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Abstract: Malaysia has been facing transboundary haze events repeatedly, in which the air contains
extremely high particulate matter, particularly PM10, which affects human health and the environ-
ment. Therefore, it is crucial to understand the characteristics of PM10 concentration and develop a
reliable PM10 forecasting model for early information and warning alerts to the responsible parties
in order for them to mitigate and plan precautionary measures during such events. This study aims
to analyze PM10 variation and investigate the performance of quantile regression in predicting the
next-day, the next two days, and the next three days of PM10 levels during a high particulate event.
Hourly secondary data of trace gases and the weather parameters at Pasir Gudang, Melaka, and
Petaling Jaya during historical haze events in 1997, 2005, 2013, and 2015. The Pearson correlation was
calculated to find the correlation between PM10 level and other parameters. Moderate correlated
parameters (r > 0.3) with PM10 concentration were used to develop a Pearson–QR model with
percentiles of 0.25, 0.50, and 0.75 and were compared using quantile regression (QR) and multiple
linear regression (MLR). Several performance indicators, namely mean absolute error (MAE), root
mean squared error (RMSE), coefficient of determination (R2), and index of agreement (IA), were
calculated to evaluate and compare the performances of the predictive model. The highest daily
average of PM10 concentration was monitored in Melaka within the range of 69.7 and 83.3 µg/m3.
CO and temperature were the most significant parameters associated with PM10 level during haze
conditions. Quantile regression at p = 0.75 shows high efficiency in predicting PM10 level during
haze events, especially for the short-term prediction in Melaka and Petaling Jaya, with an R2 value of
>0.85. Thus, the QR model has high potential to be developed as an effective method for forecasting
air pollutant levels, especially during unusual atmospheric conditions when the overall mean of the
air pollutant level is not suitable for use as a model.

Keywords: air quality; air quality modeling; haze; PM10; Pearson correlation; predictive model;
quantile regression
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1. Introduction

Recently, air quality has emerged as a significant environmental concern on a global
scale [1,2]. Malaysia has experienced rapid industrial development and urbanization
for the past years, which has resulted in air pollution. The problem raises public health
and environmental concerns in Malaysia. The development process has polluted the
environment despite having various economic benefits [3]. According to the Department of
Statistics [4], the emission of pollutants to the atmosphere in 2017 were largely contributed
by mobile sources (70.4%) followed by power plants (24.5%), industrial activities (2.9%),
and others (2.1%). The emissions have affected the air quality in Malaysia, which has
led to air pollution issues in Malaysia. Malaysia has also experienced high particulate
events (HPEs), also known as haze, which has contributed to high air pollution index
(API) readings.

Malaysia has experienced an air pollution issue for over a decade as a result of haze
transported from its neighboring country, Indonesia. Hence, the haze phenomenon in
Malaysia is not uncommon, as it was first recorded back in the year 1982, when regional
haze from biomass burning disrupted daily life in Malaysia [5]. Since then, several episodes
of severe haze have been reported whereby the concentrations of particulate matter (PM)
with an aerodynamic diameter of less than 10 µm (PM10) concentrations greatly exceeded
the recommended Malaysian ambient air quality guideline (RMAAQG) for PM10 concen-
tration (150 µg/m−3 for a 24 h average) at one or more locations across Malaysia.

Few studies on air pollution in Malaysia have been conducted and the most of them
are connected to the haze episode in 1997. In most years, the Malaysian air quality has
been influenced by the occurrence of dense haze episodes. A study of air quality in
Kuala Lumpur by Awang et al. [3] found that the smoke haze was linked with high levels
of suspended microparticulate matter, but with relatively low levels of other gaseous
pollutants such as carbon moNOxide, nitrogen dioxide, sulfur dioxide, and ozone. A
series of severe haze events were recorded in peninsular Malaysia, Sabah, and Sarawak
in 1991, in 1994, and during September and October of 1997 due to the transportation of
significant amounts of particle matter having been transported by southwesterly winds
from a neighboring country due to uncontrolled biomass burning activities. The large-scale
forest and plantation fires, mainly in southern Sumatra and central Kalimantan, both in
neighboring Indonesia, contributed to the cause of the 1997 haze. The chronological history
of haze episodes in Malaysia can also be highlighted with severe incidents recorded in the
years 2005, 2013, and 2015 as reported by the Department of Environment [4,6,7]. The haze
crisis has also affected not just Malaysia but other neighboring countries such as Singapore
and Brunei. The severe haze episode recorded in 2005 occurred mainly on the central west
coast of the Malaysian peninsula [8,9]. Haze has occurred regularly almost every year
during the dry season between June and September since the occurrence in 2005. The
severe haze in September 2015 was the latest longest episode recorded in Malaysia [10].

Meteorological conditions usually have a significant association with PM10 concen-
tration. Several studies indicated that PM10 levels demonstrated positive correlation with
ambient temperature [11]. It was stated that the increase in temperature usually rises with
the quantity of biomass burning and the evaporation of materials, causing the increase of
PM10 concentration. Conversely, PM10 has an opposite relationship with relative humidity
and wind speed [12,13]. Relative humidity is commonly affected by the number of rain
occasions, which through wash-out processes of the atmospheric aerosols [14,15] and in-
crease in wind speed causes PM10 to dilute by dispersion, which results in a reduction in
concentration of pollutants in the air [16].

The ability to accurately model and predict the ambient concentration of particulate
matter is essential for effective air quality management and policy development. Various
statistical approaches exist for modelling air pollutant levels. Multiple linear regression
(MLR) is one of the approaches that has been widely adopted throughout the world and
for many years as a technique for forecasting air pollution since it can be used to make
decisions based solely on historical and present data [17]. The MLR model demonstrates
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the relationship between the dependent variable and several independent variables, such
as meteorological factors and gaseous pollutants by using uncomplicated computation
and easy implementation [18]. MLR is probably the most commonly used technique for
the modelling of air pollution levels. Several studies have been conducted in Malaysia by
developing the MLR model to forecast PM10 concentration, specifically in the east coast of
the Malaysian peninsula, based on several site classifications and during different types of
monsoon to determine its variation during non-haze periods [19]. However, it has its own
limitations [17]. According to Ul-Saufie et al. [20], the MLR model’s limitations include
its inability to extend the response to noncentral locations of explanatory variables and
its failure to meet model assumptions. In contrast, Baur et al. [21] compared MLR with
other models and determined that nonlinear and learning machine methods outmatched
the linear regression methods. The method is still in use due to its simplicity and easiness.

