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Abstract: Deep learning models have been widely used in time-series numerical prediction of at-
mospheric environmental quality. The fundamental feature of this application is to discover the
correlation between influencing factors and target parameters through a deep network structure.
These relationships in original data are affected by several different frequency factors. If the deep
network is adopted without guidance, these correlations may be masked by entangled multifre-
quency data, which will cause the problem of insufficient correlation feature extraction and difficult
model interpretation. Because the wavelet transform has the ability to separate these entangled
multifrequency data, and these correlations can be extracted by deep learning methods, a hybrid
model combining wavelet transform and transformer-like (WTformer) was designed to extract time–
frequency domain features and prediction of air quality. The 2018–2021 hourly data in Guilin was
used as the benchmark training dataset. Pollutants and meteorological variables in the local dataset
are decomposed into five frequency bands by wavelet. The analysis of the WTformer model showed
that particulate matter (PM2.5 and PM10) had an obvious correlation in the low-frequency band and a
low correlation in the high-frequency band. PM2.5 and temperature had a negative correlation in the
high-frequency band and an obvious positive correlation in the low-frequency band. PM2.5 and wind
speed had a low correlation in the high-frequency band and an obvious negative correlation in the
low-frequency band. These results showed that the laws of variables in the time–frequency domain
could be found by the model, which made it possible to explain the model. The experimental results
show that the prediction performance of the established model was better than that of multilayer
perceptron (MLP), one-dimensional convolutional neural network (1D-CNN), gate recurrent unit
(GRU), long short-term memory (LSTM) and Transformer, in all time steps (1, 4, 8, 24 and 48 h).

Keywords: wavelet transform; Transformer; time–frequency domain feature extraction; self-attention;
correlation analysis

1. Introduction

Over the past few decades, with the continuous advancement of industrialization
and urbanization, the huge consumption of energy has led to the increasingly serious
problem of air pollution [1–3]. Air pollutants include PM2.5, CO, SO2, NO2, etc., which
can cause many diseases, such as asthma, heart disease, chronic obstructive pulmonary
disease and cancer [4,5]. According to the World Health Organization (WHO), simple
breathing behavior causes 7 million deaths each year due to air pollution, which seriously
endangers human health. To reduce the harm caused by air pollution, researchers have
introduced various models to predict changes in air pollution to take necessary measures
at the corresponding time [6,7]. Among these models, the deep learning model has the best
prediction effect [8]. However, the deep learning models have the “black box” problem, and
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the prediction behavior of the models is difficult to explain. In addition, the time-series data
of the atmospheric environment integrates signals of different frequencies and is mixed
with incorrect noise signals, the correlation between atmospheric and pollutant variables
is masked by these entangled signals, so it is difficult to be reliably found. Therefore, it is
very important to improve the interpretability and accuracy of the prediction by separating
the entangled different frequency signals from the original data to obtain clearer signals
and designing an interpretable network to extract these correlation rules.

Thus far, various technical methods have been applied to air quality prediction, includ-
ing mechanism models and statistical models. The mechanism models were established
by simulating physical and chemical processes of air diffusion, such as Gaussian diffusion
models [9,10], weather research and forecasting (WRF) models [11–13] and community
multiscale air quality (CMAQ) models [14,15]. For example, Cheng et al. proposed an
inference model based on the Gaussian process to estimate the pollutant concentration at
any point [16]. Rogers et al. established the WRF model configuration through various
sensitivity experiments in central California, allowing WRF to simulate meteorological
variables with reasonable errors [17]. Lee et al. analyzed and evaluated atmospheric O3
using a CMAQ modeling system to help air pollution control in China [18]. However,
detailed and accurate external environmental parameters were required as inputs to the
mechanism model. Owing to the complexity of real environment, these parameters were
difficult to obtain reliably, which makes prediction of the mechanism models have great
limitations. Statistical models were used to predict future changes in variables by discover-
ing the evolution of data from historical data, including linear regression models [19,20],
perceptron [21,22], support vector machine (SVM) [23,24], tree models [25–27], deep neural
networks (DNN) [28–30], etc. Linear regression models include univariate linear regression
and multivariate linear regression; between them, multivariate linear regression had better
nonlinear fitting ability, but it may be insufficient compared with perceptron, tree models,
DNN, etc.

