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Abstract: Accurate assessments of exposure to urban air pollution with higher traffic emissions
and its health risks still face several challenges, such as intensive computation of air pollution
modeling and the limited availability of personal activity data. The macroscopic health effects can
be transmitted to the whole population for personal prevention via air quality health index (AQHI),
but the possibility risk index of the specific allergic diseases is still lacking. This interdisciplinary
study aims at evaluating the forecasted results of high-resolution air quality with updated traffic
emissions and accessing the potential impacts of outdoor pollution on morbidity of rhinitis for
urban residents. A high-resolution modelling system (1 km × 1 km) containing the online traffic
emission model (VEIN), meteorological and air quality model (WRF-CHIMERE) and the health
impact module was developed. A new health index of Potential Morbidity Risk Index (PMRI)
was further established using higher resolution health risk coefficients of major air pollutants on
allergic rhinitis, and different methods (with/without considering population distributions) targeting
different user groups (residents, hospitals and health administrations) were calculated and analyzed.
Operational forecasted results of hourly PMRI can be further combined with online map services to
serve as an effective tool for patients with allergic rhinitis to arrange their daily activities so as to avoid
acute exacerbation. The forecasted PMRIs accessible to the public will also be beneficial for the public
health administrations in planning the medical resource and improving the outpatient efficiency.

Keywords: allergic rhinitis; air quality forecast; relative risks; potential morbidity risk index;
personal prevention

1. Introduction

Rapid urbanization and economic growth have given rise to severe air pollution in
urban areas in developing countries. The ambient air pollution can result in serious human
health effects and has aroused wide concern of the public, media and even the govern-
ment [1,2]. Exposure to either gaseous or particulate matters can increase morbidity or/and
mortality of various diseases, such as non-accidental death, respiratory, cardiovascular,
cardiopulmonary diseases and so on [3,4]. The health effects of different components
together with their emission sources in the atmospheric environment have also been widely
reviewed, such as desert dust [5], black carbon [6–8], elemental carbon [9], biomass smoke
and traffic emissions [10–13].

Over the past decade, there has been a need to quantitatively estimate the effects of out-
door air pollution on human health, which has facilitated the development of interdisciplinary
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research among epidemiology, atmospheric modeling and remote sensing. The 3D air quality
models based on Eulerian dispersion methods running at different scales have been applied
in quantitative estimation of health impacts, such as GEOS-Chem and LMDz-INCA simu-
lations at global-scale [14–17], the CMAQ [18–21], WRF-Chem [22–24], CAMx [25–30] and
CHIMERE [31–33] simulations at regional/country-scale, and the ADMS-Urban simula-
tions at street-scale [34]. Air quality models are usually adopted to provide the historical
or/and spatially interpolated data of pollutant concentrations in epidemiological studies,
and even output the Air Quality Health Index (AQHI) to the public for personal prevention.
Among these studies, researchers mainly paid attention to investigating the health impacts
of PM2.5/gaseous pollutants from specific emission sources, such as power plants [35–37]
and oil and natural gas sector emissions [38], and focused more on the sensitivity of using
different grid resolutions in simulations to the estimated health assessment results [39–41].
Thompson et al. [25] demonstrated that the estimated health benefits calculated with coarse
resolution (36 km × 36 km) would be twice greater than finer scale results (4 km × 4 km)
in urban areas, and some regions even showed decreasing estimated health effects as
grid resolution increased. It suggested that numerical simulations of air quality in higher
spatial resolutions are more necessary for accurately assessing the health risks/benefits
for personal exposures in urban areas. Recently, a few studies have set the highest spatial
resolutions of 1 km at city scale to provide insight into the health effects of exposure to
ambient pollution [42].

Previous interdisciplinary studies focus mainly and retrospectively on the estimations
of health risks of long-term exposure to ambient pollution or prospectively on the health
benefits under the implementation of air pollution control policies. There are only limited
studies focusing on the quantitative calculation of acute respiratory diseases caused by
short-term exposure to outdoor air pollution, such as allergic rhinitis and acute exacerbation
of asthma. Allergic rhinitis (AR) affects 20–40% of the population worldwide and presents
with symptoms that affect quality of life and work productivity, although the morbidity
varies with age and region [43–45]. Asthma is a complex heterogeneous and chronic
inflammatory disease with an increasing morbidity worldwide. About 1.85 million new
pediatric asthma cases are attributable to NO2 globally in 2019, two-thirds of which occur
in urban areas [46]. Asthma is categorized as primary or secondary. The former means the
risk of new asthma/allergic rhinitis occurrence and the latter relates to triggering the acute
exacerbation of allergic diseases [47].

Previous time-series, cross-sectional and cohort studies have demonstrated the positive
associations between vehicle emissions and increased risk of asthma and AR [48–53]. Indi-
vidual pollutants responsible for the increased risk of AR are PM2.5, PM10, NO2, SO2 and
O3, except for CO [45,54–56]. Five years have passed since the publication of Teng et al. [43],
but the association between local ozone pollution and morbidity of AR in China is still
unclear. For asthma, the review and meta-analysis studies have consistently showed that
the air quality components positively associated with the acute asthma exacerbation are
NO2, PM2.5, PM10, O3, Benzene and TVOCs [57–61], and SO2 is not significantly associated
with the morbidity of asthma during short-term exposure in East Asia [62,63]. However,
the latest study of Kindzierski et al. [64] has evaluated the reliability of observational base
studies that are used in the meta-analysis research of Zheng et al. [59] via p-value plots,
and has suggested that the meta-analysis of acute asthma exacerbation with exposure to
six air pollutants is unreliable and false-positives due to the presence of multiple testing
and multiple modelling bias in the based epidemiological papers. The reliability of other
meta-analysis studies also needs to be further examined. The main research gap remains,
namely, that the macroscopic health effects can be transmitted to the whole population
through AQHI for personal prevention, but the possibility risk index of the specific allergic
diseases is still lacking.

