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Abstract: Wind power has great potential in the fields of electricity generation, heating, et cetera, and
the precise forecasting of wind speed has become the key task in an effort to improve the efficiency
of wind energy development. Nowadays, many existing studies have investigated wind speed
prediction, but they often simply preprocess raw data and also ignore the nonlinear features in the
residual part, which should be given special treatment for more accurate forecasting. Meanwhile,
the mainstream in this field is point prediction which cannot show the potential uncertainty of
predicted values. Therefore, this paper develops a two-stage decomposition ensemble interval
prediction model. The original wind speed series is firstly decomposed using a complete ensemble
empirical mode decomposition with adaptive noise (CEEMDAN) and the decomposed subseries
with the highest approximate entropy is secondly decomposed through singular-spectrum analysis
(SSA) to further reduce the complexity of the data. After two-stage decomposition, auto-encoder
dimensionality reduction is employed to alleviate the accumulated error problem. Then, each
reconstructed subsequence will generate an independent prediction result using an elastic neural
network. Extreme gradient boosting (Xgboost) is utilized to integrate the separate predicted values
and also carry out the error correction. Finally, the Gaussian process (GP) will generate the interval
prediction result. The case study shows the best performance of the proposed models, not only in
point prediction but also in interval prediction.

Keywords: two-stage decomposition; nonlinear ensemble; residual correction; interval forecast; wind
speed prediction

1. Introduction

Wind power is an important clean green energy, which has a great potential in the field
of electricity generation. Therefore, the assessment of wind resources plays an important
role in the effective design of wind turbines, wind farm design and the unit commitment of
operational wind farms [1]. As is well-known, wind speed is the most influential factor in
the efficient use of wind power, which means once the rules of wind speed are grasped,
the efficiency of wind power generation will be greatly enhanced. As a result, wind
power (or wind speed) prediction and trend modification have become a crucial research
topic. However, due to the complexity and volatility of wind speed, accurate wind speed
prediction has always been a tough task.

In recent years, multitudinous models have been proposed in the wind speed predic-
tion field and a decomposition ensemble framework has been the frequently used model
and has tended to be increasingly popular. There are two main parts in this model, the
decomposition period and the prediction period.
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The classic decomposition techniques are mainly categorized into wavelet transform
(WT), empirical mode decomposition (EMD) and its extensions, variational mode decompo-
sition (VMD), and singular spectrum analysis (SSA). WT is a basic time-frequency analysis
method which is essentially equivalent to a multi-channel bandpass filter [2]. It can perform
reasonably well when the frequency bands are clearly separated with noise [3,4]. However,
it is a pity that WT has an unproductive adaptation and requires decomposition layers
to be set manually. In the case of EMD, it was proposed by Huang et al. in 1998 [5] to
improve capacity based on the local characteristics of the time series, such as the maximum,
minimum and zero-crossings [6]. It can smooth complex signals, obtain subsequences
with different features, and also be applied to various data samples [7–10]. In addition,
the extensions of EMD such as ensemble empirical mode decomposition (EEMD) [11,12],
complementary ensemble empirical mode decomposition (CEEMD) [13], and complete
ensemble empirical mode decomposition with adaptive noise (CEEMDAN) [14] have suc-
cessively been developed to solve the problems of model mixing, lower computational
efficiency, and residual noise. VMD, proposed by Dragomiretskiy, can concurrently extract
the modes, and adaptively implement the frequency domain division of signals and the
effective separation of intrinsic mode functions [15–17]. SSA is another commonly used
decomposition method. It can obtain effective information in the sequence. In a variational
mode decomposition–singular-spectrum analysis–autoregressive-integrated moving aver-
age (VMD–SSA–ARIMA) model, the overall results of all predictions obtained prove the
stability of the prediction errors, which shows the good performance of SSA [18].

The prediction methods can be categorized into statistical approaches and machine
learning models. Classic statistical models play an important role in linear and stationary
time-series predictions. They are easy to understand and operate, but also they cannot
handle complex and nonstationary data well. The representative statistical models are the
autoregressive-integrated moving average model (ARIMA) [19,20], generalized autoregres-
sive conditional heteroskedasticity model (GARCH) [21,22], and vector auto-regressive
(VAR) model [23]. When data satisfy the statistical assumptions, the classic statistical
methods can have a splendid performance. However, in most cases, the collected data are
nonlinear and nonstationary, which cannot be well applied to traditional statistical methods.

Machine learning models have shown their superiority in extracting nonlinear features
and nonlinear integration tasks. The commonly used machine learning methods are
artificial neural networks (ANN) [24,25], support vector machine (SVM) and eXtreme
gradient boosting (Xgboost). ANN can be subdivided into back propagation (BP) [26–30]
and radial basis function (RBF) [31–34]. The common structure of a BP neural network
includes three layers and each node has the function of calculating the inner product of the
input and weight vector to provide an output. Similarly, RBF also has three layers, but it is
worth stating that each neuron in the hidden layer of a RBF is centered at a particular point
and the distance between the input vector and its own center is calculated and transformed
using some basis function afterwards. However, using ANN poses a challenging task
because the parameters needs to be manually set without a scientific mindset. Song et al.
selected four types of ANN model as the individual forecasting models to construct a
hybrid model and it turned out that the prediction ability was significantly enhanced when
the parameters were suitable [35], which means traditional neural networks still have room
for improvement.