With the continuous development of artificial intelligence technology, new models of
DNN have been continuously constructed and improved, such as convolutional neural
networks (CNN) [31], graph convolution networks (GCN) [32], LSTM [33], residual net-
works (ResNet) [34], attention network [35] and Transformer [36], which have been widely
used in air pollution prediction. At the same time, the huge improvement in graphics
processing unit (GPU) computing power makes it possible for complex DNN models to
be trained, the prediction performance of DNN has been superior to other traditional
statistical models [37], which may be explained by two reasons. First, the deep network
structure gives it stronger ability to simulate the evolution process from input to output.
Second, various network modules were flexibly combined, and the advantages of various
networks were utilized. For example, a deep distributed fusion network was constructed
based on deep neural networks [38], which had been improved for both short-term and
long-term prediction of air quality compared to previous online monitoring systems. A
deep convolutional neural network was used to correct the prediction error of CMAQ,
which improves the prediction performance of the CMAQ model [39]. CNN-LSTM and
GCN-LSTM combined the advantages of CNN/GCN to extract spatial information and
LSTM to capture time dependence, showing advanced prediction performance [40,41].
However, the deep network structure makes the prediction of the model difficult to explain,
and the prediction behavior of the models is difficult to understand, which is not conducive
to taking corresponding measures to alleviate air pollution. Moreover, the complex and
changeable atmospheric environment makes the air pollutant data integrate entangled
signals of different frequencies, accompanied by various incorrect random noise, which
affects the accuracy of prediction.

To overcome these limitations, we designed a hybrid model based on wavelet trans-
form, attention network and LSTM to predict the changes in air pollutants. The developed
model has the following innovations: (a) The frequency separator was constructed by
wavelet transform, which separates the entangled different frequency data in the original
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data, so that the correlation between pollutants and meteorological variables is clearer
and the prediction accuracy is improved. (b) The self-attention network was improved
to better discover the time–frequency correlation between pollutants and meteorological
variables, and the focus of the model is found by analyzing the attention matrix, so that
the prediction behavior of the model can be explained. (c) An intelligent model combining
deep learning and time–frequency correlation extraction was established to reflect the
deeper time–frequency relationship between pollutants and meteorological variables in the
study area.

The structure of the paper is as follows. In Section 2, the principles and functions of
the techniques used in the model and the sources of research data are introduced. Section 3
introduces the structure of the model. Section 4 evaluates the predictive performance,
interpretability and necessity of each module in the model. Section 5 summarizes this work
and looks forward to the future direction.

2. Problem Scenario

In the study, PM2.5 was used as the target parameter, other pollutants and meteorolog-
ical parameters as the impact parameters, including PM10, CO, wind speed, temperature,
humidity, etc., and there is a correlation between them [42]. Meteorological and pollutant
data are typical time-series data. Because of the complexity of the real environment, the
time-series data were affected by factors of different frequencies, and the time-series data
were mixed with signals of different frequencies.

The entangled signals of different frequencies in the original data can be separated by
wavelet transform, which is beneficial when trying to locate the time correlation between
variables more accurately. Self-attention can be used to construct the feature encoder,
calculate the correlation matrix between different frequency bands of meteorological and
pollutant variables, and enhance the data characteristics of the main influencing factors,
which is conducive to improving the prediction accuracy. By analyzing the correlation
matrix among different frequency bands of each variable, the main factors effecting the
short-term mutation and long-term trend of the prediction target can be found, which
improved the interpretability of the model. The decoder’s decoding process, LSTM, was
used to decode time information and capture time dependencies and the attention net-
work was used to adaptively extract primary features from time-decoded data to predict
PM2.5 concentrations.

The WTformer model combines the advantages of wavelet transform and deep learn-
ing methods, which effectively improves the interpretability and prediction accuracy of
the model.