Besides the air pollutants, meteorological factors also have important influence on
the occurrences of AR, especially for the temperature changes [65,66] and relative humid-
ity [67,68]. Initially, the effects of increased temperature on AR were less concerned in
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China [69]. Teng et al. [43] was the first group that comprehensively analyzed the exposure–
response relationships between all the meteorological factors and outpatients of allergic
rhinitis, and revealed that the lower temperatures (<0 ◦C) and lower relative humidity
(<58%) were significantly associated with higher AR risks. Duan et al. [68] reported that
outpatients attributable to lower values (33%–64%) of RH were 5.22% (95% CI: 1.92%,
8.33%) and higher values of RH (>76%) were 4.07% (95% CI: 1.13%, 7.30%) with 4-days
lagged effects in Hefei, China. In the same city, the lower temperatures (−12.2–5.9 ◦C)
during nighttime were significantly associated with increased risk of AR, and a 3.8 ◦C
decrease at night could lead to an increase of 2% (95% CI: 1–4%) in the daily outpatient
admissions for all children with AR [70]. Daily mean temperature and atmospheric pres-
sure were significantly associated with −7.6% and 7.5% increasing of allergic diseases in
children in Shanghai [55]. The negative association was also reported for all population in
Xinxiang of central China [71]. The effects of PM2.5, PM10 and NO2 on AR outpatients were
enhanced at lower temperatures (−14.3–2.8 ◦C) and higher humidity (>67%) in Beijing [72].
An M-shaped relationship between ambient temperature and allergic rhinitis outpatient
in Xinxiang of central China was reported by J. Gao et al. [73] and the higher risk peak
located at lower temperatures of 1.6–9.3 ◦C (another peak presented in 23.5–28.5 ◦C, which
overlapped with the allergic effects of pollens).The temperature was determined as nega-
tively related to the AR occurrence in Taiwan, and each increasing of 10% in RH and 1 ◦C
in temperature was related to 9.2% and 1.2% reduction in AR occurrence, respectively [74].
Moreover, Kim et al. [75] further discovered that the cold temperatures (−1.7–7.9 ◦C) had
significant effect on increasing hospital visits by allergic rhinitis in the total population
especially for the elders in Seoul, South Korea, and a significant increase in AR cases with
lower relative humidity in Busan was also observed [67].

As mentioned above, it is also necessary to account for the specific short-term health
effects of lower temperatures on the occurrence of allergic rhinitis at the city scale, and
the localized coefficient of exposure risk should be gained via time-series analysis before
conducting the forecast calculation of the potential morbidity risks. Based on our previous
basis of local time-series research [43], our current study focuses solely on the allergic
rhinitis (the methodology of this study is also applicable to other allergic diseases, such as
asthma and allergic conjunctivitis) and aims to develop a numerical forecast system (built
on the cloud computing platform) that can evaluate the potential morbidity risk of acute
allergic diseases (such as AR) for short-term (hourly and daily) exposure to outdoor traffic
pollution at city scale (1 km × 1 km) for the next 24 h, and can automatically generate
scientific protection advice for the public and local health administrations.

2. Methodology
2.1. Domain Setting

Hourly forecasted pollutants (CO, NO2, O3, PM2.5 and PM10) concentrations in
Changchun in July and December of 2021 have been simulated at the high horizontal
grid resolution (1 km× 1 km) using the air quality model of CHIMERE v2017r4. The model
grid domain of WRF-VEIN-CHIMERE forecast system covers the entire downtown area
of Changchun and parts of other 6 adjacent counties as illustrated in Figure 1. The road
networks obtained from OpenStreetMaps are also presented in Figure 1.
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Figure 1. Model domain setting of WRF-VEIN-CHIMERE system and spatial distribution of popula-
tion, road networks and observation sites in Changchun, Northeast China.

2.2. Data Sources

The health effects of different ambient pollutants on asthma and AR were collected
through Google scholar, PubMed, Web of Science and Scopus and then Meta-analyzed to
obtain the median values with uncertainties.

The ground-based hourly observation data of PM2.5, PM10, O3, CO and NO2 concen-
trations between the two simulation periods were obtained from the Changchun Municipal
Environmental Protection Monitoring Center. The meteorological parameters of hourly
temperatures, humidity and wind velocity used for validation of simulation results were
downloaded from the Weather Underground website (www.wunderground.com, accessed
on 12 February 2023).

2.3. Model Configurations and Optimizations

The air quality model of CHIMERE was adopted to produce hourly forecasted air
quality data in this study. CHIMERE is a multi-scale Eulerian chemistry-transport model
(CTM) which is commonly used in simulating/forecasting hourly concentrations of aerosol
and gaseous pollutants with horizontal resolution ranging from city to global scales [76].
The Weather Research and Forecasting (WRF) model version 3.9.1 was used to generate the
meteorological output fields to drive the running of CHIMERE model. All the modeling
system configuration details are concisely summarized in Table 1. As the Global Forecast
System forecast products of the National Center for Environmental Prediction (GFS-NCEP)
were frequently used as a meteorological input during the numerical forecast, data with
a horizontal resolution of 0.5◦ × 0.5◦ (available every 6 h) were introduced to act as
the initial and boundary fields for the WRF model in this study (https://www.ncdc.
noaa.gov/data-access/model-data/model-datasets/global-forcast-system-gfs, accessed
on 12 February 2023).