SVM was developed to further increase the prediction ability as well as improve
efficiency. SVM is a supervised machine learning model which was first developed by
Vapnik [36]. It is based on statistical learning theory, and is widely utilized in predicting
fields because of its great generalization ability, outstanding non-linear mapping ability,
and small sample size [37]. An enhanced model of SVM, the least-square support vector
machine (LS-SVM), was developed to alleviate the convex quadratic programming related
to SVM and has also been applied in many studies [38,39]. However, SVM, as with ANN,
needs quantities of parameters and the input can seriously influence the performance [40].
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Extreme gradient boosting (Xgboost) is another frequently used prediction method
which is effective, flexible, and movable. It can solve problems speedily and accurately as it
offers parallel tree boosting. Compared with other methods, such as support vector regres-
sion (SVR) [41], Xgboost can prevent the overfitting problem through regularization items,
thus achieving a higher accuracy [42–44]. It can also specify the default direction of the
branch for missing values as well as specified values in an effort to improve the efficiency.

Overall, there is still room for improvement for abovementioned models. To start with,
some of the current literature predicted wind speed directly through initial data, and it is
difficult to find a proper model with low prediction errors. In addition, even though they
used decomposition techniques, there are still the problems of pattern aliasing, unsteady
signals in the first decomposition components, adding complexing, and the accumulation
of estimation errors. For the residual component especially, it is always neglected by
researchers, but it also contains useful and nonlinear information. Thirdly, the previous
papers often focus on linear integration, which ignores nonlinear features. Finally, most of
the existing literature only concentrates on point prediction which has a high uncertainty.
In other words, point prediction cannot reflect the reliability of the predicted values.

To solve the abovementioned problems, this study proposes a two-stage decomposi-
tion multi-scale nonlinear ensemble model with a Gaussian process. The original data series
will firstly go through CEEMDAN, and the decomposed subsequence with the highest
approximate entropy (AE) value will be decomposed again through singular-spectrum
analysis (SSA) to fully separate signals with different characteristics. After secondary
decomposition, there are too many subsequences to predict which one brings low efficiency
and an error accumulation problem, so an auto encoder is employed for the dimensional-
ity reduction. Next, because the elastic network has a fast convergence rate and always
produces effective solutions, it is utilized to predict each subseries and all the results will
be integrated by extreme gradient boosting (Xgboost). If the integrated predictive results
pass through the white noise test, that means there is no more useful residual information.
Conversely, if the white noise test is not positive, the errors will be input into Xgboost again
to obtain corrected predictive results. The last step is the use of the Gaussian process (GP)
in order to gain interval prediction results. The innovations of this paper are as follows:

(1) Many researchers used a single decomposition technique to obtain subsequences
with different characteristics, which makes research easier because subsequences
have more regular and simpler patterns than the original data series. However, there
are still a few complex subsequences after once decomposition. Therefore, two-step
decomposition is adopted to preprocess the original data and fully extract complicated
features to the largest extent.

(2) With the increase in the number of subsequences, the error accumulation problem is
also increasingly apparent as each subsequence will be fed into a model separately
and each model has its own errors. To alleviate the error accumulation problem,
the high dimensional data are reduced to low dimensional ones by an auto encoder,
which can not only save useful information in a data series but also simplify the
modelling process.

(3) The proposed model is based on the idea of “divide and conquer”, which can effec-
tively handle distinct subseries through training different models. Instead of linear
integration which is simply adding the results of subsequences, Xgboost is used to
integrate the predictive results of subseries, which is an effective nonlinear ensemble
process and shows superior performance.

(4) In previous studies, the integrated results are seen as the final predictive results.
However, in our proposed model there is an error correction strategy which is used
for correcting the predictive values. Therefore, if the residual values include useful
information, the proposed model still has the potential to dig them out.

(5) The model proposed in this study does not stop at point prediction, but utilizes the
Gaussian process to generate the interval prediction, which can show the potential
uncertainty and the reliability of predictive results.
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The remainder of this paper has four sections. The second section shows the detailed
information on the related methods. The third section is the introduction of the proposed
model. The case study, including the discussion, is in section four. The last section is
the conclusion.

2. Related Methodology

There are eight related methods which are used in the proposed model. These methods
are, respectively, CEEMDAN, AE, SSA, the white noise test, an auto encoder, an elastic
neural network, Xgboost, and GP.

2.1. Complete Ensemble Empirical Mode Decomposition with Adaptive Noise

CEEMDAN is an extension of EMD and EEMD. Ek(·) is defined as the operator and
its function is to solve the k− th modal component IMFk. Then, wi represents the white
noise which uses the normal distribution of N(0, 1). The white noise is added and εk is
its amplitude coefficient for the K − th time. Then, the whole process of CEEMDAN is
expressed as follows:

The white noise is added at the t− th sample to the raw signals:

X(t) + ε0wi(t) (1)

The I − th EMD decomposition is performed and the average operation completed to
obtain IMF1:

IMF1 =
1
I

1

∑
i=1

E1(X(t) + ε0wi(t)) (2)

The first stage residual component is calculated:

r1(t) = X(t)− IMF1 (3)

White noise is added and EMD is performed in an effort to calculate IMF2 and the K− th
residual component:

IMF2 =
1
I

1

∑
i=1

E1(r1(t) + ε1E1(wi(t))) (4)

rk(t) = rk−1(t)− IMFk (5)

Similarly to (2), IMFk+1 can be calculated through:

IMFk+1 =
1
I

1

∑
i=1

E1(rk(t) + εkEk(wi(t))) (6)

The last two processes are repeated until the value of residual component is less than
two extremes. The final formula of the residual variable will be:

r(t) = X(t)−
K

∑
k=1

IMFk (7)

where K denotes mode number, and the signal is eventually:

X(t) = r(t) +
K

∑
k=1

IMFk (8)

2.2. Approximate Entropy

Approximate entropy (AE) is an index which can quantify the regularity and unpre-
dictability of a time series. It utilizes a non-negative number to indicate the complexity of a
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time series, which can reflect the occurrence of new information. The more complex a time
series is, the larger the approximate entropy is.

Using u(1), u(2), . . . , u(N) represents an N-dimensional time series sampling in equal
intervals. The parameter m represents the length of the comparison vector; r as a real
number indicates a measure of similarity. Then, it is required to reconstruct the vector:
X(1), X(2), . . . , X(N −m + 1), where X(i) = [u(i), u(i + 1), . . . , u(i + m− 1)].

For 1 ≤ i ≤ N −m + 1, the number of vectors is counted if it meets:

Cm
i (r) =

(number o f X(j) such that d[X(i), X(j) ≤ r])
N −m + 1

(9)

where the symbols are:
d[X, X∗] = max

a
|u(a)− u∗(a)|,

u(a): element of vector X,
d: distance between X(i) and X(j)
X∗: adjoint matrix of X.
Then, define:

Φm(r) =
∑N−m+1

i=1 log(Cm
i (r))

N −m + 1
(10)

So the AE value will be:

ApEn = Φm(r)−Φm+1(r) (11)

2.3. Singular Spectrum Analysis

Singular spectrum analysis can decompose nonlinear time series data well. When
the trajectory matrix of a time series is decomposed and reconstructed, distinct subseries
(long-term components, seasonal component, noise, etc.) are extracted for the tasks of
analysis or de-noising. Singular spectrum analysis mainly includes four steps: embedding,
decomposition, grouping and reconstruction.

Step 1: For embedding, assume there is a time series which is one-dimensional and
has a finite length: [x1, x2, . . . , xN ] (N is the number of samples). First, it is necessary to
select the appropriate window length L to lag raw data and obtain the trajectory matrix:

X =


x1 x2 · · · xN−L+1
x2 x3 · · · xN−L+2
...

...
...

xL xL+1 · · · xN

 (12)

usually L is smaller than half of N.
Then, K = N − L + 1 is defined and the matrix is expressed as:

X =


x1 x2 · · · xK
x2 x3 · · · xK+1
...

...
...

xL xL+1 · · · xN

 (13)

Step 2: For decomposition, a singular value decomposition is performed on the trajec-
tory matrix. Note that here, there is a singular value decomposition (SVD) decomposition
on the trajectory matrix.

X = UΣVT (14)

where U is called the left matrix; Σ only has a value on the main diagonal, which is the
singular value, and the other elements are all zero; V is called the right matrix; and VT is
the transpose matrix. In addition, U and V are unit orthogonal arrays.
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Because it is a challenging task to directly decompose the trajectory matrix, first its
covariance matrix S is calculated:

S = XXT (15)

Next, an eigenvalue decomposition is performed on S to obtain eigenvalues: λ1 > λ2 >
· · · > λL ≥ 0 and the corresponding feature vector: U1, U2, . . . UL. Then, [U1, U2, . . . , UL]
and
√

λ1 >
√

λ2 > . . . >
√

λL ≥ 0 are the singular spectrum and we also have:

X =
L

∑
m=1

√
λmUmVT

m (16)

Vm =
XTUm√

λm
(17)

where m = 1, 2, . . . , L.
Step 3: For grouping, all L components are separated into c disjoint groups, which

represents distinct components. In this way, some selected components are reconstructed
to obtain a new sequence:

X = Xl1 + . . . + Xlc (18)

where Xl = ∑
m∈l

√
λmUmVT

m = X
(

∑
m∈l

UmUT
m

)
.

Step 4: For reconstruction, first the projection of the hysteresis sequence Xi is calculated
onto Um (referred to as am

i ):

am
i = XiUm =

L

∑
j=1

xi+jUm,j, 0 ≤ i ≤ N − L (19)

where Xi represents column i of trajectory matrix X. am
i is the weight of the time evolution

reflected by Xi in the xi+1, xi+2, . . . , xi+L period of the original sequence.
Next, the time empirical orthogonal function and time principal components are

used to complete the reconstruction process. The details of the reconstruction process are
as follows:

xk
i =


1
i ∑i

j=1 ak
i−jUk,j, 1 ≤ i ≤ L− 1

1
L ∑L

j=1 ak
i−jUk,j, L ≤ i ≤ N − L + 1

1
N−i+1 ∑L

j=i−N+L aK
i−jEk,j, N − L + 2 ≤ i ≤ N

(20)

When all reconstructed sequences are added, a raw sequence should be obtained,
which is:

xi =
L

∑
k=1

xk
i i = 1, 2, . . . , N (21)