2.1. Wavelet Transform Used for Time-Series Decomposition

Wavelet transform is a mathematical tool used to separate different frequency infor-
mation from original data by adaptively exploring different frequency bands through a
wavelet mother function [43]. This method can overcome the shortcomings of the short-
time Fourier transform, which is difficult to analyze time-varying signals effectively [44]; it
is an effective tool for processing and analyzing time-series data of air pollution [45–47].
Wavelet transform can be defined as follows:

WT(a, b) =
1√
a

∫ ∞

−∞
f (t)ψ

(
t− b

a

)
dt, (1)

where 1√
a is the normalization factor, f (t) is the input signal, ψ(t) is the mother wavelet,

a is the scaling exponent parameter and b is the time-shifting parameter.
In this study, we used the stationary wavelet transform (SWT). Its decomposition

process includes translation invariance, which is conducive to the exploration of laws and
the calculation of tensors. SWT divides the time-series data into high-frequency and low-
frequency signals. High-frequency signals represent the short-term mutation characteristics
of the sequence, and low-frequency signals represent the long-term trend characteristics
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of the sequence [48]. In the SWT, we used the Daubechies (db) wavelet, which is the most
commonly used wavelet [47], as the mother wavelet function.

2.2. Encoder

The encoder calculates the correlation between different frequency bands of input
variables through self-attention to enhance the input feature information. The ability of
self-attention to adaptively learn the correlation between input variables has played a
crucial role in time-series prediction [49–51]. This structure is shown in Figure 1a. The
calculation process of self-attention can be summarized as mapping input V to output by
calculating the correlation matrix between variables. First, the input variables are mapped
to different spaces using different linear layers, resulting in Q, K and V. Second, use all
K to calculate the dot product of Q. Then, to prevent the activation function from being
pushed to the minimum gradient region due to the dot product being too large, divide each
by
√

dk, and the correlation coefficient between the variables can be obtained. Third, by
using the activation function SoftMax, the correlation coefficient can be mapped to (0, 1)
to obtain a correlation matrix among the variables. Finally, the correlation matrix and V
dot products are used to enhance the characteristic information of the data, that is, the
variables associated with PM2.5, which are greater after enhancement by the correlation
matrix. Self-attention can be described in mathematical language as follows:

Attention(Q, K, V) = so f tmax
(

QKT
√

dk

)
V, (2)

where Q represents the information to the query, K represents the key to the query and
V represents the value of the query.
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 Figure 1. (a) Original structure of self-attention; (b) improved structure of self-attention.

In the original self-attention, V was mapped to another vector space by the linear
layer, which may have caused the information of the original space to be destroyed and the
correlation among variables to be blurred, which was not conducive to the interpretation of
the model. In addition, in Scaled Dot-Product Attention, SoftMax was used as the activation
function, and its range was limited to (0, 1), which confused negative and weak correlations
when calculating correlations among variables. To solve these problems, the linear layer on
V was canceled, and we used the Tanh activation function with a range (−1, 1) instead of
SoftMax. The new self-attention structure is shown in Figure 1b.

2.3. Decoder

In the decoding process of the decoder, LSTM was used to decode time information
and capture time dependence, and the attention network was used to adaptively extract
the main features from the time-decoded data to predict PM2.5 concentration.
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2.3.1. LSTM

LSTM is a gated deep learning network for time-series prediction. In the decoder,
it was used to extract the time dependence between variables. Its structure is shown in
Figure 2.
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Each LSTM neuron has three gating units, which are the input gate, forgetting gate and
output gate. By using LSTM internal gates, the time dependence on data can be resolved.
The calculation of the LSTM unit is as follows:

ft = σ
(

W f [xt, ht−1] + b f

)
, (3)

it = σ(Wi[xt, ht−1] + bi), (4)

Ot = σ(WO[xt, ht−1] + bO), (5)

Ĉt = tanh(WC[xt, ht−1] + bC), (6)

Ct = ft·Ct−1 + it·Ĉt, (7)

ht = Ot·tanh(Ct), (8)

where W f , Wi, WO and WC are weight matrices; b f , bi, bO and bC are bias constants; and
σ is the corresponding sigmoid function. The neural network filters the data through the
forgetting gate ft. By evaluating the forgetting information of the previous state ft·Ct−1, the
useful information it·Ĉt is remembered from the current state, and then ht is fed forward to
the next hidden LSTM layer to update the state Ct.

