtreme Gradient Boosting [32] is an optimized distributed gradient boosting algo-
rithm with a faster running speed than current mainstream machine learning models. This 
model introduces a regularization term to control the complexity of the model in the loss 
function, and the modified loss function is interpreted using the two-dimensional Taylor 
formula. This not only overcomes the shortcoming of over-fitting in traditional gradient 
boosting models but also improves the accuracy and generalization ability of the model. 
 Light Gradient Boosting Machine (LightGBM) 

Light Gradient Boosting Machine [33] is a variant of the tree-based gradient boosting 
algorithm, which uses a histogram algorithm to ensure that the model achieves the ex-
pected effect with less memory. In addition, LightGBM does not use the decision tree 
growth strategy of layer-by-layer growth but, instead, introduces a leaf-by-leaf growth 
strategy. In comparison, this strategy uses less memory and allows the model to converge 
faster. 
 Categorical + Boosting (CatBoost) 

The Categorical + Boosting [34] model is a gradient boosting algorithm framework 
based on a symmetric decision tree-based learner, which consists of Categorical and 
Boosting models. In addition, CatBoost also solves the problems of gradient deviation and 
prediction offset, thereby reducing the occurrence of over-fitting and improving the accu-
racy and generalization ability of the algorithm. 

We used the above five machine learning models, based on CT XCO2 data and mul-
tivariate geographic data, to train different models and optimize their hyperparameters 
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to obtain better prediction performance, followed by their comparison. Then, the optimal 
model was used to predict XCO2 and generate daily full-coverage XCO2 data. 

2.4. Model Evaluation 
In this study, CT XCO2 and multiple geographical variables were used as the influ-

encing factors of OCO2 XCO2, and a CO2 column concentration regression model was con-
structed. We evaluated the predictive performance of different models using 10-fold sam-
ple cross-validation. For the sample-based cross-validation process, we randomly divided 
all the data into 10 groups of equal size. In each of the 10 rounds, 9 sets were used as 
training data to construct the model and the remaining set was used for predictive model 
evaluation. 

We evaluated the model performance using the square of the correlation coefficient 
(R2) to determine the extent to which the model explained the variation in the observa-
tions. In addition, the Root Mean Square Error (RMSE) was used to indicate the standard 
deviation of residuals (prediction error), while mean bias (Bias) was used to quantify the 
difference between simulated and observed values. 

In addition, we also utilized ground station CO2 monitoring data to evaluate the pre-
dictive performance of the Random Forest model, including those from Waliguan (WLG) 
station (36.28° N, 100.90° E) and Lulin (LLN) station (23.47° N, 120.87° E). We obtained 
discontinuous daily CO2 data from WLG and LLN stations and filtered out invalid data 
that had obvious problems in the collection or analysis process and did not meet the spe-
cific survey purpose, according to qcflag. The predicted data were evaluated by compar-
ing ground-based observations with RF-CO2 data at a spatial resolution of 0.1° × 0.1°. 

3. Results and Discussion 
3.1. Predictive Performance Evaluation and Important Factors 

For XCO2 modeling, machine learning models with different integration methods 
were selected. Among the models based on the bagging integration method, the random 
forest model performed best (Table 2), with an R2 of 0.878, a mean square error (RMSE) of 
1.123 ppm, and a mean absolute error (MAE) of 0.867 ppm. Among the models based on 
the boosting ensemble method, the CatBoost model performed the best (see Table 2), with 
an R2 of 0.845, a Root Mean Square Error (RMSE) of 1.261 ppm, and a mean absolute error 
(MAE) of 0.935 ppm. Therefore, we chose a random forest as the optimal model for the 
prediction of XCO2. 

Table 2. Comparison of prediction performance of different machine learning models. 