Another approach that has been used in forecasting PM10 concentrations is quantile
regression (QR), which is insensitive to deviations from normality and to skewed tails and
allows the covariates to have varied contributions at different quantiles of the modelled
variable distribution [22]. The noncentral location of a distribution can be represented in
all quantiles, which allows the QR to be more useful and precise, as reported by Lingxin
and Naiman [23]. A study by Kudryavtsev [24] suggested that QR models have some
advantages compared to MLR since it is distribution-free and does not use any properties,
does not require independence or a weak degree of dependence, and is robust to outliers.
Previous studies on pollution research demonstrate the significance of QR by providing
a more comprehensive understanding on the various effects of explanatory variables on
the distributions of PM10 or other pollutants as well as modelling nonlinear connections.
Baur et al. [21] used QR to study ozone (O3) distribution in Athens. It was found that the
effects of independent variables vary over the O3 quantile distributions and that QR was
capable of delineating the nonlinear relationship between O3 and the independent variables.
A study by Ul-Saufie et al. [20] suggested that the QR used was better for forecasting future
PM10 concentrations in Seberang Perai, Malaysia as compared to MLR, based on their
prediction performances. QR is useful for providing a more thorough picture of how
predictor variables affect the concentration of PM10 at different distributions, and may
assist in air quality control, especially during HPEs [25]. Munir [26] and Ng and Awang [25]
investigated the effect of lagged PM10, meteorological and pollutants’ variables on PM10
concentrations by using QR. QR and MLR approaches were used by Zhao et al. [27] to study
the influences of meteorological variables on O3 levels in Hong Kong and it was proven
that QR was able to deal with the changing effects in meteorology at various percentiles.

Many studies on the application of QR method were carried out using a typical air
quality dataset that contains less a extreme concentration of air pollutants; hence, the
effectiveness of the method could not be maximized. Hence, the aim of this research is to
compare the performance of quantile regression in predicting PM10 levels during a high
particulate event.

2. Materials and Methods
2.1. Study Areas

Three air quality monitoring stations situated in the west coast of the Malaysian
peninsula were used in this study, namely Petaling Jaya, Melaka, and Pasir Gudang. These
locations were chosen because they are directly affected by transboundary flow due to the
location that they are situated in—the southern region of the Malaysian peninsula’s west
bank, close to Indonesia. Table 1 details descriptions of the selected monitoring areas.

2.2. Air Pollutant Dataset

The air quality measurement records were received from the Air Quality Division of
the Department of Environment (DoE), Malaysia. Continuous hourly data of air pollutants
and meteorological parameters in the year that Malaysia experienced historic HPEs (1997,
2005, 2013, and 2015) were chosen for this study. Table 2 shows the air pollutants and
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weather parameters that were used in this study. An example of recorded data for each air
quality parameter in 1997 is provided in Table S1: Air quality dataset for 1997.

Table 1. Details of study areas.

Location Station Coordinates Background of
Study Areas

Petaling Jaya Bandar Utama
Primary School

3.1311◦ N
101.6076◦ E

Heavy traffic particulars
during the morning hour

Industrial area and
housing

Melaka Bukit Rambai
Secondary School

2.2587◦ N
102.1729◦ E

Agriculture
Residential area and

housing

Pasir Gudang Pasir Gudang 2
Secondary School

1.4703◦ N
103.8956◦ E

Heavy industrial areas
Commercial land

Transportation and logistics

Table 2. Air quality parameters.

Air Quality and Weather
Parameters Symbol Unit

Particulate matter PM10 µg/m3

Ground-level ozone O3 ppm
Nitrogen oxides NOx ppm

Nitrogen dioxides NO2 ppm
Sulfur dioxides SO2 ppm

Carbon moNOxide CO ppm
Temperature T ◦C

Relative humidity RH %
Wind Speed WS km/h

2.3. Trajectory Analysis

A trajectory analysis using hybrid single-particle Lagrangian-integrated trajectory
(HYSPLIT) was conducted to determine the origin of the air masses’ backward trajectories
for 48 h (2 days) during the haze events. The model used in this study is the NOAA
(HYSPLIT-4). The model calculation method is a hybrid between the Lagrangian approach,
using a moving frame of reference for the advection and diffusion calculations as the
trajectories or air parcels move from their initial location, and the Eulerian methodology,
which uses a fixed three-dimensional grid as a frame of reference to compute pollutant air
concentrations [28].

2.4. Measure of Association using Pearson Correlation

Pearson correlation is an effective technique for calculating the relationship between
two variables of interest. In this study, the relationship between PM10 with other pollutants
and weather parameters was calculated using the Pearson correlation. The two variables
x and y are measured using Pearson correlation analysis, which provides a correlation
coefficient (r) between +1 and −1, with 1 denoting a positive correlation, 0 denoting no
connection, and −1 denoting a negative correlation. The Pearson correlation equation is
provided as:

r =
∑ (xi−x)(yi−y)√

∑(xi−x) 2· ∑(yi−y)2
(1)

where

r = correlation coefficient
xi = values of the x-variable in a sample
x = mean of values of the x-variable
yi = values of the y-variable in a sample
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y = mean of values of the y-variable

From the calculated r value, the degree of correlation can be identified. Table 3 shows
the description of correlation using the following guide for the absolute value of “r” [29]:

Table 3. Description of correlation related to the value of r.

Value of r Description

0.0–0.3 Weak
0.3–0.6 Moderate
0.6–1.0 Strong

2.5. Prediction Models

In this study, the next-day (PM10+24), the next-two-day (PM10+48) and the next-three-
day (PM10+72) PM10 level during haze event were predicted. Figure 1 shows the modeling
framework of this study. Data preparation include data acquisition, exploration, cleaning,
and partitioning. The data acquisition pronounces the information of data and parameters
included in this study (as presented in Section 2.2). Secondly, descriptive analysis, including
central tendency (mean and median) and dispersion (standard deviation) analysis, was
measured in data exploration. Then, data cleaning describes the technique involved in
imputing the missing observation of the air quality monitoring dataset. In this study, expec-
tation maximization (EM) was used to fill in the missing data, as this method was reported
as the most consistent technique in estimating missing air pollutant observation [30]. Before
developing the model, the original dataset was partitioned into two datasets for training
and validation. Out of the total data, 80% was used to develop the model, where the
rest of the data were used to validate the model. Parameters that had moderate to strong
correlation (r ≥ 0.3) with PM10 level from the Pearson correlation analysis were used as
the inputs for the prediction models. The details of the predictive models are discussed in
Section 2.5.1 and 2.5.2 and the performance evaluation for comparing the performances of
the model is described in Section 2.5.3.
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2.5.1. Multiple Linear Regression (MLR)

MLR tries to simulate the connection between two or more independent variables and
a dependent variable by fitting a linear equation to the observed data. MLR is one of the
most used forecasting techniques. Equation (2) depicts a response (Y) based on a multiple
regression model’s independent variables x1, x2 . . . , xk.

Yi = β0+ β1X1 + . . . + βk Xk + εi (2)

where i is equal to n observations; Yi = the dependent variable (predicted PM10 level); Xk
are the explanatory variables (air pollutants and weather parameters); β0 is the y-intercept
(constant term); βk are the slope coefficients for each explanatory variable; ε = the model’s
error term (also known as the residuals).