2.3.2. Attention

In the decoder, the attention network was used to intelligently extract effective infor-
mation from data at different time points. Attention has the effect of improving the accuracy
and stability of model prediction and has been widely used in time-series prediction [52–54].
The attention function can be described as mapping the input x to the output y through
the correlation matrix, and the correlation matrix was learned by the neural network. This
process can be described in mathematical language as follows:

y = α(x)·x, (9)

where α is a neural network with x as input, α(x) is the correlation matrix learned by the
network, x is input and y is output.
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The attention mechanism is different from Q-K-V self-attention. In terms of com-
putational complexity, the time complexity was O(n), and compared with the square
complexity of the self-attention module, the attention model was faster. Functionally,
although attention could not find the correlation between input variables, it could intel-
ligently discover and extract effective information from redundant information through
the network. Thus, it could reduce the computational complexity while also ensuring the
model prediction performance.

2.4. Data Sources

The study area is located in Guilin, China, shown geographically in Figure 3a. The
research data are from online atmospheric monitoring stations in Guilin, including 10 fixed
stations and 51 micromonitoring stations. The fixed stations include Dianzikeda, Luyoux-
ueyuan, Chuangyedasha, Bazhong, Linchuan, Linkesuo, etc. The microstations include
Wanfulu, Lijiangdamei, Jiangjunluxi, Xinxichanyeyuan, Shahelijiao, Hongjie, etc. Figure 3b
shows the geographical distribution of these stations. The average hourly data from 2018 to
2021 for meteorological variables and pollutant concentrations were used as the basic
dataset. Table 1 lists the pollutants and meteorological variables in the basic dataset. The
meteorological variables include wind speed, temperature, humidity, air pressure and
rainfall. The pollutant variables include PM2.5, PM10, NO2, CO, SO2 and O3. PM2.5 in the
sample area was used as the prediction target for the model.
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Table 1. Pollutants and meteorological variables in the dataset.

Categories Variables Unit

Pollutant PM2.5 ug/m3

PM10 ug/m3

CO ug/m3

NO2 ug/m3

SO2 ug/m3

O3 ug/m3

Climate variables Wind speed m/s
Temperature ◦C
Humidity %
Rain mm
Pressure hpa
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Guilin is a famous tourist city, attaching great importance to the protection of the
ecological environment, with magnificent mountains and clear rivers. However, the air
quality index is the worst among the 14 cities in Guangxi Province, and haze events often
occur in winter [55]. This abnormal phenomenon is due to the special geographical location.
As shown in Figure 4, the area northeast of Guilin is connected to Yongzhou through
Lingchuan, Xing’an and Quanzhou, and the area southwest is connected to Liuzhou
through Yongfu. In addition, Guilin is a typical karst basin, surrounded by Tianping,
Haiyang, Jiaqiao and other mountains, which readily forms atmospheric turbulence and is
not conducive to the diffusion of atmospheric pollutants. Therefore, the pollutants from
Yongzhou and Liuzhou often accumulate in Guilin, resulting in abnormal haze events in
Guilin, so it is necessary to make a reliable prediction of air pollutants in Guilin.
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Atmospheric turbulence in Guilin varies greatly in different seasons and periods,
resulting in obvious high- and low-frequency fluctuations. It is characterized by the
large influence of exogenous long-distance transport in autumn and winter, and the large
influence of local turbulence in spring and summer. Therefore, sample data from this region
are suitable as the basic data for the model.

