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Abstract: It is of great significance to determine the level of demand for thermal environment
regulation and the availability of blue–green spaces for thermal environment regulation to alleviate
the effects of urban heat islands. Taking Shandong Province, China, as the study area, combined multi–
source remote sensing data are used in this study to construct the index system of cold island supply
capacity (CIS) and the cold island demand level (CID). We use the methods of spatial regression,
quadrant division, and coupling coordination degree to analyze the correlation, matching status, and
the level of coordinated development between the supply capacity and demand for the cooling effect.
We also explore the change law and spatial characteristics of the blue–green spaces’ cooling effects
supply and demand matching. Results show that: (1) The CIS and the CID are significantly negatively
correlated and spatially heterogeneous in distribution, with a significant spatial spillover effect.
(2) The dominant type of supply and demand is one of low supply and high demand, which means
that the supply and demand for cool islands’ cooling effect are unbalanced, with significant problems
of spatial mismatch and quantitative imbalance. (3) The coupling between supply capacity and
demand level is on the verge of becoming dysfunctional because the uneven distribution of urban
buildings, population, and blue–green spaces reduce the coupling between supply and demand
levels. This research can provide a new perspective and scientific basis for the study of the cooling
effects of blue and green spaces and the mitigation of the heat island effect in densely populated
urban centers.

Keywords: blue–green space; cooling effect; coupling coordination; heat island effect; supply and
demand matching

1. Introduction

China’s urbanization process as a whole is on a rapid upward trend. According to
the latest forecast, China’s urban population will reach 1.12 billion by 2050 [1]. Continued
urban population growth drives rapid urban expansion, resulting in the replacement of
natural surfaces such as vegetation and water bodies with impervious water and the
continuous reduction in blue and green spaces with natural cooling effects [2]. Rapid
changes in the urban landscape and increased emissions from human-made heat sources
are leading to increasingly pronounced urban heat island effects [3,4], which have not only
destroyed ecological balance, increased energy consumption, and environmental pollution
but also pose a significant threat to human health [5,6]. Studies have proven that urban
heat can trigger a range of physical and psychological disorders [7]. During heat waves,
the incidence of respiratory and cardiovascular diseases increases significantly, and the
health risks for urban dwellers continue to rise [8]. Therefore, how to mitigate the adverse
effects of heat islands and improve the thermal comfort of residents has become a major
research focus.

Researchers have developed a range of cooling strategies for managing urban heat
islands [9]. Part of the research focuses on mitigating solar radiation using innovative
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reflective materials for pavements, roofs, and facades. In addition, shading devices and
water-based artificial facilities are built into the urban design to address the effects of
heat islands. There is also research into the construction of urban ventilation corridors
to reduce urban heat. However, these solutions inevitably face limitations [10] related to
residents’ unfamiliarity with innovative building materials and techniques, the effectiveness
of reflective materials that may be influenced by local climate, and the similarity of the
cooling effect of urban ventilation corridors to the wind environment [11].

Impervious surface areas and blue–green spaces are important urban land use/cover
patterns and structure characteristics. They can have different, even opposite, effects on
how the surface radiation and energy are distributed, thus having a significant impact on
the development and effects of urban heat islands [12,13]. The high-temperature heat island
areas and the areas with high impervious surface coverage have significant consistency in
spatial distribution [14], and the more complex the patch boundary shape is, the higher
the heat island intensity is [15]. Impervious surface changes the reflectivity and roughness
of the ground surface, affecting the heat exchange and turbulence transport between the
ground and the atmosphere [16,17], altering the local microclimate and, thus, exacerbating
the heat island effect. The difference in thermal properties of blue and green spaces
caused by the difference in their underlying surface can effectively mitigate the thermal
environment through their cooling effect [18]. Green spaces absorb heat through shade
and transpiration [19,20], and the water bodies have a significant cooling capacity due to
their large specific heat capacity [21,22]. Scholars have extensively studied the relationship
between blue and green spaces and surface temperature. They found that the cooling
effect closely relates to its area, shape, landscape pattern, and vegetation type [23–26]. For
example, the average patch area and maximum patch index of green spaces are significantly
negatively correlated with its ambient temperature [27], but the patch size is not linearly
related to the cooling effect, suggesting there may be an optimal patch area [28]. The green
space coverage is negatively correlated with temperature. When its coverage exceeds 30%,
it has a noticeable mitigation effect on the heat island. When the coverage exceeds 50%,
the cooling effect is considerable [29,30]. The shape of green space is negatively correlated
with the cooling effect [31], and the cooling effects of different green space types are also
somewhat different (arbors > shrubs > grasslands) [32]. The cooling effects of the water
bodies have similar characteristics to green spaces. The larger the proportion of the water
surface is, the higher the cooling intensity is; the larger the shape index is, the wider the
cooling range is. The cooling effect of the centralized layout of a continuous body of water is
stronger than that of the decentralized layout [33]. Meanwhile, the environment around the
water body also influences its cooling effect, which gradually weakens with the increase in
density of the surrounding buildings [34]. In addition, green spaces and water bodies have
a synergistic effect in reducing surface temperature. This is especially manifested when
the coordinated organization of blue and green spaces exceeds the superimposed cooling
effect of a single green area or water body [35]. Therefore, the rational organization of the
morphological structure of green spaces and water bodies is a crucial factor influencing
heat island patterns [36].

