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Abstract: An exact analytical expression for the electric field of the return stroke as excited by a 
propagating step current source is derived in this paper. This expression could be advantageously 
used to evaluate the disturbances caused by lightning on overhead lines. There are three equivalent 
procedures to evaluate the voltages induced by lightning on power lines, namely, the Agrawal–
Price–Gurbaxani model, the Taylor–Satterwhite–Harrison model, and the Rachidi model. In the case 
of a vertical return stroke channel, the coupling model developed by Rusck becomes identical to 
these three coupling models. Due to its simplicity, the Rusck model is frequently used by engineers 
to study the effects of lightning on power distribution and transmission lines. In order to reduce the 
time involved in the electromagnetic field calculation, the Rusck model is incorporated with an an-
alytical expression for the electromagnetic fields of the return stroke excited by a propagating step 
current pulse. Our research work shows that the Rusck expression can be used to calculate the peak 
values of lightning induced voltages to an accuracy of about 10%. However, the use of this analytical 
expression to calculate the time derivatives of lightning induced voltages may result in errors as 
large as 50%. The derived expression in this paper can be used to correct for this inaccuracy. We 
also provide an exact expression for the electric field at any given point in space when the propa-
gating current is an impulse function. This expression can be combined with the convolution inte-
gral to obtain the electric field corresponding to waveforms similar to measured return stroke cur-
rents. 

Keywords: lightning; return stroke; transmission lines; distribution lines; induced voltages;  
electromagnetic coupling models; Rusck model; accelerating charges; electromagnetic fields 
 

1. Introduction 
Lightning is one of the natural causes of disturbance and disruption in power trans-

mission and distribution lines [1–3]. Lightning can affect these systems either through di-
rect strikes or indirectly through electromagnetic field coupling [4]. The mitigation of 
these indirect effects requires information concerning the temporal behavior of the light-
ning induced voltages in power transmission and distribution lines. Since the direct meas-
urements of these voltages and currents in live power systems are difficult, engineers have 
developed procedures to evaluate the features of these disturbances through computer 
simulations. Such analyses require information on the electromagnetic fields generated 
by lightning return strokes and coupling models to represent the interaction of these elec-
tromagnetic fields with the lines. There are several field-to-line coupling models in the 
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literature, namely those introduced by Rusck [5], Agrawal et al. [6], Taylor et al. [7], and 
Rachidi [8]. The latter three models have been shown to be equivalent to each other, even 
though each represents the field-to-line coupling equations in terms of different excitation 
sources [9]. The Rusck model, which neglects one of the source terms, is equivalent to the 
other three only in the case where the lightning channel is vertical [10]. However, since 
the analysis of indirect effects of lightning on power distribution and transmission lines is 
commonly conducted by assuming that the lightning channel is vertical, Rusck’s coupling 
model can be used in these engineering studies without any disadvantages in comparison 
to the other coupling models. This fact, combined with its simplicity, made this model an 
important engineering tool in the assessment of lightning induced voltages in power 
transmission and distribution lines [1–3,11–13]. As mentioned earlier, in order to evaluate 
lightning induced voltages on power transmission lines, in addition to the field-to-line 
coupling model, one needs to know the electromagnetic fields generated by lightning at 
different distances from the lightning channel (along the line). In general, these fields are 
calculated using return stroke models. There are many return stroke model types in the 
literature. These models can be classified into gas dynamic models (or physics based mod-
els), Electromagnetic models, waveguide models, transmission line models, and engineer-
ing models [14–17]. Due to their simplicity and their ability to successfully reproduce the 
salient features of the lightning electromagnetic pulse (LEMP), return stroke models be-
longing to the engineering model type are frequently used in practical studies. The engi-
neering models can be divided into current propagation, current generation, and current 
dissipation types [14]. It is the current propagation type models that are being used fre-
quently in the analysis of lightning-induced voltages in power systems. The most fre-
quently used current propagation type models are the transmission line model (TL model) 
[18] and its modifications, namely, the modified transmission line model with exponential 
current decay (MTLE model) [19,20] and the modified transmission line model with linear 
current decay (MTLL model) [21]. Cooray and Orville [22] developed a modified trans-
mission line model where both the current attenuation and dispersion are taken into ac-
count. More recently, a new modified transmission line model (called the MTLD model) 
in which the current attenuation function is derived from the lightning electromagnetic 
field was developed by Cooray et al. [23]. 