2.4. Auto Encoder

An auto encoder is an expansion of principal component analysis (PCA), which is
also introduced here. PCA is mainly used for data preprocessing, reducing dimensions,
and extracting key features (removing redundant features). For the original sample x, it is
encoded first through:

c = f (x) (22)

Then, another decoding function is constructed:

x = g( f (x)), where one can define g(x) = Dc (23)

The loss function is minimized:
min

c
|x− Dc|2 (24)
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by reducing it to zero, producing the encoding function:

c = DTx (25)

Furthermore, for a given X, the covariance matrix will be:

Cx =
1
n

XXT (26)

where n denotes the feature dimension.
The encoding function is applied and Y = PX is defined. Then, the covariance matrix

of Y is constructed:
Cy =

1
n

YYT = PCXPT (27)

Then, the next step is to calculate P.
After making Y = 1√

n XT , P can be calculated through:

YTY =
1
n

XXT = Cx = PΣTΣVT (28)

where Cx is a symmetric matrix, Σ is the transition matrix.
An auto encoder has only one hidden layer and the original signal is reproduced as

much as possible to obtain effective features. The main process is shown in Figure 1.
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2.5. Elastic Neural Network

An elastic neural network is a linear regression model combined with two norms as
a priori regular terms. It only needs a few non-zero sparse parameters, but it still retains
some regular properties. Parameters can be used to control the convex combination of
two norms. The theory is introduced in this section.

First, the expression of partial regression coefficients is defined:

θ = (XTX)
−1

XTY (29)

Assuming there are m samples, each sample i contains n features: xi1, xi2, . . . , xin and
an output yi as follows:

(x(1)1 , x(1)2 , . . . , x(1)n , y1)

(x(2)1 , x(2)2 , . . . , x(2)n , y2)
· · · · · ·

(x(m)
1 , x(m)

2 , . . . , x(m)
n , ym)

(30)

When a new (x(m+1)
1 , x(m+1)

2 , . . . , x(m+1)
n ) is given and the corresponding ym+1 is de-

termined through the following model:

hθ(x1, x2, . . . , xn) = θ0 + θ1x1 + . . . + θnxn
add x0=1

= ∑n
i=0 θixi (31)

where the matrix expression is hθ(X) = Xθ, in which hθ(X) is the m× 1 vector and there
are n model parameters of the algebraic method. X is the m× n matrix with m samples and
n features of the sample.

Then, the loss function is expressed as follows:

J(θ0, θ1, . . . , θn) =
m
∑

i=1
(hθ(x(i)0 , x(i)1 , . . . , x(i)n )− yi)

2

matrix f orm
= 1

2 (Xθ −Y)T(Xθ −Y)
(32)

where Y is the m× 1 matrix representing the output matrix made up by yi(i = 1, 2, . . . , n).
To apply a regularization norm, L1 is the regularization term for lasso regression and

L2 is regularization term for ridge regression. Then, the loss function of elastic neural
network will be:

J(θ) =
1
2
(Xθ −Y)T(Xθ −Y) + rα‖θ‖1 +

1− r
2

α‖θ‖2
2 (33)

where α and r denote constant coefficients, representing the regularization coefficient; ‖θ‖1
is the norm of L1; ‖θ‖2 is the norm of L2.

This kind of model is as sparse as pure lasso regression and possesses the same
regularization ability as ridge regression.

2.6. White Noise Test

The white noise series has no correlation between the values and is therefore mean-
ingless to investigate. Stationary series usually have a short-term correlation which can
be described by the autocorrelation coefficient. With the increase in the number of delay
periods, the autocorrelation coefficient of the stationary series rapidly decays to 0.

In particular, the formula for calculating the correlation coefficient for delay is as follows:

ρ =
∑n−t

i=1 (xi − υ)(xi+t − υ)

∑n
i=1 (xi − υ)2 (34)
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where t is the delay period, n is the number of the value and υ is the mean of all the values.
In a white noise series, the distribution of the autocorrelation coefficient will be:

ρ0 ∼ N(0,
1
n
) (35)

2.7. Extreme Gradient Boosting

The extreme gradient boosting (Xgboost) algorithm is applied to finish the integration
task. The main steps are as follows.

Step 1: The objective function of the boosting method is defined.
For each regression tree, the model can be expressed as:

ft(x) = wqx , w ∈ RT . q : Rd → 1, 2 . . . T (36)

where w represents the vector of the leaves and q means the structure of the tree while T is
the number of leaf nodes in the tree. Then, the tree complexity can be expressed as:

Ω( ft) = γT +
1
2

λ∑T
j=1 w2

j (37)

where γ is the regular penalty of L1, while λ is the regular penalty of L2.
Step 2: A cycle is established.
Step 3: The gradient vector of the loss function of the m− th iteration is calculated.
As with the traditional boosting tree model, the lifting model of Xgboost also uses

residuals (or negative gradient direction). The difference is that the selection of split nodes
is not necessarily the least square loss. Here, the goal function can be expressed as:

Obj(t) ∼= ∑n
i=1

[
l(yi, ŷ(t−1)

i ) + gi ft(xi) +
1
2

hi f 2
t (xi)

]
+ Ω( ft) + C (38)