The current research mainly focuses on the mechanisms of land cover change, blue–
green landscape patterns, and urban spatial structure influencing the urban thermal envi-
ronment [37–40]. Although much research progress has been made, a number of issues still
need improvement. First, research exploring urban thermal regulation services from the
perspective of supply and demand is not rich enough [41]. Second, the supply and demand
relationship between the blue–green spaces’ cooling effect and thermal regulation services
is unclear [42]. Third, the selection of indicators focuses on biophysical factors, while
socioeconomic and other human factors closely related to heat islands are less considered.
Therefore, taking China’s Shandong province as the study area, we constructed the evalua-
tion index system to quantify the cold island supply capacity (CIS) and cold island demand
level (CID). The specific purposes of this study are (1) to explore the spatial relationship and
distribution characteristics of cooling effect supply capacity and demand level in thermal
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environment regulation service, (2) to clarify the supply and demand relationship and the
level of coupling in the coordinated development of the cooling effect of blue–green space,
and (3) identify the key areas of imbalance between supply and demand to arrive at the
accurate configuration of the artificial, built environment, and blue–green spaces. This
research provides a new perspective and direction for urban development, construction,
and mitigation of heat island effects.

2. Study Area and Datasets
2.1. Study Area

Shandong Province is located in the lower reaches of the Yellow River, bordering the
Bohai Sea and the Yellow Sea in the east, with a land area of 155,800 km2 and a population
of nearly 102 million in 2020 (Figure 1). The province has a monsoon climate of medium
latitudes with an average summer temperature of 24 ◦C–28 ◦C. The terrain is mainly
mountainous and hilly, with the Shandong Peninsula in the east, the North China Plain in
the west and north, and mountains and hills in the south and center, forming a landscape
with the mountains and hills as the backbone and the plains and basins interspersed
among them. The unique spatial patterns of the ground influence the characteristics of the
urban thermal environments. According to the statistical yearbook of Shandong Province,
in 2020, its population was the second largest in China, the area of urban construction
land was the second largest in China, the green space coverage was the 15th largest in
China, per capita green space was only 17.7 m2, and the total energy consumption was the
first in China. Because of the rapid urban expansion, increased population concentration,
and limited space for construction planning and development, the heat island effect has
been intensifying, becoming a significant constraint in achieving green and high-quality
development in Shandong province.
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2.2. Datasets

Landsat8 OLI/TIRS remote sensing image data from the Geospatial Data Cloud
(http://www.gscloud.cn/ (accessed on 12 October 2022)), imaged in the summer of 2021,
with a spatial resolution of 30 m, a revisit period of 16 days, and cloud cover of less than 10%
were used in the study. See Appendix A (Table A1) for image information. The atmospheric
correction method based on a radiative transfer model was used, and Landsat8 TIRS 10-
band was selected to retrieve the land surface temperature (LST) [43]. Population density

http://www.gscloud.cn/
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and GDP data were downloaded from the Resource and Environment Science and Data
Center (https://www.resdc.cn/ (accessed on 12 October 2022)), 2019, with a resolution
of 1 km. ZY-3 satellite imagery was taken from the general monitoring station with a
resolution of 2 m for panchromatic images and 6 m for multispectral images. Night light
data were from the NPP satellite VIIRS sensor with a resolution of 500 m, and POI data
were from Baidu Map API interface, crawled through Python. We used night lighting and
POI data to extract the boundaries of urban areas. At the same time, ArcGIS sky maps
and urban and rural construction statistical yearbooks were used to optimize built-up
area boundaries. ZY-3 satellite imagery combined with ArcGIS maps was used to identify
blue–green spaces within urban built-up areas through automated computer extraction and
manual visual interpretation. We used ENVI5.3 software and ArcGIS10.2 software to carry
out preprocessing work, such as geometric correction, radiometric calibration, atmospheric
correction, and image cropping on multisource remote sensing data.

3. Research Methods
3.1. Ecological Livability Assessment

Ecological livability is an index that characterizes an ecological function [44], repre-
sented by two characteristic indicators of green space area and distribution. The green
space rate index mainly reflects the ratio of the total area of woodland, grassland, and other
types of green space in the built-up areas of the city to the entire built-up area, which can
indirectly point to the potential resource capacity of public green space that residents can
enjoy. Green park space accessibility index refers to the ratio of the area covered by the
ten-minute walkable range around the park square green space in the built-up areas of the
city to the entire built-up areas, which can indicate the convenience and universality of
public access to public green space, with the following formulas:

UGR = AUGR ×UGRA÷UA (1)

UPR = AUPR ×UGA÷UA (2)

ELI = 0.54×UGR + 0.46×UPR (3)

where UGR is the green space ratio index of the built-up areas, AUGR is the normalization
coefficient of the green area ratio index of the built-up areas with the reference value of
182.4125, UGRA is the total area of all types of green spaces in built-up areas, UA is the
total of the built-up areas, UPR is the green space accessibility index of the built-up areas,
AUPR is the normalization coefficient of the green space accessibility index of the built-up
areas with the reference value of 111.1111, and UGA is the 800 m range around the park
square green space.

3.2. LST Retrieval

This research uses the atmospheric correction method based on the radiative transfer
model to retrieve the surface temperature. The radiative transfer equation is first estab-
lished to obtain the radiation intensity obtained by the sensor, from which the brightness
temperature corresponding to the thermal radiation intensity is calculated and finally con-
verted to the actual temperature of the ground surface. The expression for the brightness
value Lλ of the thermal infrared radiation received by the satellite sensor is

Lλ = [εB(TS) + (1− ε)L ↑]τ + L ↑ (4)

where ε is the surface-specific emissivity, TS is the real temperature of the ground surface
K, B(TS) is the blackbody radiation brightness W/(m2×µm× sr), τ is the transmission rate
of the atmosphere in the thermal infrared band, L ↑ is the upward radiation brightness of

https://www.resdc.cn/
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the atmosphere, and L ↓ is the downward radiative brightness of the atmosphere. Accord-
ing to Equation (4), the blackbody radiation brightness (Equation (5)) can be obtained:

B(TS) = [Lλ − L ↑ −τ(1− ε)L ↓]/τεTS (5)

TS can be obtained using Planck’s formula, expressed by Equation (6) as

Ts = K2/ln(K1/B(TS) + 1) (6)

For TIRS Band10, K1 = 774.89W/(m2×um×sr), K2 = 1321.08K.
The above algorithm requires two parameters: surface-specific emissivity and atmo-

spheric profile parameter, which are calculated in ENVI using the band math tool.