Model Cross-Validation R2 RMSE (ppm) MAE (ppm) 
RF 0.878 1.123 0.867 

ERT 0.845 1.261 0.931 
XGB 0.841 1.279 0.952 
LGB 0.832 1.312 0.981 

CatBoost 0.845 1.261 0.935 

The random forest model performed well in predicting XCO2 on a diurnal scale, with 
an R2 of 0.878 and an RMSE of 1.123 ppm in cross-validation (Figure 1). Compared with 
CT XCO2, its R2 and root mean square error (RMSE) performance were better, and the 
average deviation (bias) was slightly improved; meanwhile, compared with the XCO2 av-
erage, the difference was not large. 
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(a) (b) 

Figure 1. Relationship between OCO-2 XCO2 and CT XCO2 (a) resampled to 0.1° × 0.1° by inverse 
distance-weighted interpolation, and RF XCO2 (b) predicted by the Random Forest model in sam-
ple-based cross-validation. The red dotted line represents the fitted line, while the dashed black line 
indicates a 1:1 relationship. 

There was a certain difference between RF-CO2 and the observations at Waliguan 
Station (WLG) and Lulin Station (LLN); see Figure 2. This is because surface stations such 
as Waliguan mainly measure near-surface CO2 concentrations, while the RF-CO2 data rep-
resent the total column average concentration of CO2 (i.e., XCO2) [35]. Moreover, there are 
obvious changes in atmospheric CO2 over the day, and the low correlation may also be 
attributed to the mismatch between the observation time of ground stations and that of 
the satellites. However, RF-CO2 showed similar seasonal and interannual trends to those 
observed at the ground stations (see Figure 2). Seasonally, both were higher in spring and 
winter and lower in summer and autumn. Both of the interannual changes showed an 
increasing trend year by year, but the increase in RF-CO2 was not as obvious as that for 
the station monitoring data; again, mainly because RF-CO2 is a vertically integrated con-
centration, and its change was lower than that of the near-surface concentration. 
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Figure 2. Comparison of RF-CO2 observation data with WLG (a) and LLN (b) station observations. 

The feature importance results indicated that CT XCO2 was the most important pre-
dictor (Table 3), with a relative importance value of 83.08%, indicating that the predicted 
XCO2 increased almost linearly with the increase in CT XCO2; this was due to CT XCO2 
and OCO-2 XCO2 having a relatively high correlation, with R2 0.795 (Figure 1a). Meteoro-
logical predictors, with a total importance value of 9.23%, can affect the spatiotemporal 
distribution of XCO2 by affecting carbon emissions and diffusion [30,31]. The dew point 
temperature and air temperature were found to have a greater impact on XCO2 at 2.72% 
and 3.12%, respectively which was consistent with the previous research results; that is, 
XCO2 is related to temperature and dry/wet conditions [36]. Wind speed had a small effect 
on XCO2, with an importance of 1.4%; however, when the wind speed is high, it can dis-
perse CO2 closer to the background level [37]. The total importance of latitude, longitude, 
and elevation was 5.77%, indicating that terrain has a certain influence on CO2. The total 
importance of the remaining variables in XCO2 modeling was 1.92%, explaining the influ-
ence of population density, vegetation, and land-use type. 

Table 3. XCO2 prediction model variable importance distribution. 

Variable Importance Variable Importance 
Longitude 2.03% u10 0.68% 
Latitude 2.23% v10 0.72% 
CT XCO2 83.08% DEM 1.51% 

d2m 2.72% pop 0.81% 
t2m 3.12% LU 0.2% 
sp 1.99% NDVI 0.91% 
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3.2. Comparison of RF XCO2 and CT XCO2 
From 2016 to 2018, the national average of RF XCO2 was 0.237 ppm lower than CT 

XCO2 (Figure 3d), but the national annual mean difference showed an increasing trend, 
from −0.108 ppm in 2016 to 0.239 ppm in 2018 (Figure 3a–c). In terms of spatial distribu-
tion, ∆XCO2 (∆XCO2 = CT XCO2 − RF XCO2) was relatively high in East China, Central 
China, South China, and Northeast China. The CT XCO2 value was higher than the RF 
XCO2 value. ∆XCO2 was significantly lower in southern Xinjiang, indicating that CT XCO2 
was significantly underestimated in this region. However, ∆XCO2 was relatively small in 
North China, Southwest China, and most parts of Northwest China, indicating that the 
CT XCO2 value was relatively accurate and presented little difference from the RF XCO2 
value. The main reason for the above phenomenon is that CT XCO2 relies heavily on 
ground data; however, China currently has few ground monitoring stations with uneven 
distribution. China is preparing to install more ground monitoring stations, which will 
help to conduct better monitoring in the future, allowing for further Validation and im-
provement of Carbon Tracker models. 