As listed in Table 1, the chemistry mechanism of MELCHIOR2 in the CHIMERE model
(version 2017r4) was enabled. The Multi-resolution Emission Inventory for China (MEIC)
without considering the emission data of the transportation sector for the year 2017 was
introduced as the anthropogenic emissions and pre-processed by a modified version of
emiSURF program (version 2016b) before being incorporated into the model domain. The
outermost boundaries of the meteorological driving field were removed, and there were
96 × 102 grid points in the domain of CHIMERE. The vertical levels of the model were
increased from 8 (surface to 500 hPa) to 15 (surface to 200 hPa) to obtain more detailed
vertical results. All the hindcast simulations were run for the future 48 h from 24 June to 31
July and 24 November to 31 December 2021, and the simulated results of first 7 days were
treated as spin-up period and discarded in the following data analysis processes.

www.wunderground.com
https://www.ncdc.noaa.gov/data-access/model-data/model-datasets/global-forcast-system-gfs
https://www.ncdc.noaa.gov/data-access/model-data/model-datasets/global-forcast-system-gfs
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Table 1. Model configurations of WRF-VEIN-CHIMERE forecast system.

Models Parameters Configurations

WRF

Projection Lambert
Number of domain 1

Vertical layers 30
Horizonal resolution 1 km × 1 km

Grids 99 × 105
Time step 60 s

Microphysics scheme Milbrandt–Yau Double Moment
Scheme

Short wave and Longwave
Radiation RRTMG Scheme

Planetary boundary layer Asymmetric Convection Model 2
Scheme

Land-surface Pleim–Xiu Land Surface Model
Cumulus option Grell 3D Ensemble Scheme

CHIMERE

Chemistry scheme MELCHIOR2
Gas and aerosol partition ISORROPIA

Horizontal advection Van Leer
Vertical advection Van Leer

Dry deposition Zhang_2001
Initial conditions Previous forecast result

Boundary conditions LMDz-INCA + GOCART
Dust emissions GOCART

Biogenic emissions MEGAN V3
Anthropogenic emissions MEIC_2017

Traffic emissions VEIN_2020

The high-resolution vehicular emissions inventory for Northeast China which was
compiled by the open-source Vehicular Emissions Inventory model (VEIN) [77,78] was
used in this study. This inventory included 133 pollutants from the 36 municipalities of
Northeast China and it has recently updated to the base year of 2020. The traffic emission
was further merged with preprocessed anthropogenic emission including the temporal
allocation and chemical species mapping via R programming language (Version 4.1.0).

In order to improve the model performance at the city/street scale, besides compiling
a new high-resolution traffic emissions inventory, the model optimizations mainly include
changing the WRF to WRF-Urban model to account for the urban building canopy effects
and enabling a corresponding simple urban canopy correction option in CHIMERE to
enhance the forecast accuracy for diffusion conditions in the first urban layer (the correction
coefficient of Kz is set to 0.45).

2.4. Selection of Health Effect Estimates for Allergic Rhinitis

The epidemiological studies referring to health effects of exposing to air pollution can
be sorted into two categories: the time-serious studies and the cross-sectional studies [79].
All the AR related studies conducted in China were summarized in Table 2, and can be
sorted into three groups: 18 cross-sectional studies using multi-variables/multi-levels
logistic regression models, 5 cohort studies and 8 time-serious studies to fix the health risks
of AR during acute exposure.

The quantitative health effects are always reported as risk ratios (RRs), odds ratios
(ORs) and/or hazard ratios (HRs) [80]. Risk ratios (or named as Relative Risks) and odds
ratios are common but easily misused/misunderstood statistical measures in epidemiologi-
cal cross-sectional studies. ORs may overestimate the relative risks of a disease when the
prevalence is high [81], such as the AR in this study. Only when a disease is exceedingly
rare within a population can the ORs be considered as equivalent to RRs [80,82]. It should
be noted that OR is a relative measure just as RR, and thus sometimes a large OR can
correspond with a small difference between odds. In most reports, then, OR should not
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be presented as an RR, and should only be presented as an approximation of RR in rare
diseases. If possible, an RR should always be reported.

Table 2. Summary of collected epidemiological studies referring to allergic rhinitis and air quality in
2005–2022.

Case Studies Meta-Analysis Studies

Reference Study
Areas

Study
Design Indices Methods * Zou et al.,

2018 [54]
Lin et al.,
2021 [83]

Zhang et al.,
2022 [84]

Li et al.,
2022 [45]

Jia et al.,
2022 [56]

Hwang et al.,
2006 [85] Taiwan Cross-

sectional ORs LRM
√ √

Dong et al.,
2011 [86]

7 cities of
Northeast

China

Cross-
sectional ORs LRM

√ √

Lu et al., 2013
[87] Changsha Cross-

sectional ORs LRM
√ √ √ √

Liu et al., 2013
[88]

7 cities of
Northeast

China

Cross-
sectional ORs LRM

√ √ √ √

Deng et al.,
2016 [49] Changsha Cohort ORs LRM

√ √ √ √

Liu et al., 2016
[89] Shanghai Cohort ORs LRM

√ √ √ √

Wang I. et al.,
2016 [90] Taipei Cohort ORs LRM

√ √ √ √

Chung et al.,
2016 [91] Taiwan Cohort ORs LRM

√ √ √ √

Li et al., 2019
[92] Taiwan Cohort HRs LRM

√

Chen et al.,
2016 [93] Taiwan Case-

crossover ORs LRM

Chen et al.,
2018 [94]