3.3. Cooling Effect Supply Capacity and Demand Level Index System

The CIS reflects the cold island supply capacity to mitigate the urban thermal envi-
ronment and is mainly related to the cold island intensity, blue–green infrastructure, and
economic development. The research shows that the cold island patch aggregation can pro-
vide a good cooling effect. Specifically, with the decrease in LST of the cold island patches,
the supply capacity of the CIS is greater [45]. Meanwhile, the cooling effect is related to the
area and shape of green spaces and water bodies, so the larger the area is, the higher the
cooling benefit is, and the more complex the shape is, the lower the heat island intensity
is [46]. The blue–green space is a critical vehicle for urban heat island mitigation through
shading, transpiration, and heat absorption, which create the “cold island effect” [47]. In
addition, GDP is also a key indicator, with higher GDP providing more financial resources
to mitigate the heat island effect [48]. Therefore, the CIS comprehensive evaluation index
system consists of the four main indicators shown in Table 1.

Table 1. Cold island supply capacity (CIS) index system.

Indicator Indicator Meaning Comprehensive Weight

Blue–green space coverage (+) It reflects the proportion of
blue–green space in the region 0.552

Blue–green space shape index (+)
It reflects the shape

complexity of
blue–green patches

0.077

LST of cold island patches (−) It reflects the intensity of the
cold island effect 0.218

GDP (+) It reflects the economic
strength to respond to UHI 0.153

Note “+” and “−” indicate positive and negative indicators. UHI means “urban heat island”.

The CID reflects the degree of cold island demand to mitigate the urban thermal
environment, mainly related to the heat island intensity, population density, and the pro-
portion and shape of impervious surfaces. Heat island patch aggregation is the primary
source of urban thermal environmental risk, characterizing physical features such as risk
presence and distribution [49]. Population density reflects the key actors of the urban
thermal environment—social attributes such as the number and aggregation degree of
people exposed to thermal risks [50]. Replacing a vegetated water body with an imper-
vious surface changes the surface reflectivity and roughness, affecting heat turbulence
transport and exchange, thus leading to increased demand for cooling effects. Therefore,
the comprehensive CID evaluation index comprises four main indicators shown in Table 2.
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Table 2. Cold island demand capacity (CID) index system.

Indicator Indicator Meaning Comprehensive Weight

Impervious surface coverage (+)
It reflects the proportion of

impervious surfaces in
the region

0.414

Impervious surface shape index (+)
It reflects the shape

complexity of
impervious surface

0.125

LST of heat island patches (+) It reflects the intensity of the
urban heat island effect 0.220

Population density (+) It reflects the human demand
for cooling effect 0.241

Note “+” indicates positive indicator.

3.4. Indicator Extraction and Weight Processing

This work uses ArcGIS 10.2 to create a 150 m × 150 m grid and uses grid cells to
extract the evaluation values of all indicators to realize data gridding. To eliminate the
dimensional and order-of-magnitude differences among various indicators, the min–max
normalization method was used to normalize the positive and negative indicators in the
CIS and the CID indicator system:

y+ =
x− xmin

xmax − xmin
(7)

y− =
xmax − x

xmax − xmin
(8)

where y+ and y− are the normalization values of the positive and negative indicators in
the original index value, and xmax and xmin are the maximum and minimum values of
the original index. In this research, hierarchical analysis and entropy value methods are
used to determine the weights of each indicator in the CIS and CID index systems. First,
the relative importance of these measures is determined according to the decision-making
experience, and a judgment matrix is formed to calculate the subjective weights. Second,
the entropy method is used to calculate the objective weights. Third, the combined weights
are calculated for each evaluation indicator. Finally, the CIS evaluation index system and
CID evaluation index system are established:

CIS = ∑m
i=1 wi × xi (9)

CID = ∑n
j=1 wj × yj (10)

where wi and xi are the weights and normalization values of the ith indicator in the CIS
index system, wj and xj are the weights and normalization values of the jth indicator in
the CID index system, m is the number of indicators in the CIS, and n is the number of
indicators in the CID.

3.5. Analysis of the Spatial Relationship between the CIS and the CID

The Z-score standardization method is used to match the supply and demand of the
CIS and the CID and divide them into quadrants, where the x-axis represents the supply
capacity of the cold island after standardization, and the y-axis represents the demand
level of the cold island after standardization. The two form the four quadrants, where
the first quadrant is the high supply–high demand state, the second quadrant is the low
supply–high demand state, the third quadrant is the low supply–low demand state, and
the fourth quadrant is the high supply–low demand state. The Z-score standardization
formula is

x =
xi − x

s
(11)
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where x is the supply capacity and demand capacity of the cold island after standardization
of the study unit, xi is the cold island supply capacity and demand capacity of the ith study
unit, x is the mean value of the study area, and s is the standard deviation of the study area.