Figure 3. Spatial distribution of the annual mean difference between CT XCO2 and RF XCO2 
from 2016 to 2018 (a–c) and the multi-year mean difference between CT XCO2 and RF XCO2 (d) .

The RF XCO2 fit the OCO-2 XCO2 well, and thus the spatiotemporal distribution of 
∆XCO2 may serve to represent the difference between OCO-2 XCO2 and CT XCO2 visually. 
In contrast, the differences between CT XCO2 and OCO-2 XCO2 n East China, Central 
China, South China, Northeast China, and southern Xinjiang were significantly larger, 
while those in North China, Southwest China, and Northwest China were relatively small. 
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The comparison results indicated that there are still high uncertainties in CT XCO2, which 
may be mainly due to the errors in the emission inventory and the small number of 
ground observation stations. This result may also be due to the high uncertainty and 
coarse spatial resolution (3° × 2°) of CT XCO2, making it insufficient to display the detailed 
spatial distribution of XCO2, especially in small areas. Therefore, the XCO2 data set, with 
full coverage and high spatial resolution, is of great value for monitoring the distribution 
of carbon sources and sinks in China. 

3.3. Spatial Distribution of RF XCO2 
From 2016 to 2018, the multi-year average of RF XCO2 in China was 405.86 ± 1.73 ppm 

(Figure 4a), with the highest level in East China (406.94 ± 0.65 ppm) and the lowest level 
in Northwest China (405.56 ± 1.43 ppm). CO2 emissions are often related to intensive hu-
man activities. East China and Central China not only possess large populations but also 
have developed economies and intensive human activities. This is also the main reason 
for the high XCO2 observed in East and Central China. XCO2 was also relatively high in 
parts of North China, mainly due to the intensive human activities in the Beijing—Tian-
jin—Hebei region, the use of centralized heating for a long period of time in winter, high 
CO2 emissions, and cold and dry winters, resulting in the low photosynthetic efficiency of 
vegetation. Inner Mongolia has low population density and lush vegetation, so XCO2 is 
relatively low in this region [37]. In South China, the economy is relatively developed and 
there are many human activities; however, due to the warm and humid climate, the veg-
etation coverage rate is relatively high, and its photosynthetic carbon fixation rate is rela-
tively high, causing the level of XCO2 to be moderate [35]. For Northeast and Northwest 
China, the population density is low, and carbon emissions from fossil fuel combustion 
and biomass combustion are relatively low, causing the XCO2 to be low. The southwest 
region has a moderate population, but the vegetation is lush, the climate is humid, and 
the photosynthetic efficiency of the vegetation is high, such that the XCO2 is low. Com-
pared with CT XCO2, RF XCO2 presented a more detailed and accurate spatiotemporal 
distribution. Compared with OCO-2 satellite data, due to clouds or other reasons, there 
are a lot of missing data, making it difficult to directly apply to carbon source and carbon 
sink monitoring, while RF XCO2 can achieve full coverage of XCO2 data, allowing for more 
effective monitoring of carbon sources and sinks. 
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Figure 4. Spatial distribution of multi-year averages RF XCO2 (a) and 2016—2018 annual averages 
RF XCO2 (b). 