3. Methods
3.1. Framework

In this study, we constructed a hybrid prediction model combining wavelet transform
and deep learning. The model framework is shown in Figure 5. The framework included
data acquisition and processing, frequency separation, WTformer, result analysis and
correlation analysis. First, hourly air pollutants and meteorological data were collected and
preprocessed. Second, the low-frequency and high-frequency signals were separated from
the original data by the frequency divider. Third, the WTformer model was constructed
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to predict future changes in PM2.5 concentration. Fourth, root mean square error (RMSE),
mean absolute error (MAE) and symmetric mean absolute percentage error (SMAPE) were
used as evaluation parameters. The WTformer was compared with the established baseline
model and ablation model to verify the prediction performance. Finally, the correlation
matrix learned by the model was analyzed to obtain the deeper time–frequency law of the
meteorological and environmental variables.
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3.2. Data Processing

Deep learning models are based on statistics, which predict the future evolution of
variables by mining rules from data, so reliable data are needed as input. However, moni-
toring data often appear abnormal because of instrument failure, network loss, abnormal
weather, power failure and other reasons. The processing of outliers includes two cases:
missing values were filled by linear interpolation, and the 3σ method was used to identify
outliers and fill them by linear interpolation. In addition, data of the same magnitude are
used as input to the deep learning model, which helps to smooth the learning gradient, thus
improving the accuracy and stability of the prediction; therefore, the data of meteorological
and pollutant variables need to be normalized. Min–max normalization was used in the
paper, as shown in Equation (10).

x′ =
x− xmin

xmax − xmin
(10)

where x′ is the normalized value, x is the original value, xmin is the minimum value in the
data and xmax is the maximum value in the data.

3.3. Construction of Frequency Separator

We built the frequency splitter using SWT, which was designed to separate low-
and high-frequency signals in pollutants and meteorological parameters. Its structure is
shown in Figure 6. The timing diagram of Figure 6 was obtained by decomposing 512 h of
PM2.5 data.
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Figure 6. Frequency separator.

First, the original time-series data were decomposed into low-frequency component
CA1 and high-frequency component CD1 by SWT. Because the decomposition process
of SWT did not extract coefficients at each transform level, CA1 and CD1 had the same
dimension as the original data. Then, CA1 was decomposed in the same way to obtain CA2
and CD2. The low-frequency component CAn and the high-frequency component CDn
were obtained by recursive calculation, where n represents the decomposition scale. The
larger the number of decomposition layers, the more detailed information was lost in the
low-frequency signal. The number of decomposition layers used in this study was four.
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3.4. Construction of Encoder

The encoder was constructed by improving self-attention. It was used to calculate
the correlation matrix between meteorological and pollutant variables, to enhance feature
information and to encode. Its structure is shown in Figure 7.
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First, Q and K were obtained to map the time–frequency data of meteorology and
pollutants to different spaces through the linear layer. Then, the transpose matrix of Q
and K was multiplied to calculate the correlation coefficient between variables and the
correlation matrix was obtained by using the Tanh activation function after normalization.
Finally, the correlation matrix was multiplied by the input original data V matrix to enhance
the feature information for the data. The more variables associated with PM2.5, the greater
its value would be after feature enhancement, thereby enhancing the feature information
for the main influencing factors and reducing the impact of interference signals.

3.5. Construction of the Decoder

The decoder was constructed by the LSTM and Attention modules. It was used to
decode the time information and extracted valid feature information from the time step to
predict future PM2.5 concentrations. Its structure is shown in Figure 8.
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First, LSTM was used to decode time information in the time dimension to capture
time dependencies. Second, the time-decoded data were input into the Attention Network,
and the convolutional layer was used to extract the variable information in each frequency
band and the feature bands of the correlation between PM2.5 and meteorological and
pollutant parameters in different frequency bands. Third, the SoftMax layer was input to
obtain the correlation matrix of each frequency domain for the prediction results. Fourth,
the correlation matrix was multiplied by the data after time decoding to enhance the feature
information for the main frequency bands. Finally, the PM2.5 concentration in the future
was predicted by fusing the feature information with the linear layer.
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3.6. Evaluation Criterion

To quantify the predictive performance of the model, RMSE, MAE and SMAPE were
used as evaluation indexes:

MAE(y′ ,y) =
1
n

n

∑
i=1

∣∣y′i − yi
∣∣, (11)

RMSE(y′ ,y) =

√
1
n

n

∑
i=1

(
y′i − yi

)2, (12)

SMAPE(y′ ,y) =
1
n

n

∑
i=1

∣∣y′i − yi
∣∣

y′i+yi
2

, (13)

where n is the total number of samples, y′i is the predicted value and yi is the observed value.