6 cities of
China

Cross-
sectional ORs LRM

√ √ √ √ √

Norbäck et al.,
2018 [95]

6 cities of
China

Cross-
sectional ORs LRM

√ √ √

Huang et al.,
2019 [96]

Wuhan
&Ezhou

Cross-
sectional ORs LRM

√ √ √

Liu et al., 2020
[97] Shanghai Cross-

sectional ORs LRM
√ √

Hao et al., 2021
[53] Shenyang Case-

control ORs LRM
√

Hsieh et al.,
2020 [74] Taiwan Cross-

sectional ORs LRM
√

Wang et al.,
2021 [98] China Cross-

sectional ORs LRM
√

Chen et al.,
2019 [99] Jinan Time-series ORs LRM

√

Zhang et al.,
2011 [100] Beijing Time-series RRs GAM

Zhang et al.,
2016 [101] Beijing Time-series RRs GAM

√

Teng et al., 2017
[43] Changchun Time-series RRs GAM

√

Chu et al., 2019
[102] Nanjing Time-series RRs GAM

√

Wang et al.,
2019 [103] Beijing Time-series RRs GAM

√

Wang et al.,
2019 [71] Xinjiang Time-series RRs GAM

√
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Table 2. Cont.

Case Studies Meta-Analysis Studies

Reference Study
Areas

Study
Design Indices Methods * Zou et al.,

2018 [54]
Lin et al.,
2021 [83]

Zhang et al.,
2022 [84]

Li et al.,
2022 [45]

Jia et al.,
2022 [56]

Wu et al., 2022
[72] Beijing Time-series RRs GAM

Guo et al., 2022
[104] Wuhan Time-series RRs GAM

Luo et al., 2022
[105]

Guangzhou-
Shenzhen-

Zhuhai
Time-series RRs GAM

* LRM: logistic regression model; GAM: Generalized additive model;
√

means this study is collected and included
in the corresponding meta-analysis studies.

As shown in Table 2, 17 studies reported the results of ORs, 8 studies presented the
RRs and only 1 study reported the HRs. In recently published meta-analysis studies,
4 out of 5 focused on the reported ORs, which means that these studies may overestimate
the RRs of AR as the prevalence is only as high as 8.7–24.1% of population in China
(Figure 1 in Reference [43]). The time series analysis is more apt to forecast a future
condition, and the cross-sectional analysis is better to find out the near-term future of the
potential prevalence of a disease. Moreover, for the works related to health care planning,
the RRs should be adopted in the studies as advised in Andrade [106]. Recently, Slama
et al. [107] have demonstrated that both case-crossover and time-series analysis methods
provide the consistent trends and the overlap of the results for air pollution effects on
short-term hospitalizations of respiratory diseases in Poland. However, our compiled
result revealed contradicting result that the health effects reported from the cross-sectional
studies were 5–20 times larger than time-series studies for AR in China (Table 3). Thus, to
be more stringent, the reported RRs for each positive correlated pollutants from the city of
Changchun in Teng et al. [43] and the averaged values of RRs among 6 time-series analysis
studies (in Tables 2 and 3) were further used in the calculation of potential morbidity risks
when acute exposure to the local forecasted air pollution.
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Table 3. The compiled relative risks of exposure to various ambient pollutants with a 10 µg/m3 increase in single case studies and meta-analysis studies.

Reference Published Year Age Groups Study Areas PM2.5 PM10 NO2 O3 CO * SO2

Zou et al., 2018
[54] 2018 Children Meta-analysis 1.163

(1.074–1.260)
1.075

(0.995–1.161)
1.236

(1.099–1.390)
1.044

(0.954–1.142)
Zhang et al.,

2022 [84] 2021 Children Meta-analysis 1.15
(1.03–1.29)

1.02
(1.01–1.03)

1.11
(1.05–1.18)

0.98
(0.67–1.41)

1.03
(1.01–1.05)

Lin et al., 2021
[83] 2021 Children Meta-analysis 1.09

(1.01–1.17)
1.06

(1.02–1.11)
Jia et al., 2022

[56] 2022 Children Meta-analysis 1.08
(1.04–1.13)

Li et al., 2022
[45] 2022 All_ages Meta-analysis 1.12

(1.05–1.20)
1.13

(1.04–1.22)
1.13

(1.07–1.20)
1.07

(1.01–1.12)
1.07

(0.99–1.17)
1.13

(1.04–1.22)
Jia et al., 2022

[56] 2022 All_ages Meta-analysis 1.21
(1.01–1.44)

Zhang et al.,
2011 [100] 2011 All_ages Beijing 1.0073

(1.0066–1.0080)
1.0512

(1.0483–1.0542)
1.0010

(1.0005–1.0014)
Chen et al., 2016

[93] 2016 All_ages Taibei 1.067
(1.055–1.080)

1.130
(1.115–1.145)

1.118
(1.100–1.136)

1.148
(1.125–1.170)

0.990
(0.975–1.005)

Teng et al., 2017
[43] 2017 All_ages Changchun 1.102

(1.055–1.151)
1.049

(1.008–1.092)
1.111

(1.058–1.165)
0.993

(0.941–1.048)
0.977

(0.907–1.053)
1.002

(0.985–1.015)
Wang et al., 2016

[90] 2016 Children Taibei 1.54
(1.03–2.32)