The spatial regression model is used to investigate the correlation between the CIS
and the CID. It is expressed by Equation (12) as

y = xβ + λwu + ε, ε ∼ N
(

0, δ2
)

(12)

where y represents the matrix of LST dependent variables, x represents the matrix of
independent variables, y represents the matrix of dependent variables, β represents the
parameter matrix, λ represents the regression coefficients of the spatial residual terms, wu
represents the spatial neighborhood weight matrix, and ε represents the vector of spatial
error terms.

The bivariate global Moran’s I is used to quantitatively characterize the spatial distri-
bution characteristics and spatial dependence of the CIS and the CID. It is expressed by
Equation (13) as

I =
∑n

i=1 ∑n
j=1 wij(xi − x)

(
yj − y

)
S2 ∑n

i=1 ∑n
j=1 wij

(13)

where n represents the number of image elements in the study area, xi and yj represent
the normalization values of the ith and jth CIS and CID, respectively, x and y are the mean
values of the CIS and the CID in the study area, and wij is the spatial weight matrix.

The coupled coordination model is used to analyze the level of coordinated devel-
opment. The degree of coupling refers to the dynamic correlation between two or more
systems that interact and influence each other to achieve coordinated development and can
reflect the degree of interdependence and mutual constraints between systems. The degree
of coordination refers to the degree of benign coupling in relationship interaction, which
reflects the state of coordination. The coupling coordination model involves the calculation
of a total of three index values, namely the coupling degree C value, the coordination index
T value, and the coupling coordination degree D value. The higher C value indicates a
stronger degree of interdependence and interconnection, the higher T value indicates better
coordination, and the higher D value indicates better coupling and coordination between
CIS and CID [51]. The formula is as follows, when n = 2, assuming max Ui is U2:

C =

√
[1− (U2 −U1)]×

U1

U2
(14)

T = α1U1 + α2U2, α1 + α2 = 1 (15)

D =
√

C× T (16)

when n is the number of subsystems, Ui and αi are the normalization values and weights
of the ith subsystem, C is the degree of coupling, and D is the degree of coordinated
development. In this study, the CIS and the CID are considered equally important, and
therefore, both α1 and α2 are taken as 0.5. According to existing research [52], the D
can be divided into ten types: extreme incoordination (0.0 < D ≤ 0.1), severe incoor-
dination (0.1 < D ≤ 0.2), moderate incoordination (0.2 < D ≤ 0.3), mild incoordination
(0.3 < D ≤ 0.4), borderline incoordination (0.4 < D ≤ 0.5), barely coordination
(0.5 < D ≤ 0.6), primary coordination (0.6 < D ≤ 0.7), moderate coordination
(0.7 < D ≤ 0.8), good coordination (0.8 < D ≤ 0.9), and quality coordination
(0.9 < D ≤ 1.0).
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4. Results
4.1. Ecological Livability Assessment

On the basis of the urban built-up area boundary and blue–green space data extraction
in Shandong Province, the green space rate index, green park space accessibility index, and
ecological livability index were calculated using Equations (1)–(3). As can be seen from
Figure 2, Binzhou has the highest green space index, followed by Jinan and Rizhao, while
Heze has the lowest, only one-half of Binzhou’s. Rizhao has the highest green park space
accessibility index, followed by Dongying, while Heze has the lowest. It is worth noting
that their green park space accessibility index is significantly lower than that of Dezhou,
Linyi, and Liaocheng, indicating that the spatial layout of green space patches in their
built-up areas is relatively fragmented and scattered, lacking a perfect blue–green space
network system. The accessibility of blue–green space resource allocation and layout based
on population demand is low. Binzhou has the highest ecological livability index, and
Heze has the lowest. The ecological livability is divided into three grades, among which
the cities with good ecological livability are Rizhao, Binzhou, Jinan, Zibo, and Dongying,
the cities with medium livability are Zaozhuang, Liaocheng, Dezhou, Qingdao, and Jining,
and the cities with poor livability are Weihai, Yantai, Linyi, Weifang, and Heze. On the
basis of the above analysis, in order to reduce redundant work, Jinan, Qingdao, and Heze
are selected as representatives. To further explore the supply–demand relationship of the
cooling effect of the blue–green spaces in the thermal environment regulation service, we
studied the spatial distribution patterns of the thermal environment.
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Figure 2. Assessment of ecological livability index in Shandong: (a) UGR, (b) UPR, and (c) ELI.

4.2. Spatial Distribution Patterns of LST

The heat island intensity is divided into five grades by mean standard deviation
method. It uses the combination of average temperature and multiples of different standard
deviations to define an urban heat island, which can accurately reflect the change in heat
island intensity and avoid the difference in different phases [53]. Figures 3 and 4 show
that the portion of heat island patches in Jinan is 29.92%, mainly distributed in the central
western and northeastern areas of the capital city, and the portion of cold island patches
is 28.47%, distributed primarily in Daming Lake Park and Huashan Scenic Area. The hot
island patches take up 28.68% of Qingdao, distributed in the south of Jimo District and the
east of Chengyang District, while cold island patches take 28.46%, mainly distributed in
the ecological, scenic areas such as Fufeng Mountain and Shimei Temple Park. The share of
hot island patches in Heze is the highest, taking 31.19% of the city, distributed in the central
urban area and the west of Mudan District, while the proportion of cold island patches
is 29.61%, distributed in the northeast and southeast regions of the urban area. In terms
of spatial distribution, the heat island areas are concentrated in the central urban areas
where the proportion of impervious surface is high and the vegetation coverage is low,
especially in the industrial and commercially packed areas with high population density,
complex built environments, and scattered the green space patches. However, cold islands
are mainly located in the suburbs and outer suburbs. The suburban area is adjacent to the
central city, with a large area of urban waterfront parks, moderate intensity of construction
and land development, and more reasonable planning and layout of blue and green spaces.
With the benefits of urban construction and ecological services, the cooling effect of blue
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and green space is more noticeable. The outer suburbs are located at the edge of the built-up
zone, with large forested scenic areas, extremely low population and building density, and
a significant degree of cooling. The results show that high aggregation and connectivity of
large blue–green patches have a more prominent cooling effect, while the highly aggregated
impervious surfaces have a more prominent warming effect.
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4.3. Spatial Distribution Patterns of CID and CIS