4. Experimental Results and Analysis
4.1. Network Parameters

The small-batch gradient descent algorithm was used to optimize the model. The
size of each batch was 32, and the training was repeated for 200 rounds. When the
loss value of the training dataset does not decrease within five rounds, the early stop
method was used to stop the training. The dropout of 0.1 was set to prevent overfitting.
Additionally, a number of hyperparameters were debugged to anticipate that the model
achieved the best performance, including historical time step, wavelet decomposition scale,
linear mapping layer dimension, etc., where the historical time step represents the length
of the historical time unit used to predict future data, the wavelet decomposition scale
represents the number of rounds of the original data being decomposed by wavelet, and
the linear mapping layer dimension represents the dimension of the data being mapped to
the hidden space.

4.2. Prediction Performance

To evaluate the predictive performance of WTformer, the air pollutant concentration
from January 2018 to January 2021 was used as the learning data, and the average hourly
PM2.5 concentration of the two periods was used as the test data to evaluate the performance
of WTformer in different situations. During the period from 7 to 23 May 2021, the change
in PM2.5 concentration showed a normal trend. From 1 July to 16 July 2021, PM2.5 concen-
tration changes frequently. Figures 9 and 10 show the prediction structure of WTformer in
two time periods. In different situations, the model showed good prediction performance.
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4.3. Ablation Experiment

The ablation model was established by removing some modules in the hybrid model.
Its experimental purpose was to ensure that the introduction of each module in the model
was effective for improving the prediction accuracy. Self-Attention LSTM Attention (SA-
LA), Wavelet Transform LSTM Attention (WT-LA) and LSTM-Attention (LA) were con-
structed for ablation experiments. Among them, the SA-LA was constructed by removing
the wavelet decomposition module, the WT-LA was constructed by removing the feature
enhancement module, and the LA model was constructed by removing the wavelet de-
composition and feature enhancement modules. With the same number of training rounds
and learning rate, the concentration of PM2.5 in the next 48 h was predicted by WTformer
and the three ablation models. The predicted and observed values are shown in Figure 11.
By analyzing the performance of each model at markers 1, 2, 3, 4, it can be found that the
WTformer model performs best, whereas the SA-LA and LA models, which lacked the
wavelet decomposition module, were less sensitive to the mutation. The WT-LA and LA
models, which lacked the feature enhancement encoder, had a prediction lag problem at
markers 1 and 3.
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These ablation experiments verified that each module in the WTformer model was
effective. The wavelet decomposition module improved the sensitivity of the model to
mutation. The feature enhancement module alleviated the lag problem of the LSTM model
in prediction.

4.4. Correlation Analysis between PM2.5 and Other Variables

We conducted a correlation analysis to determine the influence of meteorological and
pollutant parameters on PM2.5 at a deeper level to show the interpretability of the model. To
analyze the factors affecting the variation in PM2.5 for different frequency bands, Figure 12
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shows the attention matrix learned by self-attention in the encoder. Among the pollutant
factors, the correlation between PM2.5 and PM10/NO2/CO/SO2 was reflected mainly in
the low-frequency band and slower frequency band in the high-frequency band, and the
correlation was lower in the high-frequency band. The correlation between PM2.5 and O3
was reflected mainly in the slower high-frequency band, and the correlation was lower in
the low-frequency band and the faster high-frequency band. Among meteorological factors,
the correlation between PM2.5 and temperature/wind speed/pressure/precipitation were
reflected mainly in the low-frequency band, and the correlation was weak in the high-
frequency band. The correlation between PM2.5 and humidity was reflected mainly in the
slower high-frequency band, and the correlation was weak in the low-frequency band.
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These findings indicated that the influence of PM10/NO2/CO/SO2/temperature/wind
speed/pressure/precipitation on PM2.5 was reflected mainly in a wider time scale, and the
influence was long term, whereas the influence of O3 and humidity on PM2.5 was reflected
mainly in the high-frequency band, and the influence was short term. This shows that
the time–frequency law between variables was found, and the prediction behavior of the
model could be explained by analyzing the attention matrix.