1.15
(0.79–1.45)

0.95
(0.79–1.66)

1.01
(0.76–1.34)

1.02
(0.8–1.29)

1.00
(0.78–1.29)

Chung et al.,
2016 [91] 2016 Children Taiwan 1.12

(0.79–1.45)
1.27

(0.76–1.70)
1.14

(1.02–1.86)
1.05

(0.67–1.22)
Chu et al., 2019

[102] 2019 All_ages Nanjing 1.0539
(1.0273–1.0812)

1.0586
(1.0300–1.0881)

1.085
(0.982–1.198)

Wang et al., 2020
[103] 2020 All_ages Beijing 1.0047

(1.0039–1.0055)
Wang et al., 2020

[71] 2020 All_ages Xinjiang 1.007
(1.000–1.0141)

1.0079
(1.0035–1.0123)

1.0454
(1.0301–1.0608)

1.0097
(0.9989–1.0205)

1.0007
(1.0002–1.0012)

Wu et al.,2022
[72] 2022 All_ages Beijing 1.0124

(1.0069–1.0178)
1.0079

(1.0043–1.0115)
1.0305

(1.0172–1.0440)
1.0501

(1.0118–1.0896)
1.0343

(1.0147–1.0539)
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Table 3. Cont.

Reference Published Year Age Groups Study Areas PM2.5 PM10 NO2 O3 CO * SO2

Li S. et al., 2022
[108] 2022 All_ages Beijing 1.010

(0.985–1.035)
1.012

(0.991–1.033)
1.086

(1.057–1.117)
0.974

(0.923–1.028)
1.002

(0.987–1.017)
1.009

(0.995–1.023)

Luo et al., 2022
[105] 2022 All_ages

Guangzhou–
Shenzhen–

Zhuhai

1.0184
(1.0068–1.0302)

1.0154
(1.0096–1.0123)

1.0243
(1.0131–1.0356)

1.0034
(1.0010–1.0048)

0.982
(0.52–2.14)

1.0769
(1.0104–1.1478)

Lu et al., 2013
[87] 2013 Children Changsha 1.021

(1.003–1.039)
1.037

(1.006–1.069)
1.026

(1.005–1.048)
Liu et al., 2020

[109] 2020 Children NEC_7 cities 1.28
(1.09–1.51)

1.23
(1.06–1.43)

1.22
(1.05–1.42)

Zhou et al., 2021
[110] 2021 Children NEC_7 cities 1.13

(1.07–1.18)
Hao et al., 2021

[53] 2021 Children Shenyang 1.31
(1.08–1.90)

1.15
(1.02–2.23)

0.52
(0.23–1.02)

1.13
(0.77–2.02)

Guo et al., 2022
[104] 2022 Children Wuhan 1.270

(1.004–1.606)
1.210

(1.042–1.405)
1.292

(1.005–1.662)
1.137

(0.973–1.329)
1.02

(0.95–1.11)

* For CO, the increase range is 1 mg/m3. The bold values indicate the non-significant correlations between the morbidity of allergic rhinitis and air pollutants.



Atmosphere 2023, 14, 393 10 of 26

2.5. Definition of Potential Morbidity Risk Index

The population attributable fraction (PAF) is an epidemiological parameter which is
used to represent the occurring proportion of morbidity/mortality that results from the
specific risk factor among the whole population over the simulated domain [111]. In this
study, it means the potential increased proportion of morbidity of three respiratory diseases
due to exposure to outdoor pollution:

PAF =
Pexposure·

(
ORexposure − 1

)
Pexposure·

(
ORexposure − 1

)
+ 1

(1)

Here, Pexposure is the proportion of people who will be exposed to outdoor environment
among the entire population, and Pexposure = 0.92 is used in this study according to
questionnaire survey of Changchun.

Potential morbidity risk index of a specific respiratory disease is then calculated and
its formulas are expressed as:

Ni,j = PAF·NSpec f ic_ages·γSpec f ic_ages (2)

PMRIRes = Ni,j/
n

∑
i,j=1

Ni,j·100 (3)

Ni,j is the case numbers of specific diseases for the given ages in each grid over the
whole simulated domain. ORexposure is the scaled odds risk that corresponds the difference
during exposure times between the forecasted results and the healthy values advised by
the WHO, and its calculating formula is expressed as follows:

ORexposure = exp
((

lnOR
CRR_unit

)
·Cdi f f

)
(4)

OR is the odds risk in exposure-response function for different diseases of Chinese
exposure to air pollution obtained from the local study or/and former published literatures,
CRR_unit is the unit concentration of exposure pollutants in exposure functions, and Cdi f f is
the concentration differences between the simulated concentrations (namely, the forecasted
potential exposure) and the advised healthy values by the WHO (baseline exposure).

A module written in Python was developed to conduct the time serial (hourly and
daily) calculations of PMRI for each grid, pollutant and the related disease (allergic rhinitis
is representatively selected in this study).

2.6. Statistical Metrics of Model Evaluation

The simulated results of WRF-VEIN-CHIMERE have been evaluated with the actual
ground observations using the following statistical equations:

Correlation coefficient:

R =
∑n

i=1(p i −
_
p)(o i −

_
o)√

∑n
i=1 (p i −

_
p)2
√

∑n
i=1 (o i −

_
o)2

(5)

Mean bias:

MB =
1
n

n

∑
i=1

(pi−oi) (6)

Root mean square error:

RMSE =

√
1
n

n

∑
i=1

(pi − oi)
2 (7)
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Here, pi and oi are the simulated and observed values at each time and grid pair i;
and pi and oi denote the average modeled and observed values, respectively. n is the total
number of grids or timestamps. The correlation coefficient R represents the direction and
strength of the linear relationship between the modeling and observation. MB describes
the mean deviation of the simulated results from the corresponding observations. RMSE
indicates the absolute accuracy of a model prediction and its value of 0 means a perfect
model prediction.