2.5.2. Quantile Regression (QR)

The target’s conditional median was calculated using quantile regression. When the
prerequisites for linear regression—namely, linearity, homoscedasticity, independence, or
normality—were not satisfied, the quantile regression method was applied. A certain value
in the features variables may yield at any quantile (percent) using quantile regression, which
is not only limited to computing the median. The quantile regression model equation is
comparable in structure to the linear regression model. By minimizing the median absolute
deviation, the optimum quantile regression line was discovered. In this research, quantile
regression was applied and compared to the conventional MLR with specified percentile
values of 0.25, 0.50, and 0.75. Taking a comparable structure to the linear regression model,
the quantile regression model equation for the τth quantile is

Qτ(Yi) = β0(τ) +β1(τ)X1+ . . . + βk(τ) Xk (3)

where i is equal to n observations; τ = specified percentile value (0.25, 0.50, and 0.75);
Yi = dependent variable (predicted PM10 level); Xk are the explanatory variables (air pollu-
tants and weather parameters); β0 is the y-intercept with a dependency on the τ (constant
term); βk are the slope coefficients for each explanatory variable with a dependency on
the τ.

2.5.3. Performance Indicator

Performance measures were used to evaluate how well the regression models pre-
dicted the PM10 level at each research site. The performance measures used in this study
are mean absolute error (MAE), root mean square error (RMSE), coefficient of determina-
tion (R2), and index of agreement (IA). A detailed description of performance indicators is
tabulated in Table 4 [31].

Table 4. Performance indicator.

Performance Indicators Equation Description

Mean absolute error (MAE) MAE = ∑n
i=1|Pi−Oi |

n
When the value of MAE is closer to zero,

it indicates better method.

Root mean square deviation (RMSE) RMSE = 1
n−1

n
∑

i=1
(Pi −Oi)

2 When the value of RMSE is closer to zero,
it indicates better method.

Coefficient of determination (R2) R2 =

(
∑n

i=1(Pi−P)(Oi−O)
n.Sp .SO

) When the value of R2 is closer to one, it
indicates better method.

Index of agreement (IA) IA =

[
∑n

i=1(Pi−Oi)
2

∑n
i=1|Pi−O|+|Oi−O|2

] When the value of IA is closer to one, it
indicates better method.

where
n = total number of hourly measurements of particular site;
Pi = predicted values of one set of hourly monitoring record;
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Oi = observed values of one set of hourly monitoring record;
P = mean of the predicted values of one set of hourly monitoring record;
O = mean of the observed values of one set of hourly monitoring record;
Sp = standard deviation of the predicted values;
SO = standard deviation of the observed values of one set.

3. Results and Discussion
3.1. Variation of PM10 Level during Haze Event

Table 5 describes the data summary for PM10 concentration at Pasir Gudang, Melaka
and Petaling Jaya, respectively, in 1997, 2005, 2013, and 2015. According to the recom-
mended Malaysian ambient air quality guidelines (RMAAQG), the guideline for the 1-year
average time of PM10 was 50 µg/m3. The mean PM10 levels for Pasir Gudang, Melaka, and
Petaling Jaya were above the threshold value, especially in Melaka, with the highest annual
concentration being recorded in 2005 (83 µg/m3). The mean values for all years exceeded
the median values, indicating the existence of more a extreme concentration of PM10 in
those years. Melaka and Pasir Gudang recorded maximum concentrations of PM10 in
during haze event of 2013 with the measurement of 577 µg/m3 and 462 µg/m3, whereas
Petaling Jaya recorded its highest PM10 level in 2005. Higher variability of PM10 level
were recorded in Melaka and Petaling Jaya and Pasir Gudang with a standard deviation
range of 27.4 µg/m3 to 61.6 µg/m3 compared to Pasir Gudang with a range of 13.7 µg/m3

to 39.9 µg/m3.

Table 5. Data summary for PM10 dataset in Pasir Gudang, Melaka, and Petaling Jaya in 1997, 2005,
2013, and 2015.

Place/
Year

Pasir Gudang Melaka Petaling Jaya
1997 2005 2013 2015 1997 2005 2013 2015 1997 2005 2013 2015

Total
value, N

Valid 8631 8715 8745 8710 8337 8669 8669 8759 8222 8727 8659 8591

Missing 129 45 15 50 423 91 91 1 538 33 101 169

Mean 47.7 46.59 51 64.8 71.7 83.3 79.2 69.7 69.4 64.3 48.4 60.5

Median 33.0 44.0 45.0 54.0 46.0 78.0 72.0 58.0 49.0 56.0 43.0 49.0

Standard deviation 39.9 13.7 38.4 36.1 61.6 27.4 42.8 41.5 55.1 40.7 29.3 50.1

Minimum 11 19 10 27 13.0 29 32 24 20 20 17 5

Maximum 268 116 462 351 415.0 268 577 338 393 494 372 472

Figure 2 shows the box plots for PM10 concentration in Pasir Gudang, Melaka, and
Petaling Jaya. Generally, it indicates that the measurement data were skewed to the right,
and it indicates a distribution with a tail extending towards more positive value for the
years 1997, 2005, 2013, and 2015 at Pasir Gudang, Melaka, and Petaling Jaya. Hence, it
signified the occurrence of extreme values and outliers for the data sets. These values were
due to the high particulate events (HPEs) experienced by Malaysia in those years. The
highest exceedances or extreme PM10 concentrations can be observed in 2013. The haze
phenomenon that occurred between June 2013 and October 2013—which was supposed to
have the same effects as the smog in 1997—was to blame for this. The historic 1997 and
the 2013 haze outbreaks were the two years that recorded a hazardous air pollutant index
(API) in selected areas in Malaysia, including Melaka and Petaling Jaya. Pasir Gudang was
not affected by the haze event in 2005, while Melaka was less affected than Petaling Jaya.
The effects of the haze in 2015 were nearly the same in all locations.