In the analysis of induced over-voltages in power lines due to lightning, the electro-
magnetic fields generated by lightning appear as inputs to the coupling model. Since this 
requires the calculation of electromagnetic fields from lightning at a large number of dis-
tances, the use of analytical expressions for the electromagnetic fields generated by return 
stroke models makes the calculation process much faster [24–26]. In Rusck’s field-to-line 
coupling model, the electromagnetic fields are calculated using the classical TL model. In 
its original formulation, the return stroke current in the Rusck model is assumed to be a 
step function and analytical field expressions are derived for the vertical field over a per-
fectly conducting ground. This field expression can be extended to any other return stroke 
current waveform by using the Duhammel’s integral [12]. 

It is also important to mention that Rusck’s coupling model is based on the assump-
tion of a perfectly conducting ground. The electromagnetic field generated by lightning at 
a given distance will be modified both by the conductivity of the ground [27] and the 
terrain features [28,29]. The most important effect of the finitely conducting ground is the 
generation of a horizontal electric field that has a considerable influence on the magnitude 
and features of the induced voltages [1]. Even though the Rusck model was originally 
developed to work with lines over a perfectly conducting ground, it can easily be modified 
to account for the finitely conducting ground by adding the contributions from the hori-
zontal electric field into the induced voltages [30].  

The analytical expression given by Rusck provides a quick means to compute the 
electric field from the lightning return stroke. However, as mentioned earlier, the field 
expression of Rusck is not exact and, as we will show later, it can lead to significant errors 
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(as large as 50%) in the field derivatives. The goal of the present paper is to provide accu-
rate field expressions for the TL model excited by a step current pulse and thus remove 
this drawback in the Rusck’s coupling model. 

In the paper, we will also provide an exact expression for the electric field at any 
given point in space when the propagating current is an impulse function. This expression 
can be combined with the convolution integral to get the electric fields corresponding to 
current waveshapes similar to those measured in lightning return strokes. The field equa-
tions will be obtained over a perfectly conducting ground. The reason for this choice is the 
following: First, the original Rusck formulation was given assuming a perfectly conduct-
ing ground. Second, to account for the presence of a finitely conducting ground, the com-
mon approach is to use the Cooray–Rubinstein formula [31,32], which actually uses as 
inputs the field components (magnetic field and horizontal electric field) evaluated for a 
perfectly conducting ground. 

It is important to point out that the goal of this paper is to present exact electromag-
netic field expressions for a transmission line return stroke model where the current is 
described by a step function. This is identical to the return stroke model used by Rusck in 
his lightning field-to-transmission line coupling model. Note that we will give the equa-
tions necessary in the derivation of the final expressions since this will enable other re-
searchers to reproduce and implement the procedure in their research work.  

2. Problem Formulation 
Let us consider the transmission line (TL) model of the return stroke. In this model, 

the return stroke is simulated by a current pulse that propagates upwards with uniform 
speed and without dispersion or attenuation. In the calculation of voltages induced by 
lightning on power lines, the induced voltages within the first few tens of microseconds 
are of interest. Due to this, there is no need to consider the effects of the channel termina-
tion inside the cloud. For this reason, without loss of generality, we can assume that the 
return stroke channel extends to infinity. According to this model, the return stroke cur-
rent at any given height z along the return stroke channel is given by 

( , ) 0i z t =                  for    /t z v≤  

( , ) ( / )bi z t i t z v= −          for    /t z v>   
(1)

In the above equation, ( )bi t  is the current at the channel base, v  is the return stroke 
speed, and z  is the height along the return stroke channel. In the present analysis, we 
consider the channel–base current to be a step function with an amplitude 0i . With such 
channel–base current, Equation (1) reduces to 

( , ) 0i z t =                              for    /t z v≤   

0( , )i z t i=                              for    /t z v>  (2)

The next step is to derive an expression for the electromagnetic fields generated by 
this current distribution.  