From 2016 to 2018, the national RF XCO2 increased from 403.37 to 407.90 ppm (see 
Figure 4b), with an average rate of 2.265 ppm/year. The XCO2 growth rates in North 
China, Southwest China, and East China were all higher than the national average rate 
(2.315 ppm/year, 2.303 ppm/year, and 2.267 ppm/year, respectively), while the XCO2 
growth rates in Northwest, Northeast, Central, and South China were lower than the na-
tional average rate (2.263 ppm/year, 2.222 ppm/year, 2.195 ppm/year and 2.178 ppm/year, 
respectively). Although XCO2 was still increasing, its growth rate gradually slowed down, 
from 2.44 ppm/year in 2016–2017 to 2.09 ppm/year in 2017–2018, which may be due to the 
promotion of low-carbon life and the use of clean energy. 

From 2016 to 2018, the national averages of RF XCO2 in spring (Figure 5a), summer 
(Figure 5b), autumn (Figure 5c), and winter (Figure 5d) were 407.76 ± 1.72, 403.15 ± 3.36, 
404.86 ± 1.71 and 406.90 ± 2.50 ppm, respectively. From the perspective of seasonal distri-
bution, in most regions of China, XCO2 in spring was higher than that in summer, con-
sistent with the results of previous studies [35,38]. In spring, the average seasonal value 
of XCO2 in Northeast China, East China, North China, Central China, South China, and 
Northwest China was higher than 407 ppm; meanwhile, in summer, the average seasonal 
value of XCO2 in Northeast China, North China, Northwest China, and parts of Central 
China was lower than 405 ppm. The reason may be that the summer was warm and hu-
mid, vegetation photosynthesis was strong, and a large amount of CO2 was absorbed by 
plants, resulting in a decrease of 4.61 ppm in the national average in summer compared 
with spring. In winter, due to the cold and dry climate, plant respiration is stronger than 
photosynthesis, resulting in a large amount of CO2 being accumulated in the atmosphere, 
leading to generally higher XCO2 than that in autumn and summer. In addition, most 
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areas in northern China use fossil fuels or biomass for heating in winter, producing a large 
amount of CO2. This is why the seasonal variations in North China, Northeast China, and 
Northwest China are greater than those in the South. In summary, the main reasons for 
the seasonal variation of XCO2 may be plant photosynthesis and human activities (mainly 
including fossil fuel consumption and agricultural production) [35,39]. 

 
Figure 5. Spatial distribution of multi-year Spring (a), Summer (b), Autumn (c), and Winter (d) 
averages of RF XCO2 from 2016 to 2018. 

4. Conclusions 
Based on OCO2 XCO2, CT XCO2, and multivariate geographic data, the full-coverage 

spatiotemporal distribution of daytime XCO2 in China from 2016 to 2018 was obtained 
using a Random Forest machine learning model. Compared with CT XCO2, having a 
coarse spatial resolution (3° × 2°), RF XCO2 with a high spatial resolution (0.1° × 0.1°) 
showed more detailed spatial variation, indicating that it may be used to identify poten-
tially important carbon sources and sinks in further research. The RF-XCO2 data set con-
structed in this study better revealed the distribution of XCO2 in China. In terms of spatial 
distribution, the highest multi-year average RF XCO2 value was in East China (406.94 ± 
0.65 ppm), while the lowest was in Northwest China (405.56 ± 1.43 ppm). In view of the 
different levels of CO2 emissions in different geographical regions, it is necessary to reduce 
CO2 emissions in East China, Central China and parts of North China or to establish an 
effective carbon trading market to achieve a dynamic carbon emission balance in different 
regions. In terms of time, from 2016 to 2018, the annual XCO2 in China continued to in-
crease, but the growth rate showed a downward trend. In terms of seasonal trends, the 
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multi-year average XCO2 in spring was the highest (407.76 ± 1.72 ppm), while that in sum-
mer was the lowest (403.15 ± 3.36 ppm). In view of these inter-annual and seasonal 
changes, it is necessary to fully promote clean energy, replace fossil fuels and biomass 
fuels, and reduce seasonal changes within the year while maintaining a low growth rate. 
With the continuous launch of carbon monitoring satellites (e.g., GOSAT, OCO-2, and 
OCO-3), future multi-satellite combinations can better achieve data assimilation, which is 
expected to not only improve the quality of data but also extend the timeframe for XCO2 
prediction. 
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