Figure 3 displays the monthly boxplot of PM10 concentration in Pasir Gudang, Melaka,
and Petaling Jaya in 1997, 2005, 2013, and 2015. Overall, the exceedances of PM10 concen-
tration can be observed from June to September, i.e., during the southwest monsoon and
in October during the intermonsoon period. Higher variability in PM10 concentrations in
Petaling Jaya was recorded in September; meanwhile, Melaka and Pasir Gudang showed
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the highly variable PM10 concentrations in October. The slow wind during southwest mon-
soon and biomass burning affects the concentration of air particulate matter in Southeast
Asia, specifically Malaysia [9]. The transboundary pollution due to biomass burning was
transported from Indonesia. Studies by Juneng et al. [32] found that the exceedances in
PM10 concentration coincided when regional low-level winds were primarily southerlies
and southwesterlies, as well as when the region experienced a dry season. The lack of
precipitation and high temperature may have contributed to the high concentrations of
PM10 during the southwest monsoon [33].
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Figure 2. The box plots for PM10 concentration in Pasir Gudang, Melaka, and Petaling Jaya.
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To closely monitor the trend of haze event during these years, Figure 4 shows the
timeseries plot for daily PM10 concentration in 1997, 2005, 2013, and 2015 at Melaka, Pasir
Gudang, and Petaling Jaya. The solid red line designates the recommended Malaysia
ambient air quality guideline (RMAAQG) for a 24 h averaging time, which is 150 µg/m3.
The highest concentrations were observed in year 1997 at Petaling Jaya on 15th September
and continued until the middle of September. A smoke-haze layer has formed in Malaysia
due to transboundary pollution from the vegetation fires in Kalimantan and Sumatra
during that time [34,35]. In addition, the El Niño phenomenon that year prolonged the
dry season and caused the extended effects of the haze event in 1997. Bimodal peaks
of PM10 concentrations are observed at Petaling Jaya in 2005 on 17th and 25th February.
It was observed that Melaka and Pasir Gudang were not affected by the haze event in
2005. According to Soleiman et al. [36], the haze episode in August 2005 was more severe
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compared to the 1997 haze occurrence in peninsular Malaysia. The haze episode largely
affected the entire Klang Valley and its nearby areas, where the air pollution index (API) in
Klang Valley exceeded 500; thus, a haze emergency was declared in the area.Atmosphere 2023, 14, x FOR PEER REVIEW 10 of 25 
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Figure 4. Daily time series plot of PM10 level in Petaling Jaya, Melaka, and Pasir Gudang in 1997,
2005, 2013, and 2015.

In 2013, the PM10 concentration started to rise, starting on 11th August, and high
concentrations were observed at Melaka, Pasir Gudang, and Petaling Jaya on 25 June
2013, 23 June 2013, 21 June 2013, and 24 June 2013, respectively. The air quality in most
regions within peninsular Malaysia worsened as a result of the transboundary pollution
transported from massive land burning in Sumatra, Indonesia during that time [7]. In 2015,
the peak PM10 concentrations at all four study locations started to increase from early
September until the end of October in 2015. PM10 concentrations exceeded the RMAAQG
with a fluctuating trend between September and October of that year. The air quality
in Malaysia deteriorated due to huge land and forest fires in Sumatra and Kalimantan,
Indonesia. It occurred during the period of the southwest Monsoon, coupled with an El
Niño effect that resulted in a strong and prolonged drought observed across Southeast
Asia [37]. The El Niño and drought, as well as the wide spread of the seasonal fires in
Indonesia were greatly inflated, which caused large amounts of terrestrially-stored carbon
to be released into the atmosphere [10]. According to the Department of Environment [4],
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for the first time in Malaysia’s history since 1997, 34 locations in the country experienced
an unhealthy air quality level on 15 September 2015.

Figure 5 shows the backward trajectories of air parcels during the haze events in
2005, 2013, and 2015 at the studied areas. The trajectories were calculated for 48 h periods
at a height of 500 m above ground level (AGL). Figure 5a indicates that during haze
event in August 2005, the air masses travelled from the North Sumatra region to Petaling
Jaya; meanwhile, the air masses arriving at Melaka and Pasir Gudang originated from
the South Sumatra region. As shown in Figure 4, the haze event in 2005 only affected
Petaling Jaya, as a high particulate event originated from Medan, Indonesia, which is
located in the north of Sumatra. It was reported by Show and Chang [38] that 676 fire
activities were recorded in Sumatra on 19 June 2013, which counted as a prominent peak
hotspot. During this season, the southwesterly wind blowing from Sumatra to Malaysia
and brought along thick smoke, covering Singapore and part of Malaysia for weeks [11].
Figure 5c demonstrates the backward trajectory in the middle of September 2015, showing
the air masses travelling from the Kalimantan region. Khan et al. [39] reported that the
release of CO flux in Kalimantan was about 6–7 times higher in strength than in Sumatra
during the fire events of 2015; thus, the fire events in the Kalimantan area were likely to
have more influence over the concentration of air pollutants at the study areas.
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3.2. Association of PM10 Level with Other Air Pollutants and Weather Parameter during HPE

The heat map of the Pearson correlation in the three study areas is shown in Figure 6.
The PM10 level in each location was found to have strong correlation with CO during haze
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events with the highest r value calculated in Petaling Jaya (r = 0.87). A strong association
between PM10 level and CO may specify the influence from local anthropogenic sources
such as emissions from traffic congestion and machinery usage due to the locations’ urban
and industrial backgrounds. Moreover, the periodic land burning activities in the Sumatra
region of Indonesia may have led to this situation as well. The huge land fires released huge
amounts of terrestrially stored carbon into the atmosphere, primarily in the form of CO2,
CO, and CH4 [10]. While this was happening, smoke travelled over large parts of Indonesia
as well as other Southeast Asian countries including Malaysia [40]. The smoke came from
peatland fires where over half had been cleared and drained for plantation development in
particular (including oil palm and acacia for pulp and paper production). Drained, but still
wet peat soils burn incompletely, at relatively low temperatures, which results in relatively
high emissions of a mix of pollutants including particulate matter, carbon moNOxide, and
polycyclic aromatic compounds (PACs).
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Weather parameters were observed to have strong and moderate relationships with
PM10 levels in certain areas of study. A moderate positive correlation can be observed
between PM10 level and temperature for all stations with the range from r 0.29 to 0.45. In
addition, negatively strong (r = −0.6) and moderate correlation (r = −0.3) of PM10 level
with relative humidity was detected in Pasir Gudang and Melaka, respectively. Other than
CO, PM10 level was observed to have positive and negatively moderate correlation with
SO2 in Melaka and Pasir Gudang, respectively. Grivas et al. [41] reported that the influence
of diesel-powered vehicles to particle levels is suggested by the high correlation coefficients
between PM10 and SO2. Sulfate is a main component of ambient particulate matter (PM)
in the urban environment during haze episodes [41,42]. Among the pollutants, SO2 is an
important precursor of sulfate and new atmospheric particle formation. Furthermore, high
SO2 levels in ambient air also cause the formation of other sulfur oxides (Sox) that can
react with other compounds in the atmosphere to form small particles, thus contributing to
particulate matter pollution [43]. A relative humidity level of above 80% can significantly
promote SO2 oxidation on CaCO3 particles and form CaSO4·2H2O crystals [43] where
Malaysia has an average of RH of 75% and 95% [44].

For prediction model proposes, the parameters that were moderately to strongly
correlated (r > 0.3) were used to develop the modified quantile regression model (Pearson–
QR). Table 6 summarizes the parameters for each area.

Table 6. Selected parameters for modified QR (Pearson–QR) model.