3. Results
3.1. Accuracy Evaluation of City-Scale Simulations
3.1.1. Meteorological Variables

In order to effectively forecast the potential morbidity risk of respiratory diseases,
the exposure concentrations of ambient pollutants must be accurately simulated. Serious
pollution in the atmospheric environment is mainly caused by excessive anthropogenic
emissions and the unfavorable diffusion conditions (i.e., regional meteorological and
topographic factors). Whereas the terrain of a given area is almost impossible to change,
the future variations of meteorological factors should be comprehensively evaluated.

Figure 2 illustrates the temporal (hourly) variations of major meteorological vari-
ables (temperature at 2 m, relative humidity and wind speed) among the forecasted and
ground-monitored values at two local sites (Changchun Longjia International Airport and
Changchun Train Station). As for the temperature, it was obvious that the daily minimum
temperatures were underestimated, thus leading to the fact that the whole WRF simula-
tions slightly underestimated the daily mean near-surface temperatures at 2 m. The WRF
overestimated the relative humidity but underestimated it in July at Changchun Train
Station, and overestimated the humidity at both sites in December. The WRF model shows
higher correlations in high-resolution (1 km × 1 km) simulations of wind speeds in both
summer and winter.

A more detailed result of the different statistical metrics was presented in Table 4
to further evaluate the model performance of WRF. The correlation coefficients between
the simulated and observed hourly surface temperatures were 0.86–0.98 with negative
biases ranging from −0.51–−1.39 ◦C. The RMSE errors showed lower values in July than
December (1.97–2.38 ◦C to 2.16–3.05 ◦C). The correlation coefficients of RH in winter
dropped to –0.60, and both the MB and RMSE of RH were higher in winter than summer,
and the overall errors of RH was about 13.53%. The higher errors occurred in the range of
higher values of humidity (RH > 80%). The averaged correlation coefficient and RMSE of
wind speed were 0.72 and 1.38 m/s, respectively.

Table 4. Statistical metrics of hourly temperature (T), relative humidity (RH) and wind speed (WS) in
July and December of 2021 at two sites of Changchun, northeast China.

Variables Site
July December

R MB RMSE R MB RMSE

T
CLIA 0.90 0.80 1.97 0.98 −0.51 2.16
CTS 0.86 −0.53 2.38 0.94 −1.39 3.05

RH
CLIA 0.80 2.43 10.21 0.65 10.64 14.92
CTS 0.76 −5.91 13.23 0.56 10.22 15.75

WS
CLIA 0.72 0.10 1.20 0.79 0.31 1.22
CTS 0.75 1.00 1.42 0.61 0.91 1.67

In this part, the model performance evaluation of WRF reveals that the optimized
configuration can produce well simulated meteorological conditions for the further model-
ing of regional air quality at the city scale with higher resolutions (1 km × 1 km). A more
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detailed exploration of model–observation mismatch will be insightful, but it is beyond the
scope of this research.
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3.1.2. Air Quality Variables

In this study, the WRF-CHIMERE simulated the surface pollutant concentrations with
enabling two different traffic emissions (default traffic emission from the MEIC inventory
and the new compiled traffic emission inventory by the VEIN model), which were compared
with the corresponding ground-based observations at ten sites of Changchun. As health
effects of ambient pollutants on residents gradually occurred during a certain period of
exposures, contrary to most previous evaluation studies models, here we compared the
accumulated pollutant concentrations rather than averaged concentrations of each pollutant
between the simulations and observations.

Figure 3 illustrates the spatial distribution (hindcast results) of major air quality vari-
ables with different traffic emissions in Changchun in July and December. Obviously, the
overall patterns of each pollutant were not significantly changed between the scenarios of
using default MEIC and updated VEIN emissions, except for PM10 and CO that the simula-
tion using VEIN inventory led to higher concentrations of coarse particles and CO covering
the whole southern part of Changchun (Figure 3g). Compared to the actual observation
values of the site (Shuangyang) located at bottom-left corner of Figure 3b,g, the updated
VEIN emissions produced better performance. Higher resolution of VEIN inventory in
simulations resulted in more detailed information of spatial variations, especially for the
NO2 and O3 (Figure 3h,j).

For the downtown areas with relatively higher pollution, the simulations with default
MEIC inventory produced higher concentrations of pollutants than the simulations using
updated VEIN traffic emissions. It can be explained by the fact that the VEIN model can
output high resolution inventory (1 km × 1 km in this study) and produce a smaller area
in each pixel to aggregate the emissions, namely, that the MEIC inventory with coarse
resolution (0.25◦ × 0.25◦) will produce higher emissions in more grids during the spatial
allocation processes [78]. In the downtown area, on the other hand, the downward trend in
O3 was exactly the opposite (Figure 3e,j). A previous study based on satellite observations
has demonstrated that the ozone pollution in urban areas of Changchun in summer is
limited by the VOCs [112], but the nitrogen oxides dominate the depletion processes of
ozone in the urban area with higher traffic emissions compared to the rural area [113].