The comprehensive assessment value of the CIS and the CID of the study area is
divided into five grades by mean standard deviation method. As shown in Figure 5, the
distribution of the CIS and the CID has evident spatial heterogeneity, and the high-value
regions of CIS are mainly distributed in forest scenic areas at the edge of the urban built-up
zone with extensive vegetation and sparse population. In contrast, the high-value CID
regions are primarily located in the core urban areas, especially in the dense industrial and
commercial zones and high-density residential areas. The low-value CIS regions are mainly
located in areas with low green space coverage and high population density, while the
low-value CID regions are distributed in remote areas with low impervious surface ratios
and population densities. From the spatial distribution, it can be seen that the high-value
CIS regions show the characteristics of multipoint distribution and independent dispersion,
while the distribution of high-value areas of CID trends toward connecting, gathering, and
spreading around, with the high-demand and low-supply areas gradually overlapping.
With the city’s rapid development, the blue–green space is gradually occupied and divided
by urban buildings, the proportion of impervious surface keeps increasing, and the supply
capacity and demand level of the cold island become progressively unbalanced.
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4.4. Spatial Relationship between the CIS and the CID
4.4.1. The Correlation Coefficient and the Bivariate Moran’s I between the CIS and the CID

The statistical correlation coefficient of the CIS and the CID and bivariate global
Moran’s I results (Table 3) show that the correlation coefficient R is negative in all three
cities, indicating that the CIS and the CID are significantly negatively correlated and that
there is an imbalance in matching the supply and demand for cooling in cold islands. In the
high-value area of CID, because of the large population, the high density of buildings alters
wind turbulence and impedes ventilation and heat dissipation. Meanwhile, the impervious
surface replaces natural surfaces, such as green spaces and water bodies, and their cooling
effects. Therefore, CIS values tend to be low, and the bivariate global Moran’s I is negative.
This finding indicates that the spatial distribution of the CIS and the CID showed an overall
strong spatial dependency. That is to say, the increase in the CID in local areas leads to a
decrease in the CIS in the surrounding areas, and areas with high CIS values are adjacent to
areas with low CID values, while areas with lower CIS tend to be close to areas with higher
CID. This aggregation phenomenon indicates a significant spatial spillover effect between
the CIS and the CID.

Table 3. CIS and CID correlation coefficient and bivariate Moran’s I statistics.

City Jinan Qingdao Heze

Correlation coefficient −0.91 ** −0.89 ** −0.86 **
Moran’s I −0.43 ** −0.36 ** −0.09 **

Note ** means p < 0.001.

4.4.2. Matching Supply and Demand of CIS and CID

The degree of CIS and CID matching is characterized on the basis of the Z−score
standardization and quadrant division method (Figure 6) noted in Section 3.5. There are
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four types of cooling effect matching of supply and demand: quadrant I (high supply−high
demand), quadrant II (low supply–high demand), quadrant III (low supply–low demand),
and quadrant IV (high supply–low demand). By calculating the proportions of the four
matching states, as shown in Table 4, it can be seen that the matching of supply and demand
for the cooling effect in the three cities is dominated by a state of low supply and high
demand, strongest in Qingdao, followed by Jinan, then Heze. In all three cities, it accounts
for more than 40% of their boundaries, indicating that most areas are facing the problem of
insufficient cooling effect. The second type is high supply−low demand. More than 30%
of Jinan’s and the combined 20% of Qingdao’s and Heze’s territory are regions where the
efficient utilization of the blue−green space cooling effect is not high. Finally, the matching
states of high supply–high demand and low supply−low demand account for the smallest
percentage of the three cities, only about 30%. The results show that the urban blue−green
space cooling effect supply and demand capacities do not match, pointing to the problems
of uneven distribution. Because of the unreasonable organization of blue−green spaces
and the rapid expansion of urban construction, more areas may face the problem of an
insufficient supply of cooling islands. Because of the great potential of blue and green
space layout within the low supply–high demand areas, the government needs to strictly
control the development intensity of urban construction, improve the layout of blue and
green space, and increase the supply capacity of cooling effect. For areas with high supply
and low demand, the government needs to adequately strengthen urban construction,
reasonably organize blue−green space coverage, and improve the efficiency of cooling
effect utilization.
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Table 4. CIS and CID match type ratio statistics.

City
Low

Supply–High
Demand

High
Supply–Low

Demand

Low
Supply–Low

Demand

High
Supply–High

Demand

Jinan 47.45% 31.40% 10.30% 10.85%
Qingdao 48.34% 23.29% 17.48% 10.89%

Heze 43.79% 24.41% 15.84% 15.96%

Next, the spatial distribution patterns of the four matching types shown in Figure 7
are further discussed.



Atmosphere 2023, 14, 404 12 of 19

Atmosphere 2023, 14, x FOR PEER REVIEW 12 of 18 
 

 

urban area with a complex building population, Daming Lake Scenic Area still has a 

high cooling capacity of a cold island. 