4.5. Comparison of WTformer with Other Methods

To validate the advanced predictive performance of the WTformer model, it was
quantitatively compared with the predictive performance of the ablation model and the
mainstream deep learning models at different time steps (1, 4, 8, 24 and 48 h). The deep
learning models include MLP, CNN1D, GRU, Transformer and LSTM. Table 2 lists the
quantitative results of RMSE, MAE and SMAPE. WTformer achieved the best results
compared with other models. The time-series prediction models of GRU and LSTM are
superior to the non-time-series models MLP and CNN1D for the prediction of the short
and medium time step (1, 4 and 24 h). However, with the increase in time step, GRU and
LSTM have “catastrophic forget”, and GRU forgetting is more obvious, so their prediction
performance is not as good as MLP and CNN1D in the long time step (48 h). The prediction
performance of LA is better than LSTM at all time steps, which indicates that the problem
of “catastrophic forgetting” can be improved by introducing attention networks. The
prediction of the attention model Transformer in a short time step (1 and 4 h) is not as
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good as that of LSTM and GRU, but it is better in a longer time step, which may be that
Transformer does not have the problem of “catastrophic forget” and shows better prediction
stability. The performance of the WT-LA model is better than that of the LA model, which
may be because the frequency-entangled signal can be separated from the original data by
wavelet transform, and the time dependence is easier to be found. The performance of the
SA-LA model is better than that of the LA model, which may be because self-attention can
learn the main and secondary signals, thereby giving the noise signals a smaller attention
weight and reducing their interference, thus improving the prediction accuracy and stability
of the model. The WTformer model achieves the best prediction accuracy in all time steps,
which may be because it separates the entangled signal from the original data, the law is
more reliably mined from the time–frequency signal, the noise interference is reduced and
the stability of prediction is improved, thus showing better adaptability.

Table 2. Comparison of model performance.

MLP CNN1D GRU Transformer LSTM LA WT-LA SA-LA WTformer

+1 h RMSE 7.475 7.349 6.799 8.083 6.840 6.614 6.475 6.404 6.334
MAE 4.406 3.815 3.567 4.117 3.270 3.146 3.061 3.034 3.002

SMAPE 0.119 0.106 0.086 0.117 0.084 0.081 0.080 0.077 0.076
+4 h RMSE 15.554 16.364 13.099 12.607 12.172 10.703 10.287 9.681 8.162

MAE 10.151 10.233 8.725 8.830 8.091 6.655 6.582 6.509 5.679
SMAPE 0.261 0.266 0.228 0.233 0.222 0.184 0.183 0.176 0.171

+8 h RMSE 19.372 20.008 19.044 16.806 18.459 16.465 15.741 15.410 13.096
MAE 12.695 13.647 12.665 11.492 12.451 11.069 10.814 10.468 8.604

SMAPE 0.306 0.348 0.304 0.291 0.303 0.270 0.263 0.258 0.215
+24 h RMSE 27.650 29.452 27.077 24.478 26.321 22.820 21.086 20.938 17.140

MAE 19.209 20.949 19.103 17.604 18.868 16.208 15.008 14.723 12.213
SMAPE 0.445 0.491 0.439 0.401 0.432 0.361 0.336 0.332 0.271

+48 h RMSE 32.492 33.115 36.878 30.027 33.649 28.905 26.794 26.419 21.379
MAE 23.569 23.581 25.987 21.295 24.135 20.442 18.991 18.630 14.943