3. Electric Field of the Return Stroke 
The geometry relevant to the problem at hand is shown in Figure 1. The vertical light-

ning channel is located over a perfectly conducting ground plane. The z-axis is directed 
perpendicularly out of the ground plane and the unit vector directed along the positive z-
axis is za . The lightning strike point coincides with the origin O of the coordinate system. 
The point of observation P  is located on the x-z plane, at a height ζ from the ground 
and at a horizontal distance d from the lightning strike point. Due to rotational symmetry, 
the fact that we have selected the observation point to be in the x–z plane does not affect 
the generality of the results to be derived. The distance OP  from the strike point O to the 
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observation point is r . A generic infinitesimal channel element located at a height z is 
denoted by dz  and the distance from this channel element to the point of observation is 
denoted by sr. The effect of the perfectly conducting ground plane is taken into account 
by the image of the return stroke channel with respect to the ground plane. The distance 
from the image of the infinitesimal channel element to the point of observation is ir. The 
vectors ra , 

sr
a , and 

ir
a  are directed along the direction of increasing r , sr , and ir 

respectively. The vectors θa , 
sθa , and 

iθa can be calculated by way of ( )r r z× ×a a a ,

( )
s sr r z× ×a a a , and ( )

i ir r z× ×a a a , respectively. The distances sr and ir are given by 

2 2( )sr d zζ= + −  (3)

2 2( )ir d zζ= + +  (4)

The angles sθ   and iθ  are given by 

{ }( )1co s /s sz rθ ζ−= −  (5)

{ }( )1co s /i iz rθ ζ−= − +  (6)

The goal of this paper is to derive an analytical expression for the vertical electric 
field at point P. First, we will give the approximate expression derived by Rusck [5] for 
this field component. After that, we will develop an exact expression for this field compo-
nent.  

 

Figure 1. Geometry relevant to the parameters used to describe the electric field. 

3.1. Expressions for the Vertical and Horizontal Electric Fields Based on Rusck’s Formulation 
According to Rusck, the vertical electric field as a function of time at point P, follow-

ing the physics sign convention, is given by [5] (see also [11])  

, 0 0( , ) ( , )v RusckE t E tζ ζ=   (7)
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r
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0

0 0( , )
4
E
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Z i
E t

v
λζ

π
= −   

       
1 1

2 2 2 22 2
0 0( ) ( )vt d vt dζ λ ζ λ

− − 
   − + + + +    

 
 

(8)

In the above equations, 2 2
0t d ζ= + , /rv v c= , 

2

21 v
c

λ = − , and EZ  is the imped-

ance of free space. 
Following the same procedure used by Rusck to obtain the vertical electric field, one 

can derive an expression for the horizontal electric field [33]. This results in the following 
expression for the electric field parallel to the ground and directed away from the light-
ning channel (i.e., along the x-axis when the point of observation P is located on the x–z 
plane 

, ( , )h RusckE tζ =  

( )( ){ }
0

2 2 2 22 ( ) ( )
E

r

Z i d
v vt vt d vt d

λ
π ζ ζ λ ζ λ

 
 
 

− + − + − + 
 

  

( )( ){ }
0

2 2 2 22
E

r

Z i d
v d dπ ζ ζ ζ

 
 +  

+ − + 
 

 

( )( ){ }
0

2 2 2 22 ( ) ( )
E

r

Z i d
v vt vt d vt d

λ
π ζ ζ λ ζ λ

 
 −  

+ + + + + + 
 

  

( )( ){ }
0

2 2 2 22
E

r

Z i d
v d dπ ζ ζ ζ

 
 +  

+ + + 
 

 

(9)

This expression was derived by Barbosa and Paulino [33] by taking the gradient of 
the scalar potential at point P.  