(2) The low-supply–high-demand areas are mainly distributed in the central urban areas 

with a complex built environment, dense population, and low green space coverage, 

such as Tianqiao District and Huaiyin District in the west of Jinan and Shibei District 

near Jiaozhou Bay in Qingdao. Because of the high proportion of impervious sur-

faces, complex building structures, low albedo, and high imperviousness of human-

made structures and surfaces, such areas easily absorb more solar radiation and re-

duce the amount of water used for evaporation and heat absorption, resulting in 

lower latent heat fluxes and increased latent heat fluxes. At the same time, these areas 

are located in commercial and industrial areas with dense population distribution 

and frequent socioeconomic activities, so the demand for cooling capacity of the cool-

ing island is very high; the CID is much higher than the CIS, and the supply and 

demand matching of the cooling effect is extremely unbalanced. 

(3) The high-supply–high-demand areas are mainly distributed in the built-up areas ad-

jacent to large parks and other green spaces, such as in Jinan High-tech District, Qing-

dao Shinnan District, and the southeastern part of Heze Mudan District. The building 

and population densities in those regions are relatively high, so the demand for the 

cooling effect is also high. These areas have a higher level of economic development 

and more financial resources to mitigate the heat island effect. Moreover, they are 

adjacent to large patches of green space, which can provide a certain amount of cold 

island supply because of the cooling “spillover effect” of the surrounding green area. 

Thus, the CIS value in those regions is higher. 

(4) The low-supply and low-demand zones are mainly distributed in the suburban areas 

adjacent to the edge of the central city, where the CIS is lower because of the heat 

island effect of the surrounding built-up areas. At the same time, the population in 

these areas, such as the edges of forest parks and scenic areas, is relatively low, the 

intensity of urban construction and development is moderate, and the CID is lower. 

 

Figure 7. Distribution of CIS and CID matching types: (a) Jinan, (b) Qingdao, and (c) Heze. 

4.4.3. The D Value between the CIS and the CID 

On the basis of the coupling coordination model, the degree of coordinated develop-

ment between the CID and the CIS is calculated, as shown in Table 5. The average D value 

in Jinan is 0.54, ranging from “extreme incoordination” to “good coordination”. The aver-

age D value in Qingdao is 0.47, ranging from “extreme incoordination” to “good coordi-

nation”. The average D value for Heze is 0.50, ranging from “severe incoordination” to 

“good coordination”. Overall, the two primary development types of these cities are tran-

sitional development and failure and decline, with coordinated development taking no 

more than one-third. Among the cities, Jinan has the highest proportion of coordinated 

development type, followed by Heze, then Qingdao. Qingdao has the highest proportion 

of transitional development and failure and decline types, followed by Heze, then Jinan. 

It is worth noting that although the ecological livability index of Qingdao is higher than 

that of Heze, its D-value ranks the lowest among the three cities, with a failure and decline 
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(1) The high-supply–low-demand areas are mainly distributed in scenic water areas and
forest parks with sparse population and high green space coverage, such as Daming
Lake Park and Qianfo Mountain Scenic Area in Jinan, Fufeng Mountain and Shimei
Temple Ecological Park in Qingdao, and Huandi River Coast in Heze. The study [54]
shows that large green space patches can enhance the infiltration and connection
with the surrounding ecological patches (green spaces, water bodies, etc.) to a certain
extent when the shape index increases, providing a good supply of cool island cooling
capacity. Daming Lake Scenic Area is a large park green zone within the urban
space, with a systematic and complete green ecological network connected inside and
outside. The built environment of the scenic area is partly joint with the blue and
green spaces where the water bodies and vegetation are coordinated and organized,
which is more effective than the multiple superposition effect of the cooling capacity
of a single water system and green space. Therefore, although located in the core
urban area with a complex building population, Daming Lake Scenic Area still has a
high cooling capacity of a cold island.

(2) The low-supply–high-demand areas are mainly distributed in the central urban areas
with a complex built environment, dense population, and low green space coverage,
such as Tianqiao District and Huaiyin District in the west of Jinan and Shibei District
near Jiaozhou Bay in Qingdao. Because of the high proportion of impervious surfaces,
complex building structures, low albedo, and high imperviousness of human-made
structures and surfaces, such areas easily absorb more solar radiation and reduce the
amount of water used for evaporation and heat absorption, resulting in lower latent
heat fluxes and increased latent heat fluxes. At the same time, these areas are located
in commercial and industrial areas with dense population distribution and frequent
socioeconomic activities, so the demand for cooling capacity of the cooling island is
very high; the CID is much higher than the CIS, and the supply and demand matching
of the cooling effect is extremely unbalanced.

(3) The high-supply–high-demand areas are mainly distributed in the built-up areas
adjacent to large parks and other green spaces, such as in Jinan High-tech District,
Qingdao Shinnan District, and the southeastern part of Heze Mudan District. The
building and population densities in those regions are relatively high, so the demand
for the cooling effect is also high. These areas have a higher level of economic
development and more financial resources to mitigate the heat island effect. Moreover,
they are adjacent to large patches of green space, which can provide a certain amount
of cold island supply because of the cooling “spillover effect” of the surrounding
green area. Thus, the CIS value in those regions is higher.

(4) The low-supply and low-demand zones are mainly distributed in the suburban areas
adjacent to the edge of the central city, where the CIS is lower because of the heat
island effect of the surrounding built-up areas. At the same time, the population in
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these areas, such as the edges of forest parks and scenic areas, is relatively low, the
intensity of urban construction and development is moderate, and the CID is lower.