Area Selected Parameter

Petaling Jaya CO
Temperature

Melaka

CO
RH
SO2

Temperature

Pasir Gudang

CO
RH

Temperature
SO2

3.3. Predictive Models and Their Performances

Table 7 lists the predictive models (MLR, QR, and Pearson–QR) for the prediction
of PM10 levels for the next day (PM10+24), the next two-days (PM10+48) and the next
three-days (PM10+72) during a high particulate event. Obviously, in Melaka, for the MLR
and QR predictive models, high constant values for parameters of NOx, SO2, NO2, and O3
were observed, ranging from 4.4 (constant for NOx) to 246 (constant for NO2). However,
a smaller constant value for the CO parameter (ranging from 0.38 to 8.3) was calculated
compared to the abovementioned parameters. In contrast, small values of constants for
all selected parameters were detected in Pasir Gudang and Petaling Jaya if compared
to Melaka. Conversely, higher values of constants, especially for the CO parameters of
the Pearson–QR model, were noticed in Pasir Gudang and Melaka compared to other
parameters where the values ranged from 0.68 to 3.9.

Table 8 presents the values of performance indicators once the predicted values were
compared with the observed values. The bold values in the table indicate the best method
with the best values of performance measures for each prediction time. Generally, when the
prediction time increases from the next-day (PM10+24) to the next three-day (PM10+72),
the error increases and the prediction of PM10 level is less accurate.
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Table 7. MLR, QR, and modified QR (Pearson–QR) equations for PM10 level prediction. The cream color represents the next-day prediction (PM10+24); blue
represents the next two-day prediction (PM10+48); green represents the next three-day prediction (PM10+72).

Area Method Quantile Prediction Day PM10 WS T RH NOx SO2 NO2 O3 CO

Pasir Gudang

MLR Mean
PM10+24 0.791 −0.097 0.228 −0.036 0.015 0.041 0.107 0.006 1.701
PM10+48 0.610 −0.181 0.788 −0.006 −0.069 0.213 −0.139 −0.071 0.800
PM10+72 0.482 −0.352 1.428 0.095 −0.104 0.213 −0.037 −0.100 −3.572

QR

0.25
PM10+24 0.471 −0.115 −0.111 −0.118 0.021 0.206 0.072 −0.078 −0.409
PM10+48 0.272 0.057 0.282 −0.033 0.170 0.54 0.002 −0.089 −1.271
PM10+72 0.169 0.009 0.574 0.030 0.025 0.428 −0.100 −0.139 −0.810

0.50
PM10+24 0.679 −0.112 0.154 −0.035 −0.058 0.212 −0.034 −0.067 −0.537
PM10+48 0.529 −0.193 0.424 −0.029 −0.100 0.355 0.084 −0.045 −2.021
PM10+72 0.429 −0.163 0.673 0.025 −0.083 0.391 −0.025 −0.027 −3.761

0.75
PM10+24 0.772 −0.173 0.732 0.082 −0.015 0.270 −0.018 0.067 0.683
PM10+48 0.704 −0.243 0.687 0.037 −0.203 0.216 0.093 0.036 −1.092
PM10+72 0.580 −0.183 0.860 0.089 −0.139 0.284 0.031 0.094 −3.843

Pearson–QR

0.25
PM10+24 0.585 −0.108 −0.086 0.125 −0.682
PM10+48 0.385 0.263 −0.065 0.499 −1.373
PM10+72 0.310 0.586 0.021 0.320 −1.958

0.50
PM10+24 0.678 0.177 −0.010 0.229 −0.487
PM10+48 0.533 0.415 0.012 0.370 −1.981
PM10+72 0.429 0.682 0.061 0.404 −3.580

0.75
PM10+24 0.771 0.700 0.110 0.319 1.011
PM10+48 0.702 0.639 0.076 0.260 −0.601
PM10+72 0.587 0.855 0.129 0.314 −3.896

MLR Mean
PM10+24 0.771 –0.275 –0.004 –0.195 100.596 29.012 –53.149 17.090 0.483
PM10+48 0.663 –0.221 –0.121 –0.207 63.996 204.937 –91.668 18.432 1.021
PM10+72 0.594 –0.205 –0.009 –0.198 63.783 208.651 144.208 41.880 0.737

QR

0.25
PM10+24 0.549 0.037 –0.695 –0.193 21.083 −52.16 151.800 61.620 0.531
PM10+48 0.430 0.084 –1.023 –0.245 –5.578 –143.956 159.496 50.740 –0.477
PM10+72 0.325 0.170 –0.897 –0.218 –23.562 –60.339 246.029 57.959 –0.376

0.50
PM10+24 0.766 –0.132 –0.201 –0.108 4.391 –7.639 105.473 23.218 1.313
PM10+48 0.578 –0.105 –0.342 –0.118 23.58 –48.032 159.496 50.74 0.477
PM10+72 0.581 –0.250 –0.391 –0.117 13.265 –79.94 132.925 24.141 –0.655

0.75
PM10+24 0.860 0.218 0.227 0.068 48.006 173.937 42.777 22.264 8.331
PM10+48 0.778 –0.166 0.134 –0.088 33.346 86.984 15.279 –17.932 6.667

Melaka

PM10+72 0.732 –0.05 –0.135 –0.113 14.284 162.531 45.815 –18.58 6.259



Atmosphere 2023, 14, 407 14 of 24

Table 7. Cont.

Area Method Quantile Prediction Day PM10 WS T RH NOx SO2 NO2 O3 CO

Pearson–QR

0.25
PM10+24 0.567 –0.685 –0.201 –29.625 0.823
PM10+48 0.447 –0.932 –0.249 –112.707 –0.340
PM10+72 0.857 0.196 –0.068 –172.322 9.725

0.50
PM10+24 0.776 –0.135 –0.099 36.943 1.824
PM10+48 0.583 –0.296 –0.105 –14.280 1.820
PM10+72 0.774 0.004 –0.087 108.901 7.559

0.75
PM10+24 0.857 0.196 –0.068 –172.322 9.725
PM10+48 0.774 0.004 –0.087 108.901 7.559

Melaka

PM10+72 0.731 –0.254 –0.110 164.423 6.914

Petaling Jaya

MLR Mean
PM10+24 0.599 –0.675 –1.106 –0.434 –0.065 –0.163 0.552 0.147 3.867
PM10+48 0.457 –0.68 –1.506 –0.536 0.119 0.367 0.360 0.082 –0.11
PM10+72 0.353 –0.281 –1.846 –0.563 0.129 0.811 0.725 0.01 –1.647

QR

0.25
PM10+24 0.365 –0.790 –0.705 –0.273 0.060 0.659 0.624 –0.196 1.516
PM10+48 0.240 –0.654 –0.796 –0.292 –0.048 1.071 0.433 –0.200 –0.520
PM10+72 0.141 –0.467 –0.925 –0.279 0.004 1.250 0.563 –0.076 –1.194

0.50
PM10+24 0.526 –0.749 –0.746 –0.299 –0.090 0.173 0.724 –0.009 1.477
PM10+48 0.358 –0.436 –1.277 –0.415 –0.031 0.475 0.276 –0.068 0.178
PM10+72 0.288 –0.355 –1.356 –0.397 –0.001 0.737 0.313 0.084 –1.410