3.2. Exact Expressions for the Electric Field at Any Point in Space  
At present, there are four methods developed in the literature to evaluate the electro-

magnetic fields once the spatial and temporal distribution of the current are given  [34–
36]. These are known as the dipole (Lorentz) technique, the continuity equation technique 
and two versions of the procedures based on moving and accelerating charges. Although 
the various components that constitute the total field are different in each technique, all 
these techniques give rise to the same total field. Here, we will use the moving and accel-
erating charge procedure, which will make it possible to express the resulting electromag-
netic fields analytically. In the case of the transmission line model [18] excited by a step 
current pulse, the total electric field consists of radiation field and velocity field compo-
nents. The radiation field is generated by the accelerating charges and the velocity field is 
generated by the uniformly moving charges. In the problem under consideration, there 
are no fields generated by static charges because there is no accumulation of charges along 
the return stroke channel. Since the current moves with constant speed along the channel 
and since radiation only comes from accelerating charges, the radiation from the channel 
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is generated only at the initiation of the lightning current at the bottom of the channel. The 
radiation field generated at point P by the initiation of the source current is given by [36]  

, , 2
0

( / ) sin( , )
4 (1 cos )s r

r

i t r c vt
c r vθ

θζ
πε θ

−=
− θE a  (10)

The component of this field directed along the z-axis (the vertical field) is given by 
2

, , 2
0

( / ) sin( , )
4 (1 cos )s r z

r

i t r c vE t
c r v

θζ
πε θ

−= −
−

 (11)

Note that in Equation (11) and in the subsequent equations, the first of the comma-
separated sub-indexes indicates whether the field is from the source or from the image (in 
this case, ‘s’ stands for source and ‘i’ stands for image). The second sub-index indicates if 
the field is the radiation ( ' 'r ) or the velocity field ( ' 'v ). The third sub-index, when present, 
denotes the specific component of the field. 

The velocity field generated by the current element dz  located at a height z along 
the channel is given by 

[ ], 22

(0, / / )( , )
4 1 cos

s
s v z

o s r s

i t z v r cd t
r c v

λζ
πε θ

− −= −
−

E a  
[ ]22

(0, / / )
4 1 cos s

s
r

o s r s

i t z v r c
r v v

λ
πε θ

− −+
−

a  
(12)

The total velocity field generated by the source at point P directed along the z-axis is 
then given by 

[ ]

( )

, , 22
0

(0, / / ) cos1( , )
4 1 cos

suz t
s s

s v z
o s r s

dz i t z v r cE t
c vr v

λ θζ
πε θ

− −  = − −  −  (13)

In the above equation, the upper integration limit ( )suz t  (the subscripts s and u 
stand for source and upper limit, respectively) is the length of the source channel that 
contributes to the electric field at point P at time t. This length can be obtained by solving 
the equation 

( ) / ( ) / /su suz t v r t c r c t+ − =  (14)

with 

2 2( ) ( ( ))su sur t z t dζ= − +  (15)

Plugging Equation (15) into Equation (14) leads to the following quadratic equation, 

{ } { }2 2 2 2( ) 1/ 1/ ( ) 2 / 2( / ) /su suz t v c z t c t r c vζ− + − +   

            { }2 2 2 2 2( / ) / / 0t r c c d cζ+ + − − =  
(16)

which can be solved to obtain suz . 
Now, in our case, the current is a step function and Equations (11) and (13) can be 

written as 
2

0
, , 2

0

sin( , )
4 (1 cos )s r z

r

i v
E t

c r v
θζ

πε θ
= −

−
 (17)

[ ]

( )
0

, , 22
0

cos1( , )
4 1 cos

suz t
s

s v z
o s r s

dz iE t
c vr v

λ θζ
πε θ

 = − −  −  (18)

Similarly, the image channel also contributes to the field and the two corresponding 
field components are 
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2
0

, , 2
0

sin( , )
4 (1 cos )i r z

r

i v
E t

c r v
θζ

πε θ
= −

+
 (19)

[ ]

( )
0

, , 2
0 1

cos1( , )
4 1 cos

iuz t
i

i v z
o r i

dz iE t
c vr v

λ θζ
πε θ

 = − −  −  (20)