4.4.3. The D Value between the CIS and the CID

On the basis of the coupling coordination model, the degree of coordinated devel-
opment between the CID and the CIS is calculated, as shown in Table 5. The average
D value in Jinan is 0.54, ranging from “extreme incoordination” to “good coordination”.
The average D value in Qingdao is 0.47, ranging from “extreme incoordination” to “good
coordination”. The average D value for Heze is 0.50, ranging from “severe incoordination”
to “good coordination”. Overall, the two primary development types of these cities are
transitional development and failure and decline, with coordinated development taking no
more than one-third. Among the cities, Jinan has the highest proportion of coordinated
development type, followed by Heze, then Qingdao. Qingdao has the highest proportion
of transitional development and failure and decline types, followed by Heze, then Jinan. It
is worth noting that although the ecological livability index of Qingdao is higher than that
of Heze, its D-value ranks the lowest among the three cities, with a failure and decline type
at over 20%. This may be due to the fact that Qingdao, as a coastal area, has a significantly
higher level of urbanization development than inland areas, with noticeable differences in
regional expansion, higher expansion compactness, and a lower degree of integrated and
coordinated development. In addition, the supply of blue–green spatial elements in some
regions has not been fully considered during the expansion, and the spatial layout of the
artificially built infrastructure and blue–green environment is unreasonable, resulting in
a low coupling between the supply and demand of cold islands. As seen in Figure 8, the
lower D-value areas are mainly distributed in the low-coupling coordination areas where
the positive interaction between the CID and the CIS is weak, such as the high-supply–
low-demand regions in Huashan Scenic Area in the northern part of the central city of
Jinan, Shimei Temple Park Scenic Area in the northern part of Licang District of Qingdao,
the low-supply–high-demand areas in Tianqiao District and Shizhong District of Jinan,
Chengyang District of Qingdao, and the eastern part of Mudan District of Heze. In these
areas, the building density and blue–green space composition lack purposeful planning
and coordination, and the supply capacity of the cold island effect is unbalanced. The
high D-value areas are mainly concentrated in the high-supply and high-demand areas
such as Jinan High-tech District, Qingdao Shibei District, and the western part of Heze
Mudan District. The remarkable characteristics of those regions are relatively high building
density and economic development level adjacent to the functional green park space with
a relatively reasonable spatial layout. The supply capacity for the cold island effect is high,
as is the level of demand for it. The supply and demand relationship between the CIS and
the CID is balanced. Therefore, the ecological benefits provided by continuing to increase
the blue–green infrastructure layout in the region are limited; thus, other ways to mitigate
the heat island effect could be taken. Studies show that the uneven distribution of urban
buildings, population, and blue–green space reduces the coupling and coordination of the
CIS and the CID. This reminds us that in urban construction, it is necessary to thought-
fully lay out the blue–green space structure, especially in high-density built-up areas with
low supply and high demand. Doing so may adequately reduce the intensity of urban
development and construction, optimize the blue–green space network system, and form
cold island cooling corridors and patches of different levels and types. This will ensure
better matching of cooling supply and demand, resulting in their improved, coordinated
development, and lead to better supply of the cool island effects of blue and green spaces.
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Table 5. CIS and CID coupling coordination development ratio statistics.

City Average D
Value

Coordinated
Development

Type

Transitional
Development

Type

Failure and
Decline Type

Jinan 0.54 33.88% 55.02% 11.10%
Qingdao 0.47 12.85% 66.35% 20.80%

Heze 0.50 21.86% 62.29% 15.85%
Note Coordinated development type (D ≥ 0.6), Transitional development type (0.4 < D < 0.6), Failure and decline
type (D ≤ 0.4).
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types. This will ensure better matching of cooling supply and demand, resulting in their 

improved, coordinated development, and lead to better supply of the cool island effects 

of blue and green spaces. 

Table 5. CIS and CID coupling coordination development ratio statistics. 

City Average D Value 
Coordinated De-

velopment Type  

Transitional De-

velopment Type 

Failure and De-

cline Type 

Jinan 0.54 33.88% 55.02% 11.10% 

Qingdao 0.47 12.85% 66.35% 20.80% 

Heze 0.50 21.86% 62.29% 15.85% 

Note Coordinated development type (D ≥ 0.6), Transitional development type (0.4 < D < 0.6), Fail-

ure and decline type (D ≤ 0.4). 
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5. Discussion
5.1. CIS and CID Comprehensive Evaluation Index System Establishment

The heat balance mechanisms within built-up areas are complex, and the built envi-
ronment is often considered a significant heat source, while UGS can effectively cool the
surrounding environment. However, the supply and demand relationship regarding the
cooling effect of blue–green space is not yet clear, so it is necessary to explore how much
cooling can be provided by UGS and how much cooling is needed to mitigate urban heat
islands. We constructed the evaluation indicator system to quantify the cold island supply
(CIS) and the cold island demand (CID) and revealed the law of spatial distribution and
changes in the CIS and the CID. The CIS reflects the cold island supply capacity to mitigate
the urban thermal environment. The CID demonstrates the level of cold island demand
to mitigate the urban thermal environment. This quantitative evaluation is the essential
precondition for identifying where the CIS and the CID need to be adjusted to achieve
a regional equilibrium of supply and demand of the cooling effect of blue–green spaces.
Therefore, from the supply and demand perspective, quantifying the combined level of
public demand for cooling effects and the supply capacity of blue–green infrastructure can
help identify key areas of imbalance between supply and demand for cooling effects, thus
enabling the accurate allocation of blue–green infrastructure resources.