Limited by the length of the paper, only a typical site (Site of Food Factory, SFF) was
selected to conduct comprehensive statistical analysis. The time-series comparisons and
scatter diagram analyses among two simulation scenarios and observation at the site of SFF
with statistical metrics in July and December are presented in Figures 4 and 5, respectively.

As plotted in Figures 4 and 5, for hindcasted concentrations of PM2.5 and PM10, in
both summer and winter, the correlation coefficients ranged in 0.52–0.54 at higher spatial
resolution of 1 km, and the correlation coefficients showed comparative levels between
simulations using the default MEIC emissions and updated VEIN emissions, but both
MB and RMSE have been effectively improved. It was demonstrated that the updated
high resolution traffic emissions could enhance the forecast accuracy but had no effect
on the improvements of correlations. The correlation coefficients were about 0.51 and
0.57 for CO in July and December, respectively, but the scenario of using default MEIC
inventory with updated traffic emissions from VEIN generated significant overestimations
(underestimations) for CO compared to the observations at the site of SFF in July.
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O3 is the secondary formed pollutant and its concentration is susceptible to be in-
fluenced by the variation of precursors (NOx and VOCs) via complicated photochemical
processes [114]. Both NO2 and O3 can be well simulated with higher correlation coefficients
(0.7–0.8) in summer and winter compared to other pollutants, and the absolute accuracy of
forecast is only slightly enhanced using the updated VEIN emissions.

It was worth noting that more accurate temporal allocation profiles based on video
recording and identification of vehicle types via AI algorithm were adopted in emission
preprocessing steps, which resulted in the higher correlations between NO2 and O3 in
this study. For particulates and CO, the temporal allocation profiles for different emission
sectors (such as industrial and residential sources) should be further modified and checked
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based on online environmental monitoring techniques in future works, and the simulation
accuracy can be further theoretically improved.
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3.2. Spatiotemporal Distribution of Potential Morbidity Risk Index

It has been demonstrated in the previous evaluation sections that WRF-VEIN-CHIMERE
can effectively predict future changes in outdoor pollutant concentrations. Here, we will
further present the spatiotemporal distribution of calculated potential morbidity risk index
at city scale with higher resolution of 1 km, which aims to further calculate the personal
exposure risks combined with navigation planning data (such as Google or Baidu Maps
and open-sourced OpenStreetMap) and provide corresponding health protection advice
for outdoor activities of different intensities.

Figure 6 depicts the calculated spatial distributions of PMRI at specific times (namely,
the typical traffic jams times in morning (8:00 a.m. LTC) and evening (17:00 p.m. LTC))
in summer and winter, respectively (More forecasted hourly PMRI results are provided
in the Supplementary Materials with Graphics Interchange Format figures). In viewpoint
of patients that have been diagnosed with rhinitis, the areas with higher PMRIs were
mainly controlled by the leading wind directions, accumulated ambient pollution and
actual dynamic traffic congestion conditions, i.e., northwestern part of Changchun on 3
July 2021 in Figure 7. In winter, the distribution pattern obviously changed and the low
temperature was added as the major control factor. Therefore, the suburban and rural areas
also showed certain degrees of exposure risks (PMRIs < 1.5) compared to the summer time.
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When comprehensively considering the spatial distribution of population, the calcu-
lated results in Figure 7 indicate the potential morbidity risks for occurrence of rhinitis in
each simulated grid. The overall forecasted results can be adopted by the public health
administrations and hospitals to plan and adjust the medical resources and to improve the
outpatient efficiency.
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4. Discussion

Previous studies have demonstrated that the WRF model is prone to underestimating
the near-surface temperature during nighttime and overestimating wind speeds in northern
China [115–118]. Some studies have also indicated more complex conclusions; for example,
Yan et al. [118] and Liao et al. [119] reported that underestimation or overestimation of the
2 m temperature is significantly sensitive to the selection of urban canopy schemes and
data sources of green vegetation fractions in WRF in the region of Yangtze River Delta
and the entire China, respectively. Schicker et al. [120] revealed that the diurnal maximum
temperature is easy to be influenced by the choice of land-use datasets in WRF, but it is
well simulated for both seasons with the specific configurations in Section 2.3. Similar to
the study conducted by Tao et al. [121], the adoption of high-resolution grids in this study
tends to reduce the uncertainties in representation of land surfaces, and this will effectively
improve the model performance in simulation of meteorological fields.

Our results revealed that the adoption of high-resolution traffic emission inventory has
made significant contributions to enhancing the forecast accuracy of all air quality variables
in Changchun, especially for NO2 and O3. Previous meta-analysis based epidemiological
studies have overestimated the exposure risks of allergic rhinitis due to the use of odds
ratios rather than relative risks.