In the above equation, ( )iuz t  (the subscripts i and u stand for image and upper limit, 
respectively) is the length of the image channel that contributes to the electric field at point 
P at time t. This length can be obtained by solving the equation 

( ) / ( ) / /iu iuz t v r t c r c t+ − =  (21)

with 

2 2( ) ( ( ))iu iur t z t dζ= + +   (22)

Substitution of Equation (22) into Equation (21) results in the following quadratic 
equation that can be solved to obtain ( )iuz t , 

{ } { }2 2 2 2( ) 1/ 1/ ( ) 2 / 2( / ) /iu iuz t v c z t c t r c vζ− + − − +  { }2 2 2 2 2( / ) / / 0t r c c d cζ+ + − − =  (23)

Adding the contributions of the source and the image given by Equations (17) and 
(19), the vertical component of the total radiation field is then given by 

2
0

, 2 2 2
0

sin( , )
2 (1 cos )r z

r

i v
E t

c r v
θζ

πε θ
= −

−
 (24)

Similarly, the vertical component of the total velocity field is given by 

[ ]

( )
0

, 22
0

cos1( , )
4 1 cos

suz t
s

v z
o s r s

i dzE t
c vr v

λ θζ
πε θ

 = − −  −   

              
[ ]

( )
0

22
0

cos1
4 1 cos

iuz t
i

o i r i

i dz
c vr v

λ θ
πε θ

 − −  −  
(25)

Equations (24) and (25) define the vertical electric field generated by the return stroke 
at any given point in space. 

The horizontal electric field (directed away from the channel) at point P generated by 
the source can be obtained directly from Equation (10) and the result is  

, , 2
0

( / ) sin cos( , )
4 (1 cos )s r h

r

i t r c vE t
c r v

θ θζ
πε θ
−=

−  
(26)

The horizontal component of the velocity field generated by the current element dz  
located at a height z along the channel can be obtained from Equation (12) and it is given 
by 

, , ( , )s v hdE t ζ =   
[ ]22

(0, / / ) sin
4 1 cos

s

o s r s

i t z v r c dz
r v v

λ θ
πε θ

− −
−

 (27)

The horizontal component of the total velocity field generated by the source at point 
P is then given by 

[ ]

( )

, , 22
0

(0, / / ) sin( , )
4 1 cos

suZ t
s

s v h
o s r s

dz i t z v r cE t
r v v

λ θζ
πε θ

− −=
−  (28)

Similarly, the image channel also contributes to the horizontal field and the two 
corresponding field components are 
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0
, , 2

0

sin cos( , )
4 (1 cos )i r h

r

i v
E t

c r v
θ θζ

πε θ
=

+
 (29)

and 

[ ]

( )
0

, , 2
0

sin( , )
4 1 cos

iuZ t
i

i v h
o i r i

dz iE t
rv v

λ θζ
πε θ

= −
−  (30)

The horizontal component of the total radiation field is then given by 

0
, 2 2 2

0

sin cos( , )
2 (1 cos )r h

r

i vE t
c r v

θ θζ
πε θ

=
−

  (31)

and the horizontal component of the total velocity field is given by 

[ ]

( )
0

, 22
0

sin( , )
4 1 cos

suZ t
s

v h
o s r s

i dzE t
v r v

λ θζ
πε θ

=
−  

[ ]

( )
0

22
0

sin
4 1 cos

iuZ t
i

o i r i

i dz
v r v

λ θ
πε θ

−
−  (32)

These expressions for the vertical and horizontal electric fields are exact and they can 
be used to test the validity of Rusck’s expressions numerically. This is done in the next 
section. 

4. Comparison of Rusck’s Expression with the Exact Vertical Electric Field at any 
Given Point in Space 

In the analysis of the coupling of lightning electromagnetic fields (LEMP) to 
transmission and distribution lines, it is the first 10 microseconds or so that are of interest 
in the development of procedures to mitigate the effects of these voltages. This is the case 
because, in most of the cases, the peak of the lightning induced voltages and the peak 
derivative are reached within this time. For this reason, we will concentrate here mainly 
on those initial microseconds of the electric field.  