5.2. Spatial Distribution between CIS and CID

Exploring the spatial distribution patterns of the CIS and the CID allows for accurately
identifying potential urban development and resource allocation problems [55]. We have
constructed a system of indicators for cold island supply capacity (CIS) and cold island
demand levels (CID). On the basis of the results of the ecological livability assessment, three
representative cities in Shandong were selected for testing. The results of the study show
that there is significant spatial heterogeneity between the CIS and the CID. The high-value
areas of CIS are mainly distributed in forest scenic areas at the edge of urban built-up areas
with extensive vegetation and sparse population, with multipoint distribution and inde-
pendent dispersion. The high-value CID regions are mainly located in dense industrial and
commercial spaces and high-density residential areas, with a tendency to connect, cluster,



Atmosphere 2023, 14, 404 15 of 19

and spread around. The reason for this is that along with the city’s rapid development, the
blue and green spaces are gradually occupied and divided by urban buildings, resulting in
a gradual imbalance between the supply and demand capacities of the cold islands. This
spatial distribution pattern indicates an uneven and contradictory distribution between the
CIS and the CID. Therefore, clarifying the distribution characteristics and spatial patterns
between the CIS and the CID can help to analyze the spatial configuration of matching
supply and demand for cooling effects.

5.3. Spatial Relationship between CIS and CID

Exploring the spatial relationship between the CIS and the CID is important to op-
timizing the supply–demand matching relationship for the cooling effect in blue–green
spaces [56]. The correlation coefficient R and the bivariate Moran’s I can reveal the spatial
response law of the CIS and the CID. The results show that the CIS and the CID are signifi-
cantly negatively correlated, with higher CID values tending to have lower CIS. There is an
imbalance in the supply–demand match for cold island cooling and a significant spatial
spillover effect. The coupled coordination model and the quadrant division method are
used to analyze the supply and demand matching state of the cooling effect. The results
show that the type of matching of the blue–green space cooling effect is a predominantly
low supply and high demand, with most regions facing a spatial mismatch and quantita-
tive imbalance of cooling effects. At the same time, the level of coupled and coordinated
development of the cooling effect is not ideal, and the type of development is dominated
by transitional development and failure to decline. Analyzing the spatial relationship
between the CIS and the CID can help us develop targeted intervention strategies in urban
planning. For example, in areas of high supply and low demand, we could make full
use of cooling resources and optimize the urban spatial structure. In areas of low supply
and high demand, development intensity should be strictly controlled, the proportion of
blue–green spaces should be increased, and the design of blue–green spaces should be
optimized. Within high-supply–high-demand areas, the continued increase in blue–green
space provides limited ecological benefits, so other means should be used to mitigate the
thermal environment. Therefore, exploring the spatial relationship between the CIS and
the CID can help clarify the cooling effect of the blue–green space supply and demand
relationship and provide a scientific basis for urban development and management.

5.4. Limitations and Prospects

This study focuses on the spatial relationship between the CIS and the CID and the
changing law of matching supply and demand, which has certain theoretical and practical
significance for urban development, construction, and mitigation of the heat island effect.
However, the study is still in its infancy and has some limitations. First, the cooling effect
supply and demand evaluation system is not comprehensive enough with respect to the
selection of indicators and needs further improvement. There may also be a relationship
between the CID and residents’ age and type of employment that has not been included [57].
For example, older people can be more sensitive to the heat island effect and need more
cooling. The CIS may be related to the height and type of vegetation [58]. Second, the
mechanisms of flow change and future trends between the CIS and the CID have not yet
been discussed, which imposes certain limitations on clarifying the supply and demand for
blue–green space cooling effects. Third, research has focused on the assessment of cooling
effects at the scale of built-up urban areas and the exploration of spatial relationships;
however, the supply and demand for cooling effects of blue–green space at smaller or
larger spatial scales have not been explored. Therefore, future research should focus on
(1) establishing a more comprehensive evaluation index system for the CIS and the CID
to accurately quantify the supply and demand for the cooling effect of blue–green space,
(2) exploring the flow of trends between the CIS and the CID, and (3) conducting research
on the matching of blue and green space cooling effects supply and demand at multiple
spatial scales.
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6. Conclusions

This study establishes the evaluation index system to quantify the CIS and the CID and
evaluates the characteristics of the spatial pattern of the urban thermal environment and
the distribution law of the cooling effect matching supply and demand based on remote
sensing, land cover, and socioeconomic and other multisource data through GIS, ENVI,
and Geoda platforms. The main conclusions are as follows:

(1) The CIS and the CID exhibit evident negative correlation, and spatially heterogeneous
distribution, and there are significant spatial spillover effects. High-supply areas
are distributed in scenic forest areas with rich vegetation and sparse population,
characterized by multipoint gathering and independent dispersion. High-demand
regions are distributed in packed industrial and commercial zones and high-density
residential areas, with a trend of connecting, gathering, and spreading around;

(2) The supply capacity and demand level of the blue–green space cooling effect do not
match, which is reflected in the fact that most regions face the problem of spatial
mismatch and quantitative imbalance of the cooling effect. The matching type is
mainly low supply–high demand, accounting for more than 40%, and it is primar-
ily distributed in the central urban areas with complex built environments, dense
population, and low green space coverage;

(3) The level of coupling coordination development of the blue–green space cooling effect
is not ideal. The development type is mainly transitional development, and failure
and decline, accounting for more than two-thirds. The uneven distribution of urban
buildings, population, and blue–green space is the main factor affecting the coupled
coordinated development of the CIS and the CID.
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Appendix A

Table A1. Landsat-8 image information.

City Date LANDSAT_SCENE_ID Path/Row AQI Wind Direction Weather Cloud Cover

Jinan 15 August 2021 LC81220352021227LGN00 122/35 70 Southeastern Wind
Level 1 Sunny 4.50%

Qingdao 1 August 2021 LC81200352021213LGN00 120/35 42 South Wind Level 3 Sunny 8.77%

Heze 5 July 2021 LC81230352021186LGN00 123/35 40 Southeastern Wind
Level 3 Sunny 4.48%

Note: AQI means “air quality index”.
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