The first significant limitation of this study is that the local health effect estimates only
considered the results from time-serious studies but lacked for the cohort studies. Until
now, only limited cohort studies targeting the associations between AR and air pollution
were conducted in the past; only nine papers were published in the worldwide since the
year of 2013. Four out of nine cohort studies (German: Fueres et al., 2013; Netherlands:
Gehring et al., 2015; Estonia: Pindus et al., 2016; Europe: Burte et al., 2020) [122–125] were
conducted in Europe. Among them, Burte et al. (2018) [124] systematically investigated the
association between air pollution and rhinitis incidence in two European cohorts (EGEA
and ECRHS) for adults, and reported that the incident rate of allergic rhinitis is 2.34% in
Europe which lower than that in China. Burte et al. (2018) [126] also reported that no clear
association was found between air pollution and new incidence of allergic rhinitis both
in the main analysis and the multi-pollutant model (PM2.5, PM10 and NO2). Considering
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the regional differences of population and atmospheric pollution levels, the only cohort
result from Europe (Burte et al., 2018) [126] for adults was also excluded from this study.
In China, a total of five papers were published; three of the five papers are from Taiwan
with a subtropical climate that is significantly different to that of Northeast China. In
2016, Deng et al. (2016) [49] performed the first cohort study in the mainland of China that
targeted to obtain the odds ratios of allergic rhinitis when exposed to air pollutants for
children aged 3–6 years in Changsha, China. Meanwhile, a study conducted in Shanghai
by Liu et al. (2016) [89] also investigated the odds ratios of rhinitis and asthma for children
aged 4–6. As our research target is to develop a new risk possibility index for AR patients
(all ages) and health administrative sections, the results of birth cohort studies only for
children from Taiwan and Changsha were excluded in our study. In short, to obtain more
accurate PMRI, the corresponding effect estimates from local cohort studies should be
firstly adopted rather than the time-serious or/and cross-sectional studies, and it is more
reasonable using local coefficients rather than coefficients from other countries/regions.

Another major limitation of this study is that it is difficult to correlate the accumulated
hourly exposures with the occurrence of rhinitis in individual patients. The personal
accumulated exposure can be accomplished by trajectory tracking and mapping with
recorded GPS data [127–129]. The real-time exposure dose of individual component or
combines of several pollutants can be monitored via low-cost sensors/devices, such as
personal exposure monitor for PM10, O3 and NOx without GPS tracking [130], E-nose with
monitoring of CO, PM10, NO2 and temperature [131], and portable personal air quality
monitoring packages for PM2.5, O3, NO2, NO, temperature, relative humidity and GPS
recording [132,133]. The health effects and outcomes should also be made a detailed
record by the participants during the 24 h personal exposure estimates [134,135]. Just for
the rhinitis, the occurrence times for stuffy nose, runny nose and/or sneezing should be
documented in future personal exposure estimate experiments conducted in Changchun.
After the implementation of these studies, potential corresponding suggestive prevention
measures (such as wearing N95 masks or/and taking antiallergic drugs) can be further
taken for the forecast periods in future works.

At first, Canada proposed the Air Quality Health Index (AQHI) to communicate the
health risks of multiple pollutants, but the AQHI was directly calculated by summing
the excess risks from single-pollutant models, which might overestimate the effects of the
pollutants. The cumulative risk index (CRI) was developed to capture the overall health
risk of multiple pollutants on various cause-specific mortalities [136]. In China, the related
research also demonstrated that the air pollution index (API) can be used for indicating
the health risks of long-term exposure to air pollution on mortality [137]. More recently,
Zhang et al. [138] emphasized the importance of temperature and considering it in building
a new air health index to indicate the mortality risk.

For morbidity, various multi-pollutant AQHIs have been developed to correlate with
all-cause emergence visits, hospital admissions for respiratory diseases and asthma mor-
bidity [139–142]. In this study, we took the work one step forward and further integrated
the multi-pollutants and temperature into developing a new health risk index of morbidity
for allergic rhinitis based on excess risk of morbidity. Note that the excess risks were
derived from time series analyses of data on hospital admissions, and the relevant cohort
studies were still limited. The effects-estimates shall be updated in future works with more
epidemiological studies published.

5. Conclusions

Various air quality health indices (AQHIs) have been developed and verified as a
valuable health protection communication tool for the public, but the health effects mainly
consider the mortality, and a possibility risk index for the morbidity of specific allergic
diseases is still lacking. In this study, a city-scale health risk forecast system based on WRF-
VEIN-CHIMERE for Changchun was established, and we presented the first forecasted
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health-based Potential Morbidity Risk Index for allergic rhinitis patients and public health
administrative sections that can be extended to other cities.

Although more and more epidemiological case- and meta-analysis studies regarding
allergic rhinitis have emerged in the past decade, our analysis results revealed that the
exposure risks of various air pollutants on allergic rhinitis are still under debate, especially
for CO, SO2 and O3. Allergic rhinitis (AR) is a prevalent disease. The usage of odds ratios
(ORs) may overestimate the relative risks (RRs) within the forecasted concentrations in
numerical evaluations of health effects. Moreover, it is necessary to take into account the
specific short-term health effects of low temperatures on the occurrence of AR at the city
scale. Here, we proposed that the localized relative exposure risks should be obtained before
conducting the forecast calculation of the potential morbidity risks of AR in future works.

To date, only two Europe cohort studies referring to allergic rhinitis of adults have
been conducted. Burte et al. [126] reported that no clear association was found between
air pollution and new occurrence of allergic rhinitis both in the main analysis and the
multi-pollutant model (PM2.5, PM10 and NO2). Burte et al. [125] further demonstrated
that air pollution mainly impacted on the severity of rhinitis, which is consistent with
our viewpoint that air pollutants exacerbate the allergic rhinitis symptoms [43]. Thus, the
forecasted hourly spatial distributions of PMRI can be used to guide the AR patients to
arrange their daily activities so as to avoid acute exacerbation. It is difficult to propose
corresponding preventive measures for the inevitable activity in areas with higher PMRIs,
as there is a lack of quantitative relationship between personal accumulated exposures
hours and the occurrence of AR, and this problem will be solved in the future. The
forecasted PMRIs considering population distributions can be adopted by the public health
administrations and hospitals to plan and adjust the medical resources to improve the
outpatient efficiency.

Ideally, the newly developed health risk index will be further validated using local
health data to confirm associations with local population-level morbidity risks.
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