Step 4: The Hessian matrix of the m-th iteration is calculated.
The objective function is only dependent on the first two derivatives of each data point

on the error function. The reason for this is obvious. Since the previous objective function is
only appropriate for the square loss function when seeking the optimal solution, it becomes
very complicated for other loss functions. Through the transformation of the second-order
Taylor expansion, the other solutions are solved in this way. Then, the objective function is
transformed into the form of a leaf node in the t− th tree:

Obj(t) ∼= ∑T
j=1

[
(∑i∈Ij

gi)wj +
1
2
(∑i∈Ij

hi + λ)w2
j

]
+ γT (39)

where Ij = i|q(xi = j) means the sample i lands on the j− th leaf node and wj is the score
of the j− th leaf node. When the partial derivative of wj is found and its derivative function
is made equal to 0, we have:

w∗j = −
Gj

Hj + λ
(40)

Obj = −1
2∑T

j=1

G2
j

Hj + λ
+ γT (41)

Step 5: The decision tree parameters for minimizing loss function are calculated.
Step 6: The weights of each base learner are combined to obtain the base learner model.
Additionally, this will be the loss function we need. Then, the estimate of the efficiency

will be expressed in the form of the score:

Gain =
1
2

[
G2

L
HL + λ

+
G2

R
HR + λ

− (GL + GR)
2

HL + HR

]
− γ (42)
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In theory, the general gain will be the mixture of the score of the left and right sub-tree
minus the score if the split is not applied.

Step 7: The basic learner models obtained from the loop are all added.

2.8. Gaussian Process

The Gaussian process is usually described by a function. If two points are: x0 = 0, x1 = 1,
then their function values will satisfy a Gaussian distribution:(

y0
y1

)
∼ N

((
0
0

)
,
(

1 0
0 1

))
(43)

where y0 and y1 are the function values.
Then, we have the kernel function:

k(x, x′) = exp(−‖x− x′‖2/2σ2) (44)

where σ is the standard deviation.
This is seen as the distance. If there are N data points, these function values will

satisfy the N-dimensional Gaussian distribution with the mean of 0. Each element in it
corresponds to (K means covariance matrix):

Knm = k(xn, xm) (45)

Then, the Gaussian process can be applied to learn any function. Assuming a given x,
y follows:

p(y|x) = N(y|0, K) (46)

where K = k(x, x).
In the introduced training set, x#, y# will be the joint conditional distribution (y∗ is

the output): (
y#
y∗

)
∼ N

((
0#
0∗

)
,
(

K# K∗
KT
∗ (K∗, K∗)

))
(47)

Then, we have a conditional distribution (x∗ is the output):

p(y∗|x∗, x, y) = N(y∗|µ∗, E∗) (48)

Here, µ∗ and E∗ can be calculated through:

µ∗ = KT
∗K−1y (49)

E∗ = (K∗, K∗)− KT
∗K−1K∗ (50)

3. Proposed Model and the Evaluation Criteria

This section gives the general procedure of the proposed model and the evaluation
criteria used to assess the prediction ability.

3.1. Proposed Model

Figure 2 demonstrates the flowchart and the main parts are introduced as well:
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(1) CEEMDAN combined with AE is the first decomposition step where the raw data are
decomposed in an effort to extract the features.

(2) SSA decomposition is the secondary decomposition process where the focus is on
the subsequence with the highest AE value. The first two steps are seen as the whole
decomposition system which stresses the different features of the data series.

(3) When the decomposition process is finished, the number of the subsequences will
be too large which will bring a low efficiency in computation. Therefore, an auto
encoder is used to realize the dimensionality reduction task to reduce the number of
the subsequences.

(4) Each subsequence will go through the elastic neural network to generate the sub-result,
after obtaining these sub-results, Xgboost will generate the first prediction result based
on sub-results. This process can be seen as a two-step nonlinear learning process.

(5) Error correction is another innovation in the proposed model, which can correct the
first predictive results and achieve a higher accuracy. Here, the white noise test is
used to verify whether the predictive results should be corrected.

(6) The last step is to generate the interval prediction. GP has the ability of interval
generation which will be used in this paper, and this will bring a high fault tolerance
and low uncertainty.
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3.2. Evaluation Criteria

There are five measures selected to assess the predicting ability of the models (see
Table 1). Three of them are used for evaluating the point prediction performance, which are
mean absolute error (MAE), root mean squared error (RMSE), and mean absolute percent-
age error (MAPE), respectively. Because the three indexes quantify the number of errors,
the smaller is the better. The rest is coverage probability (CP) and mean width percentage
(MWP), which are mainly used to evaluate the performance of interval prediction. The
larger the CP is, the better the interval prediction is. The MWP value cannot be too large or
small, otherwise there will not be a suitable interval.

Table 1. The formula of evaluation criteria.

Name Equation

MAE 1
n1

n1

∑
i=1
|w(i)− ŵ(i)|

RMSE
√

1
n1

n1

∑
i=1

(w(i)− ŵ(i))2

MAPE 1
n1

n1

∑
i=1

∣∣∣w(i)−ŵ(i)
w(i)

∣∣∣× 100%

MWP 1
n1

n1

∑
i=1

U(xi)−L(xi)
ri

CP λ1−µ

n1
× 100%

In Table 1, n1 is the sample number, w(i) is the real wind speed at time point i and
ŵ(i) is the prediction speed, λ1−µ is the number of the actual speed falling in the gap at the
confidence of 1− µ; U(xi) and L(xi) are the upper/lower bounds; ri is the i− th real value.