0.75
PM10+24 0.802 –0.524 –1.254 –0.419 –0.117 –0.590 0.460 0.233 –0.033
PM10+48 0.631 –0.181 –2.025 –0.609 0.050 –0.484 1.159 0.111 –0.903
PM10+72 0.497 –0.085 –2.053 –0.621 0.01 –0.011 0.293 0.041 –1.515

Pearson–QR

0.25
PM10+24 0.381 0.143 2.856
PM10+48 0.261 0.172 1.331
PM10+72 0.173 0.151 0.698

0.50
PM10+24 0.554 0.176 1.863
PM10+48 0.386 0.166 0.329
PM10+72 0.322 0.095 0.995

0.75
PM10+24 0.810 0.193 0.596
PM10+48 0.643 0.321 2.342
PM10+72 0.514 0.202 2.444
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Table 8. Performance indicator values for the predicted PM10 levels. The cream color represents
the next-day prediction (PM10+24); blue represents the next two-day prediction (PM10+48); green
represents the next three-day prediction (PM10+72).

Area Method Time MAE RMSE R2 IA

Pa
si

r
G

ud
an

g

MLR
PM10+24 5.11 8.90 0.96 0.98
PM10+48 7.83 13.61 0.89 0.94
PM10+72 9.86 17.03 0.82 0.90

QR

0.25
PM10+24

10.43 16.90 0.95 0.90
0.50 5.25 9.89 0.96 0.97
0.75 8.58 10.33 0.96 0.98
0.25

PM10+48
12.98 22.01 0.88 0.82

0.50 7.73 14.37 0.89 0.93
0.75 10.17 13.43 0.90 0.96
0.25

PM10+72
14.12 24.52 0.80 0.76

0.50 9.53 17.63 0.81 0.89
0.75 12.00 16.42 0.82 0.93

Pearson–QR

0.25
PM10+24

10.92 17.64 0.94 0.90
0.50 7.34 13.29 0.96 0.95
0.75 8.86 12.75 0.91 0.96
0.25

PM10+48
15.06 25.05 0.84 0.73

0.50 10.96 20.12 0.87 0.86
0.75 10.78 16.00 0.86 0.93
0.25

PM10+72
29.56 39.25 0.84 0.55

0.50 13.71 25.65 0.69 0.73
0.75 13.37 21.64 0.70 0.84

M
el

ak
a

MLR
PM10+24 8.93 14.43 0.93 0.9656
PM10+48 13.05 20.85 0.85 0.9162
PM10+72 16.48 25.55 0.76 0.8576

QR

0.25
PM10+24

16.56 25.77 0.93 0.87
0.50 9.50 14.47 0.94 0.96
0.75 13.05 16.38 0.93 0.96
0.25

PM10+48
45.39 52.93 0.81 0.60

0.50 12.77 22.27 0.84 0.90
0.75 16.67 21.65 0.85 0.93
0.25

PM10+72
22.71 37.02 0.74 0.67

0.50 15.24 26.36 0.76 0.84
0.75 19.25 25.56 0.77 0.89

Pearson–QR

0.25
PM10+24

13.48 22.28 0.90 0.91
0.50 7.12 12.43 0.85 0.98
0.75 9.73 12.26 0.96 0.98
0.25

PM10+48
17.13 29.03 0.77 0.82

0.50 11.92 21.43 0.89 0.91
0.75 12.90 17.34 0.90 0.96
0.25

PM10+72
19.39 34.08 0.68 0.71

0.50 13.14 23.62 0.82 0.89
0.75 15.45 21.53 0.83 0.93

Pe
ta

lin
g

Ja
ya

MLR
PM10+24 10.72 19.45 0.85 0.93
PM10+48 14.68 25.88 0.74 0.84
PM10+72 24.41 38.00 0.34 0.70

QR

0.25
PM10+24

17.94 32.48 0.83 0.73
0.50 11.08 21.47 0.85 0.90
0.75 14.44 19.93 0.85 0.94
0.25

PM10+48
21.35 38.83 0.73 0.56

0.50 15.20 29.12 0.74 0.77
0.75 17.42 24.87 0.74 0.89
0.25

PM10+72
23.23 42.74 0.26 0.45

0.50 16.82 32.34 0.64 0.69
0.75 19.29 28.51 0.64 0.82

Pearson–QR

0.25
PM10+24

19.27 34.20 0.86 0.73
0.50 12.55 24.11 0.87 0.88
0.75 13.92 19.30 0.87 0.94
0.25

PM10+48
21.66 40.12 0.75 0.58

0.50 16.20 31.96 0.76 0.73
0.75 17.69 26.17 0.76 0.87
0.25

PM10+72
23.29 44.00 0.67 0.45

0.50 17.86 35.22 0.67 0.64
0.75 20.13 30.70 0.67 0.79
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In Pasir Gudang, MLR was observed to be the most accurate model for the prediction of
PM10+24 and PM10+48, whereas QR, with p = 0.75, was the best method for the prediction
of PM10+72. It can be observed that for the QR model, p = 0.50 provides the best prediction
for all prediction days. If compared to MLR, the modified Pearson–QR model at p = 0.50
showed the best performance for prediction of PM10+24 and PM10+48, while for PM10+72,
the Pearson–QR at p = 0.75 provided a better prediction. This was due to the less extreme
concentration of PM10 level in Pasir Gudang, as the mean average PM concentration was
much lower than in other areas. Thus, MLR is suitable for implementation to model the
overall mean concentration of PM10 with little emphasis on extreme conditions due to its
assumption of normality [20].

Contrarily, in Melaka, the modified Pearson–QR model at percentile of 0.75 provided
the most accurate prediction of PM10 levels for all prediction times. The performance of the
QR regression at p = 0.50 was the best among all quantiles for the prediction of PM10+24 and
PM10+48, whereas for PM10+72, QR at p = 0.75 provided better performance. In Petaling
Jaya, QR models at the quantile of 0.75 provided the most accurate prediction for prediction
of PM10+24 and PM10+48, whereas for PM10+72, the Pearson–QR at p = 0.75 provided the
best prediction. MLR, on the other hand, provided a less accurate prediction compared to
the QR and Pearson QR at p = 0.75. The QR has the ability to be more useful and precise,
since the noncentral location of a distribution can be represented in all quantiles [23]. The
QR has the capability to include models for all quantiles, evaluating the entire function and
calculating the central tendency (such as mean, median, and mode) for the entire function
of the variable of interest. The advantage of QR is its robustness and that it can also be
adapted to unbalanced observational frequencies [45]. Table 9 summarizes the best method
for each area according to prediction time.

Table 9. Summary of the best prediction method.