Figure 2 shows the vertical electric field at ground level calculated at different 
distances for a step current using the two formulations presented earlier, namely (i) 
Rusck’s original formulas (Equations (7) and (9)), and (ii) the derived expressions using 
the field components associated with moving and accelerating charges (Equations (24), 
(25)). In this calculation, the propagation speed of the current pulse is assumed to be 1.5 × 
108 m/s. Figure 3 depicts the vertical electric field obtained from the two formulations 
when the step function return stroke current is replaced by currents corresponding to 
those of first and subsequent return strokes. In the case of first return stroke, the speed of 
propagation was fixed at 1.0 × 108 m/s. The derivatives of the vertical electric field of a 
subsequent return stroke, obtained from the two formulations are shown in Figure 4 and 
the results pertinent to the horizontal electric field are shown in Figure 5 (the used 
expressions are (31) and (32)). According to these results, the error in the vertical electric 
field when using the Rusck model is less than about 10% and the error in the horizontal 
electric field is about 15%, indicating that the Rusck formulation can provide acceptable 
accuracy in calculating the peak voltages induced in power lines by lightning flashes. On 
the other hand, note that the error in the electric field time derivative calculated using the 
Rusck formulation is about 50%. These error levels in the field derivatives are reflected in 
the derivatives of the correcponding induced voltages calculated using the Rusck model. 
A higher accuracy can be achieved using the electromagnetic field equations presented in 
this paper.  
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Figure 2. Vertical electric field at the point of observation when the return stroke current is a step 
function. (i) d = 30 m, ζ = 20 m; (ii) d = 50 m, ζ = 10 m; (iii) d = 50 m, ζ = 20 m; (iv) d=100 m, ζ = 
10 m. The speed of propagation of the pulse is 1.5 × 108 m/s. Curve marked (a) in red represents the 
exact and (b) in black represents the Rusck approximation. 

In some studies, the electric fields corresponding to more realistic return stroke 
current waveforms are obtained by using the Duhammel’s theorem. Analytical 
representations for typical first return and subsequent return stroke currents can be found 
in [37]. Using these current waveforms together with the Duhammel’s integral, we 
obtained the electric field at different distances corresponding to first and subsequent 
return strokes. Two examples of the results obtained are shown in Figure 5. Again, 
observe that the errors resulting in the peak value of the electric field when using the 
Rusck formulation are less than about 10%.  
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Figure 3. (i) The vertical electric field generated by a first return stroke at the point d = 30 m, ζ = 10 
m. The speed of propagation of the return stroke is 1.0 × 108 m/s. (ii) The vertical electric field 
generated by a subsequent return stroke at the point d = 30 m, ζ = 20 m. The speed of propagation 
of the return stroke is 1.5 × 108 m/s. The curve marked (a) in red represents the exact and (b) in black 
represents the Rusck approximation. 

 
Figure 4. The derivative of the vertical electric field at the point of observation for a subsequent 
return stroke. (i) d = 50 m, ζ = 20 m; (ii) d = 100 m, ζ = 10 m. The speed of propagation of the pulse 
is 1.5 × 108 m/s. The curve marked (a) in red represents the exact and (b) in black represents the 
Rusck approximation. 

One advantage of the Rusck’s electric field expression is that it is anlytical and it does 
not involve the numerical solution of integrals similar to those in Equations (18) and (20). 
Fortunately, the integrals in these equations can be solved analytically for the case of a 
step current and this makes it possible to create an exact analytical expression for the 
electric field of that current waveform. This is done in the next section. 
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Figure 5. The horizontal electric field at the point of observation for a subsequent return stroke. (i) 
d = 50 m, ζ = 10 m; (ii) d = 100 m, ζ = 10 m. The speed of propagation of the pulse is 1.5 × 108 m/s. 
The curve marked (a) in red represents the exact and (b) in black represents the Rusck 
approximation. 