4. Case Study
4.1. Data Collection

This study applied data from four places which are Dingxin, Yongchang, Jingtai,
and Wushan. They are, respectively, referred to case 1, case 2, case 3, and case 4. The
four places are all located in Gansu, China. The data were sourced from the website of
China Meteorological Data Service Center, http://data.cma.cn/ (accessed on 12 April 2022).
The basic information of datasets is shown in Table 2. It is apparently shown that the
empirical distribution of the studied datasets is far away from normal distribution based
on the results of a normal test. The standard deviation represents the fluctuation degree
and it can be seen that the volatility in the four datasets was very close. The daily average
wind speed was selected and 75% data were used as the training set and the rest was used
as the test set (the ratio is 3:1).

Table 2. The basic information of datasets.

Dataset Dingxin Wushan Yongchang Jingtai

Starting date 1 January 1955 1 January 1969 1 January 1960 1 October 1956
Ending date 31 December 2016 31 December 2016 31 December 2016 31 December 2016

Samples 22,645 17,531 20,819 21,975
Mean 30.790 29.740 29.157 25.677
Min 0 0 0 0
Max 143 103 139 127
Std. 16.398 12.358 13.970 15.082

Normal test 8136.28 2528.81 15,631.97 12,534.76

Std. means standard deviation; the normal test is Jarque-Bera test.

http://data.cma.cn/
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4.2. Point Prediction
4.2.1. Case I: Wind Speed from Dingxin

The data series was firstly divided into subsequences using CEEMDAN. Then, for
each subsequence, the AE value was calculated, as is shown in Figure 3.
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Figure 3. AE calculation.

It is obvious that s1 and s2 are apparently higher than others (which are larger than
2), so they were decomposed again, separately, through SSA. After the two-stage decom-
position, the original data series was decomposed into 27 subseries. The subsequences
were reconstructed through the auto encoder and the reconstructed sequences are shown
in Figure 4.
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Once the decomposition and dimension reconstruction were finished, the integration
process was carried out. Firstly, an elastic neural network was employed in each subse-
quence to obtain the sub-result and then Xgboost was used to integrate all the sub-results
into one prediction result. Subsequently, the white noise test was conducted on the residual
series to determine whether to use an error correction strategy. The Q-values are shown in
Figure 5 and clearly the residual series was proven not to be a white noise series.
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Figure 5. Box_Ljung value of each lag order.

For the residual correction part, Xgboost was applied again on the residual series.
The process is described in Figure 6. To further demonstrate the necessity of residual
correction, Figure 6 shows the comparison of the first residual series from Xgboost and the
final residual series from error correction. It can be seen in the figure that the residual series
after error correction was closer to zero than the previous one, which means the residual
correction strategy can effectively improve accuracy.

The numerical results are shown in the next section. Table 3 is the related parameters.

Table 3. Parameters used in case 1.

Sub 1 Sub 2 Sub 3 Sub 4 Sub 5 Sub 6

alpha 0.001 0.001 0.001 0.001 0.001 0.001
ratio 0.001 0.001 0.001 0.899 0.001 0.001

Xgboost-integration Xgboost-residual correction
max_depth subsample colsample_bytree max_depth subsample colsample_bytree

5 0.8 0.7 70 0.75 0.6

4.2.2. Case II: Test with Wind Speed from Wushan

The second dataset was from Wushan, China. The data series was firstly divided into
subsequences using CEEMDAN. Then, for each subsequence, the AE value was calculated,
as is shown in Figure 7.

The highest value was over 3, which was then decomposed again, separately, through
SSA. When the process above was completed, the auto encoder was applied to carry out
the dimension reconstruction, which is shown in Figure 8.
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strategy and the model without it. All the experimental results here used data in case 1.
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Figure 8. The five subfigures represent five subsequences which are generated through decomposition
and dimension reduction from the original time series in case 2.

When the decomposition and dimension reconstruction were finished, the integration
process was carried out. Similarly, the Q-values are shown in Figure 9 and they proved the
necessity to carry out residual correction.
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The integration process and the residual comparison are shown in Figure 10.
The measures were also calculated and listed as well. Table 4 is the related parameters.
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point prediction results which are generated based on the Xgboost integration and error correction
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Table 4. Parameters used in case 2.

Sub 1 Sub 2 Sub 3 Sub 4 Sub 5

alpha 0.01 0.01 0.01 0.01 0.01
ratio 0.616 1 0.01 0.01 1

Xgboost-integration Xgboost-residual correction
max_depth subsample colsample_bytree max_depth subsample colsample_bytree

3 0.7 0.65 105 0.7 0.65
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4.2.3. Case III: Test with Wind Speed from Yongchang

In case 3, the samples were from Yongchang, China. The original data series was firstly
divided into subsequences using CEEMDAN. Then, for each subsequence, the AE value
was calculated, as is shown in Figure 11.
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The highest value was over 5, which was decomposed again, separately, through SSA.
When the subsequences were prepared, the auto encoder was applied to carry out the
dimension reconstruction work, which is shown in Figure 12.
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When the decomposition and dimension reconstruction were finished, the integration
process was carried out. The result of the test is shown in Figure 13.
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After the residual correction part was completed, the final point prediction was gener-
ated and the process above is described in Figure 13. The detailed point prediction results
are shown in Figure 14.
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Figure 14. The first three subfigures are the point prediction results of subseries. The fourth subfigure
titled “Xgboost integration” shows the integrated results. The fifth subfigure represents the final point
prediction results which are generated based on the Xgboost integration and error correction strategy.
The last subfigure is the residual comparison between the model with error correction strategy and
the model without it. All the experimental results here used data in case 3.