Area Prediction Day Best Method

Petaling Jaya
PM10+24 Pearson–QR (p = 0.75)
PM10+48 QR (p = 0.75)
PM10+72 QR (p = 0.75)

Melaka
PM10+24 Pearson–QR (p = 0.75)
PM10+48 Pearson–QR (p = 0.75)
PM10+72 Pearson–QR (p = 0.75)

Pasir Gudang
PM10+24 MLR
PM10+48 MLR
PM10+72 QR (p = 0.75)

In order to straightforwardly compare the performances of all the predictive models,
Figure 7 summarizes the performance measures for all predictive models for the three-
day prediction. The bar chart represents the error measure whereas the line describes
the fitted line of observed and predicted PM10 concentration. Generally, all predictive
models provided good prediction of PM10 concentration, especially for the next-day
concentrations in Pasir Gudang and Melaka. However, Petaling Jaya showed slightly less
accurate prediction of PM10 levels even on the first-day of prediction. For all areas, the
QR method at p = 0.25 was observed to be the least accurate method for all three-day
predictions. The QR at 0.25 describes the PM10 level at 25% of the total distribution of the
dataset; hence, the prediction was too small if compared to the observed data. If compared
to the mean value represented by MLR and QR at p = 0.75, they estimated the PM10
concentration according to the mean value and 75% from the total dataset, respectively.
Thus, the predicted values of PM10 for these two methods were better than QR at 0.25.
This finding is consistent with Ng and Awang [25], where better prediction of daily PM10
concentration in Petaling Jaya, Malaysia was calculated using a higher percentile compared
to lower percentile of quantile regression, thus suggesting this method as one of the
potential methods to be used for calculating air pollutants during haze events compared to
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usual atmospheric conditions. As for the modified QR model (Pearson–QR model), it is
observed that less error was calculated for Pearson–QR at 0.75 if compared to the QR at 0.75
for prediction of PM10 concentration in Pasir Gudang and Melaka. Contrarily, in Petaling
Jaya, the modified model (Pearson–QR at p = 0.75) recorded more error than the QR at
p = 0.75 for predicted PM10 levels in the next two-day and the next three-day analyses.
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Figure 7. Performance measures for prediction of the next-day (PM10+24), the next two days
(PM10+48), and the next three days (PM10+72) in (a) Pasir Gudang, (b) Melaka, and (c) Petaling Jaya.
MLR is multiple linear regression; QR_0.25 is quantile regression at p = 0.25; QR_0.50 is quantile
regression at p = 0.50; QR_0.75 is quantile regression at p = 0.75; Pear-QR_0.25 is Pearson–quantile
regression at p = 0.25; Pear-QR_0.50 is Pearson–quantile regression at p = 0.50; Pear-QR_0.75 is
Pearson–quantile regression at p = 0.75.
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Figure 8 describes the agreement between the predicted and observed PM10 level
in the three areas using the best selected method as provided in Table 9. Generally, the
prediction is more accurate for the short period, i.e., for the next-day (PM10+24) prediction
compared to the next three-day (PM10+72) estimates. Out of the three areas, Petaling
Jaya shows less agreement between the predicted and observed PM10 concentration that
was calculated using Pearson–QR and QR, as the value of R (0.87) was significantly less if
compared to the R-values in Pasir Gudang and Melaka (R = 0.96) for the first-day prediction.
The Pearson–QR model at p = 0.75 predicted PM10 concentration very well in Melaka from
the first day of prediction to the third day with the R-value > 0.80 whereas for Pasir Gudang,
MLR model performed well in predicting PM10 level for the next day and the next two-day.
Meanwhile, prediction for the next three-day of PM10 level in Pasir Gudang that was
calculated using QR (p = 0.75) shows quite good estimates with an R-value of 0.7. Thus, it
can be concluded that quantile regression is suitable for consideration as a reliable method
of predicting PM10 concentration during unusual atmospheric conditions (haze) where
the distribution of air pollutants were usually skewed to the right (due to extreme air
pollutants concentration).
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Figure 8. Relationship between observed and predicted value of PM10 concentration using the best
predictive model (a) Pasir Gudang, (b) Melaka, (c) Petaling Jaya.

3.4. Comparing the Effectiveness of the Quantile Regression (QR) with Other Predictive Models

In this study, we aim to model the PM10 concentration during haze event using QR
and a modified QR (Pearson–QR) and comparing the accuracy of the predictive models
using MLR. From the previous section, it was proven that QR and Pearson–QR are reliable
methods for use as predictive tools for estimating PM10 levels, especially during a high
particulate event. QR and Pearson QR at p = 0.75 provided the most accurate prediction in



Atmosphere 2023, 14, 407 19 of 24

Melaka and Petaling Jaya, in which QR at p = 0.25 provided the least effective prediction in
all study areas.

In this section, the effectiveness of the QR models applied in this study are com-
pared with recent studies that implemented QR, modified QR, MLR as well as machine
learning algorithm. Table 10 shows selected recent studies on forecasting PM10 or PM2.5
concentration during haze and usual atmospheric conditions. Abdullah et al. [17] applied
MLR to predict the next hour until the next three hours of PM10 concentration during
transboundary haze in Malaysia. It was observed that the accuracy of the models were
quite low, as the R2 value is <0.5 for the best selected model, i.e., the next-hour prediction.
MLR is a linear model that is the most frequent predictive model used to forecast air
quality. In addition to providing a simple mean linear relationship of PM10 concentration
with other parameters, linear regression may not provide accurate predictions in some
complex situations such as extreme value data [46]. A study by Ng and Awang [25] and
Ul-Saufie et al. [47] used QR and a modified QR (coupling with a boosted regression tree),
respectively, to forecast PM10 levels in peninsular Malaysia. Overall, the QR and BRT–QR
provided more accurate prediction of PM10 in the specified study area. However, once
comparing the R2 values for the BRT–QR model [47], the range of R2 values for this study
was higher with the range from 0.98 to 0.93 for the next-day prediction. This might be due
to less extreme PM10 concentration in the dataset since the study was conducted during
usual atmospheric conditions. Hence, QR could not maximize its ability of describing the
noncentral location of a distribution that can be represented in any quantiles, which allows
QR to be more precise.

Table 10. Recent studies forecasting PM concentration during haze and typical atmospheric conditions.

Area Method Dependent
Variable Prediction Time Description

Urban area in
Malaysia [17]

• MLR PM10
• Next h
• Next two-h
• Next three-h

• Prediction was made for
transboundary haze event using
hourly dataset 2005 to 2015.

• The best prediction time was the
next-hour with the RMSE value of 127
and R2 value of 0.447.

Petaling Jaya [25]

• QR
(0.05 < p < 0.95
with the
increment of
p = 0.05)

• MLR

PM10 • Next day

• The values of R1
τ range from 0.29 at

0.05 quantile to 0.46 at 0.95 quantile.
• This suggests that the PM10

distributions at high levels are better
explained by the model com-pared to
the lower quantiles.

• This might suggest that the lagged air
pollutants and meteorology played
larger role in PM10 variation during
haze period than any other time.