SMAPE 0.538 0.524 0.567 0.487 0.539 0.455 0.417 0.409 0.331

To show the prediction effect more intuitively, Figure 13 compares the predicted and
observed values of PM2.5 concentration predicted by WTformer with five baseline models
and three ablation models at a time step of 4h. The prediction curves for each model
were basically consistent with the observation curves, and there was a linear correlation.
Compared with the time-series prediction models LSTM and GRU, there was a greater
difference between the predicted and observed values of the non-time-series prediction
models MLP and CNN1D, which indicates that capturing time dependence in time-series
prediction helps to improve the prediction ability of the models. Transformer captures
time dependence by embedding position coding, which had similar performance to LSTM
and GRU when the predicted time step is 4. The ablation models could not predict some
mutation values and extreme values, and the prediction performance was not as good
as WTformer. Compared with the previous models, the WTformer model had the best
prediction effect in each stage. The main reasons are that the WTformer model obtains
richer time–frequency domain information, exhibits more sensitivity to local changes and
improves the prediction accuracy by reducing the influence of noise signals.
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According to the quantitative comparison with deep learning models, including
MLP, CNN1D, GRU, Transformer and LSTM, the proposed model has better prediction
performance, which may be attributed to two reasons. First, the entangled signals in the
original data were separated, which makes the time-varying law of the variables clearer,
so the time correlation between them was easier to find. Second, WTformer intelligently
extracted the main frequency band information by the attention network, which reduced
the influence of the noise frequency band and improved the prediction accuracy.

In general, previous studies have shown that the high-frequency part of the data
represents short-term mutation characteristics, and the low-frequency part represents long-
term trends. Therefore, different frequency bands represent different laws of pollutants
and meteorological parameters. Moreover, the change process of the parameters is related
to the time series and has obvious seasonality, which satisfies the conditions of using the
time–frequency decomposition method. In addition, the influence signals of the main and
secondary frequency bands can be distinguished by the improved self-attention network; it
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shows that the time–frequency law between variables can be more accurately extracted by
WTformer, and the evolution process of pollutants can be better discovered. Therefore, the
model can provide data support for pollution control and useful information for improving
human health.

5. Discussion

An accurate and reliable air quality forecasting system is helpful for decision-makers
to take necessary actions, which holds great significance for alleviating air pollution and
solving environmental degradation [56]. In this study, we established a hybrid deep
learning model, WTformer, for air quality prediction based on the time–frequency domain
relationship. The results showed that the WTformer model was better than the baseline
model and the ablation comparison model in all time steps (1, 4, 8, 24 and 48 h), which
verified the validity of the model and the necessity for each module.

Deep learning models have the “black box” problem, and it is difficult to explain
their predicted behavior, which is not conducive for decision-makers to take the neces-
sary actions to alleviate air pollution at the appropriate time. In addition, atmospheric
environmental data consist of multiple entangled periodic signals and inaccurate random
noise. The problems affect the interpretability and accuracy of prediction. The proposed
WTformer model can separate the entangled signals from the original data, to learn the
correlation between the signals through the improved self-attention network, and the
main and secondary signals are distinguished by the distribution of attention weights,
thereby reducing the influence of noise signals, and the prediction accuracy of the model is
improved. In addition, the predictive behavior of the model can be explained by analyzing
the attention matrix, the correlation between signals in different frequency bands and pre-
dicted target PM2.5 can also be found. For example, the meteorological and environmental
variables from 1 to 30 May 2021 were selected as the input to the model, and PM2.5 was
used as the prediction target. The analysis of the attention matrix shows that the correlation
between PM2.5 and PM10/NO2/CO/SO2 were reflected in the low-frequency region and
in the high-frequency region, which were reflected in the slower frequency band. The
correlation between PM2.5 and O3/humidity were reflected in the slower high-frequency
band. The correlation between PM2.5 and temperature/wind speed/pressure/precipitation
were reflected in the low-frequency band. It shows that the developed WTformer model as
described in the paper has strong explanatory power and effectively provides a data basis
for pollution control.

On the basis of these results, this study provides a new method for the explanatory
prediction and control of air quality, establishing a strong basis for alleviating air pollution
and helping to reduce costs and improve human health. This method is suitable for a single
site or single city air quality forecast, and could provide the basis for air pollution control.
It ignores, however, the transmission of pollutants between stations or cities, and does not
consider PM2.5 as a complex indicator, which would be affected by many other factors,
such as geographical environment. In future research, we should independently model
each point, introduce spatial geographical factors, simulate the correlation of pollutant
transmission between cities, discover and explain their laws, and limit the prediction error
to a smaller range. This should be our next work direction.
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