Table 5 is the related parameters.
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Table 5. Parameters used in case 3.

Sub 1 Sub 2 Sub 3

alpha 0.01 0.01 0.01
ratio 0.192 0.01 1

Xgboost-integration Xgboost-residual correction
max_depth subsample colsample_bytree max_depth subsample colsample_bytree

12 0.75 0.85 100 0.5 0.8

4.2.4. Case IV: Test with Wind Speed from Jingtai

For the case of Jingtai, China, the original data series was firstly divided into subse-
quences using CEEMDAN. Then, for each subsequence, the AE value was calculated, as is
shown in Figure 15.
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The highest value was over 2.5, which was decomposed again, separately, through
SSA. Then, the auto encoder was applied to reconstruct the dimension and the output
subsequences’ number was 5, which is shown in Figure 16.
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After integration, the white noise test showed the residual series was not noisy. The
values are shown in Figure 17.
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When the residual correction part was finished, the final point prediction result was
generated. The process above is described in Figure 18.
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Figure 18. The first five subfigures are the point prediction results of subseries. The sixth subfigure
titled “Xgboost integration” shows the integrated results. The seventh subfigure represents the final
point prediction results which are generated based on the Xgboost integration and error correction
strategy. The last subfigure is the residual comparison between the model with error correction
strategy and the model without it. All the experimental results here used data in case 4.

The parameters are shown in Table 6.
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Table 6. Parameters used in case 4.

Sub 1 Sub 2 Sub 3 Sub 4 Sub 5

alpha 0.01 0.01 0.01 0.01 0.04
ratio 0.01 1 0.01 0.01 0.01

Xgboost-integration Xgboost-residual correction
max_depth subsample colsample_bytree max_depth subsample colsample_bytree

13 0.55 0.7 110 0.6 0.5

4.3. Interval Prediction

GP was used as the interval forecast tool. Figure 19 displays the GP results of the four
datasets as well as some related measures. The parameters are displayed in Table 7. The
measures of the four cases are shown in Table 8.
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Figure 19. The interval prediction estimate of four cases.

Table 7. Parameters of cases used in GP.

Mean cov lik

Case 1 1 −1,1,−7 5
Case 2 1 −5,6,−1 3
Case 3 1 −1,0,−7 5
Case 4 1 1,−3,−2 3
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Table 8. Measures of models.

Model Case
Measure

RMSE MAE MAPE CP MWP

Proposed model

Case 1 0.02 0.01 5.74% 0.9993 1.3986
Case 2 0.02 0.01 5.08% 0.9881 0.6960
Case 3 0.02 0.01 5.96% 0.9992 0.3784
Case 4 0.01 0.01 6.25% 0.9498 0.2422

CEEMDAN-elastic
neural network

-two-step Xgboost

Case 1 0.16 0.12 51.23% 0.7928 1.2404
Case 2 0.12 0.09 37.11% 0.7850 0.7338
Case 3 0.13 0.09 37.54% 1 5.0851
Case 4 0.13 0.09 46.87% 1 3.6869

Elastic neural network-
two-step Xgboost

Case 1 0.15 0.11 49.88% 0.6653 2.4638
Case 2 0.12 0.09 35.93% 1 2.2888
Case 3 0.12 0.08 34.47% 0.9590 4.4455
Case 4 0.11 0.08 41.74% 1 2.8217

CEEMDAN-AE-
SSA-AE-elastic neural network

Case 1 0.12 0.09 39.40% 0.9610 2.9545
Case 2 0.08 0.07 29.03% 0.9400 1.6599
Case 3 0.07 0.06 23.67% 0.9760 3.7672
Case 4 0.08 0.09 29.03% 1 2.9151

CEEMDAN-AE-
SSA-AE-elastic neural

network-
linear accumulation

Case 1 0.27 0.23 135.73% 1 9.0649
Case 2 0.21 0.18 93.58% 0.9470 2.7619
Case 3 0.25 0.23 78.50% 0.9560 4.5932
Case 4 0.19 0.16 62.06% 0.9970 4.8145

CEEMDAN-AE-
SSA-AE-elastic neural

network-
Xgboost integration

Case 1 0.08 0.06 24.28% 0.6797 0.0012
Case 2 0.06 0.05 18.99% 0.7508 0.0013
Case 3 0.04 0.03 12.56% 0.2810 0.0016
Case 4 0.02 0.01 8.12% 0.1578 0.0019

4.4. Analysis and Discussion

In order to show the rationality of model construction, we designed the following
comparative experiments: (1) The first model used a one-step decomposition which is
different to our secondary decomposition model; (2) the second model discarded the
whole decomposition process and directly built the model on the original dataset; (3) the
third model contained the whole decomposition process, but the integration process only
contained the elastic neural network; (4) the fourth model used linear accumulation to
replace nonlinear integration; (5) the fifth model was designed to show the significance of
residual correction and it was the proposed model without the residual correction process.