Peninsular Malaysia
[47]

• BRT–QR PM10
• Next 24 h
• Next 48 h
• Next 72 h

• The results indicate that the QR has
fulfilled the assumptions and the
good model for BRT for predicting
maximum daily PM10 concentration.

• The performance measures show
good prediction for next-day
prediction with values of RMSE
(9.33–22.25) and R2 (0.60–0.73).

• Most of the results used 0.5 as the
best quantile, which represents the
median data, but 0.55 and 0.6 had
also been chosen as the best quantile
because the model has more number
of outliers compared to the
other models.

• Overall, QR is an alternative loss
function for BRT to predict the 3 days
ahead of PM10 concentration and
suitable for data containing
influence outlier.
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Table 10. Cont.

Area Method Dependent
Variable Prediction Time Description

Sichuan, China [48]

• Deep belief–
backpropagation
neural network
(DBN–BP)

PM10PM2.5 • Next 24 h

• Proposed DBN-BP to predict PM10
and PM2.5 level during smog
polluted weather in 2016–2017.

• The analysis shows that the larger the
number of hidden layers in the belief
network, the higher the prediction
accuracy. The prediction accuracy of
PM2.5 is significantly higher
than PM10.

• The prediction effect of the DBN-BP
neural network proposed is better
compared to the traditional BP
Neural Network.

China [49]

• One-
dimensional
convolutional
neural networks

• Gated recurrent
unit method
(GRU)

PM2.5 • Next 24 h

• The convolutional neural network
rises quickly in a short time, but the
subsequent changes are
not significant.

• The accuracy rate of the GRU
increases with the increase in the
number of iterations. It can be said
that the GRU neural network is more
suitable for tasks with sufficient data
volume and no requirement for
training time.

Malaysia [50]
• Support vector

machine
(SVM)–BRT

PM10
• Next day
• Next two-day
• Next three-day

• The BRT model was trained by
utilizing maximum daily data in the
cities of Alor Setar, Klang, and
Kuching from the years 2002 to 2017.

• The SVM–BRT model can optimize
the number of predictors and predict
PM10 concentration; it was shown to
be capable of predicting air pollution
based on the models’ performance
with RMSE (10.46–32.60) and R2

(0.33–0.70).
• This was accomplished while saving

training time by reducing the feature
size provided in the data
representation and preventing
learning from noise (overfitting) to
improve accuracy.

West coast of
peninsular Malaysia

[This study]

• QR
• Pearson–QR
• MLR

PM10
• Next 24 h
• Next 48 h
• Next 72 h

• Hourly air quality datasets during
historical haze event were used to
predict PM10 concentration.

• Proposed modified QR method
(Pearson–QR) and compared the
performances of the predictive model
with QR and MLR.

• The QR and the Pearson–QR at
percentile 75% provides the best
prediction in areas with extreme
PM10 concentration. Thus, the QR
method a simple predictive model
that can be used as a predictive tool
during a haze event.

Machine learning is known as an effective technique for understanding the interde-
pendence of climatic data and air pollution since it supports exploratory analysis of data
without using an empirical model [48]. Worldwide, a lot of studies have been conducted
to predict air pollutants using various kinds of machine learning algorithms. Recently,
Tian et al. [49] proposed the deep belief–backpropagation neural network (DBN–BP) to
predict next-day PM10 and PM2.5 levels during a smog-polluted weather period in Sichuan,
China. Zhang et al. [50] claimed to develop an accurate prediction of the next-day PM2.5
level a during haze event using the gated recurrent unit (GRU) method with the accuracy
increasing with the increase in its iteration. In Malaysia, lately Syaziayani et al. [51] pro-
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posed the support vector machine (SVM)–BRT to predict PM10 levels for three consecutive
days. The accuracy of the proposed model was comparable with this study; however, this
model was not developed for predicting PM10 during extreme an event. In summary,
very limited-to-no study was known to predict PM10 levels during haze events using
the QR method in Malaysia. Hence, this study has successfully developed QR models in
Malaysia and the accuracy of the models were comparable with other predictive models
including machine learning algorithms. Yet, this study can be enhanced by verifying the
predictive models developed using the cross-validation method by the use of current air
quality datasets. Since we do not have the suitable and recent air quality dataset (air quality
with recent haze event) to verify the accuracy of the model, it is sufficient to compare the
accuracy of the model using other related studies as presented in this subsection.

4. Conclusions

In this study, hourly air quality parameters in three locations (Petaling Jaya, Melaka,
and Pasir Gudang), are situated in the west coast of peninsular Malaysia, during historical
haze events in 1997, 2005, 2013, and 2015 were analyzed. The main purpose of this study
was to investigate the performance of the quantile regression (QR) method in predicting the
next-day (PM10+24), the next two-day (PM10+48) and the next three-day (PM10+72) PM10
levels at various percentiles including 0.25, 0.50, and 0.75. The Pearson correlation was
calculated to identify the most influential parameters associated with PM10 concentration,
specifically, in all study areas. It was found out that CO and temperature has a strong
and moderate correlation with PM10 measurement records for all areas, respectively.
Meanwhile, moderate association of SO2 was detected in Melaka and Pasir Gudang. From
the Pearson analysis, parameters that had moderate to strong correlation with PM10
level (r > 0.3) were used as independent parameters to develop a PM10 predictive model,
i.e., Pearson–QR. These models were compared with QR and multiple linear regression
(MLR) to evaluate the applicability of the QR model in predicting unusual conditions in
PM10 level, i.e., during a haze event. A number of performance measures such as mean
absolute error (MAE), root mean squared error (RMSE), coefficient of determination (R2),
and index of agreement (IA) were used to assess the performances of the models. It was
proven that the Pearson–QR model at p = 0.75 outperformed the prediction of PM10 levels
in Melaka for the next-day to next three-day periods with an R2 value >0.8. Meanwhile, QR
with p = 0.75 was chosen as the best model in Petaling Jaya with the IA value ranging from
0.82 to 0.94. Contrarily, MLR outperformed the prediction of PM10 levels in Pasir Gudang
due to less of extreme values in the dataset; hence, the overall mean concentration model
was the best for representing PM10 concentration in this area. Thus, it was verified that the
QR method can a reliable method for predicting air quality, especially during atmospheric
unusual conditions, for example, during a high particulate event (HPE). Due to its ability
to represent a noncentral location of a distribution that can be represented in any quantiles,
QR can be seen as a preferred method for application, especially in nonnormal distributions
of air pollutant concentration.

Despite the robustness of the QR method towards extreme data, one of the major
drawbacks of quantile regression is that it is time-consuming to determine the best quantile
for each model. Many training runs or experiments need to be conducted prior to obtain
the best quantile for each dependent variable. Hence, application of a genetic algorithm
could used to solve this problem. Genetic algorithms are a kind of optimization algorithm
that can be used to solve problems in a variety of domains.
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