Based on the above comparative experiments, we can obtain the following conclusions:

(1) The proposed model applies a secondary decomposition process which contains
CEEMDAN and SSA while some existing studies only use one-step decomposition.
For this reason, the first cases applied a one-step decomposition. The next steps
remained the same as the proposed model. The RMSE and MAE values showed
obvious increases with the secondary decomposition. More specifically, the RMSE
values of the four cases were, respectively, 8 times, 6 times, 6.5 times and 13 times
larger than that of the proposed model; the MAE values of the comparative model
were also several times larger than the proposed one. The increase in the MAPE
values was also apparent in the four cases and the value increased by 45.49%, 32.03%,
31.58%, and 40.62%, respectively. Then, for the interval prediction, the CP values of
the first two cases decreased by about 0.2, while the MWP values increased by about
0.2 and 0.03. It can be seen that in the third and fourth cases, the CP values showed a
slight increase while the MWP values showed a multifold increase. The experiment
demonstrates that the one-step decomposition will neglect some information in the
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series which means the feature extraction still has room for improvement. Moreover,
it proves that the two-step decomposition is necessary.

(2) There are a large number of studies investigating the study process on the original
dataset, so in the second model, the whole decomposition process was deleted entirely
as a comparative group. The RMSE values of the second comparative model were
dozens of times larger than the proposed model as well as the MAE values in all cases.
Similarly, the MAPE values were several times larger than the proposed model’s. In
addition, the CP value of the first case showed an apparent decrease by 0.334, and
the MWP value increased to 2.4638. For the next three cases, the CP values showed
no great difference, but the MWP values all became far from satisfactory. Obviously,
using the original dataset directly means that all the features are given the same
weight, which can greatly affect the prediction ability in practice.

(3) The third model turned the original two-step learning process to a one-step integration.
For certain, the process became easier to operate, but the accuracy and fault tolerance
were both influenced. The most obvious changes were the increase in the MAPE
value in case 1 by 33.66% and the increase in the MWP value in case 3, which was
multiplied 9.96 times. The simplified process brought not only the decline in the point
prediction accuracy, but also a negative effect on the certainty. Sometimes, a simple
one-step integration does offer a good performance, but it also causes risks that the
features are not fully captured and the learning process is insufficient. Thus, in an
effort to complete the learning process and pay as much attention as possible to all
the features, it is highly recommended to apply a two-step learning process.

(4) The proposed model applies nonlinear integration as an important process in the point
prediction period. In some classic methods, linear accumulation is always utilized,
so the fourth model replaced the Xgboost integration with linear accumulation. It
was learned from the results that the accuracy greatly decreased. The RMSE values
were much larger than that in the proposed model in the four cases. The MAE values
increased by the similar multiples accordingly. The MAPE values showed a distinct
increase as well and the values of the four cases increased by 129.99%, 88.50%, 72.54%
and 55.81%, respectively. Meanwhile, in the interval prediction process, differences in
the CP values were not really evident, but when it came to MWP values, the values
increased by 7.6663, 2.0659, 4.2418 and 4.5723, which means the gap between the
boundaries widened and this will bring large uncertainty. Linear integration takes
the least time to operate and it is the easiest way to generate results, but doing this
means the ignorance of nonlinear features, and, as a result, the prediction accuracy is
far from satisfactory.

(5) Finally, as the residual correction strategy is another notable part in the proposed
model, to further demonstrate the significance of this, the fifth model eliminated the
residual correction process. Drawn from the table, the RMSE values of the four cases
increased by 0.06, 0.04, 0.02, and 0.01, respectively, together with an increase in the
MAE values in the first three cases, by 0.05, 0.04, and 0.02, respectively. While for
the interval prediction, the CP values showed a great decline, and the gap narrowed
further, with decreases of 1165.50 times, 535.38 times, 236.50 times, and 127.47 times in
four cases. It has been said that MWP values cannot be too large or too small, and in
this experiment, the MWP with too small values will turn the interval prediction to the
results that are quite alike with the point prediction. In other words, the residual cor-
rection must not be neglected. The residual series is always neglected by researchers
while, as a matter of fact, some features in the residual series remain unnoticed. The
application of the residual correction strategy means the capturing of all the possible
information and, by doing this, the performance will be the most precise.

To sum up, the proposed model shows improvement in many aspects which are often
not given much attention. In this model, the data is decomposed fully to separate the
features and a two-step learning process captures the nonlinear features to a large extent.
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In addition, the residual series is given the correct attention. According to the results of the
experiments above, these techniques are noteworthy and effective.

5. Conclusions

The accurate prediction of wind speed is of great significance. This study proposed a
two-stage decomposition multi-scale nonlinear ensemble model and this model contains a
secondary decomposition feature reconstruction process and a two-stage nonlinear process
including a residual correction strategy. The proposed model is capable of providing point
and interval prediction results. Both the case studies and the comparison models show
that the proposed model can improve not only the accuracy of the point prediction but the
performance of interval prediction.

The proposed model combines various methods effectively and reasonably and it
can be applied in other fields of data prediction and trend modification. In addition, the
proposed model also has room for improvement. For example, some different integration
and decomposition methods can be applied as well.
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