5. Exact Analytical Expression for the Electric Field of a Step Current Pulse at any 
Point in Space  

First, observe that it is only the velocity field which is given as an integral whereas 
the radiation field can easily be obtained from the analytical expresion given by Equations 
(24) and (31). In order to solve the integrals in the velocity field, let us rewrite them with 
angles sθ  and iθ  as variables of integration. This can be done easily using the 
relationships tan / ( )s d zθ ζ= −  and tan / ( )i d zθ ζ= − + . The resulting integrals are 

[ ]

( )
0

, 2
( / ) cos1
4 1 cos

su

sl

t
s s

v z
o r s

i H t r c dE
c vd v

θ

θ

λ θ θ
πε θ

−  = − −  −   

[ ]

( )
0

2
( / ) cos1
4 1 cos

iu

il

t
i i

o r i

i H t r c d
c vd v

θ

θ

λ θ θ
πε θ

−  − −  −  
(33)

In the above equation, ( )H t  represents the unit step function. Its properties are: 
( ) 0H t =  for 0t <  and ( ) 1H t =  for 0t ≥ . Note that the angles ( )su tθ  and ( )iu tθ  are 

time-dependent variables because their values change as the return stroke channel grows 
upwards (i.e., as ( )suz t  and ( )iuz t  increase). These integrals can be evaluated 
analytically and the total velocity electric field at times /t r c≥  can be written as (with 

0 0( / ) / 4k i H t r c dπε= − )  

, ( , )v zE t ζ =   

1 ( ) sin ( )11 2 1tan tan
2 1 1 cos ( )
su sur

r r su

t tvk
c v v v t

θ λ θ
θλ

−
  +  +    − −     

  

1 sin11 2 1tan tan
2 1 1 cos
sl slr

r r sl

vk
c v v v

θ λ θ
θλ

−
  +  − +    − −     

 

1 ( ) sin ( )11 2 1tan tan
2 1 1 cos ( )
iu iur

r r iu

t tvk
c v v v t

θ λ θ
θλ

−
  +  +    − −     

  

1 sin11 2 1tan tan
2 1 1 cos
il ilr

r r il

vk
c v v v

θ λ θ
θλ

−
  +  − +    − −     

 

(34)
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Observe that in the above equations, slθ =θ  (the subscript l stands for the lower 
limit) and ( )ilθ π θ= − . The angles ( )su tθ  and ( )iu tθ  are given by 

{ }( )1( ) cos ( ) / ( )su su sut Z t r tθ ζ−= −  (35)

{ }( )1( ) cos ( ) / ( )iu iu iut Z t r tθ ζ−= − +  (36)

The lengths ( )suz t  and ( )iuz t  are given by 

2
0 0

0

4
( )

2
s s

su

B B AC
z t

A
− ± −

=  (37)

2
0 0

0

4
( )

2
i i

iu

B B AC
z t

A
− ± −

=  (38)

where  
2 2

0 (1 / 1 / )A v c= −  (39)
22 / 2( / ) /sB c t r c vζ= − +  (40)
22 / 2( / ) /iB c t r c vζ= − − +  (41)
2 2 2 2 2

0 ( / ) / /C t R c c d cζ= + − −  (42)

With these parameters ( ( )sur t  and ( )iur t  are defined in Equations (14) and (21)), the 
total vertical electric field at any point in space can be obtained by adding the contribution 
of the radiation field to the expression given by Equation (34). With this, the total vertical 
electric field is given by 

2
0

, 2 2 2
0

( / ) sin( , ) ( , )
2 (1 cos )z v z

r

i H t r c vE t E t
c r v

θζ ζ
πε θ

−
= −

−
  (43)

Equation (43) expresses the vertical electric field at any point in space. It is important 
to point out that the above analytical expression is valid for any point in space for v c< . 

In a similar manner, we can derive an analytical expression for the horizontal electric 
field. Again, note that it is only the velocity field which is given as an integral whereas the 
radiation field can easily be obtained from the analytical expresion given by Equation (10). 
In order to solve the integrals in the horizontal velcocity field, let us again rewite them 
with angles sθ and iθ  as variables of integration. This can be done easily using the 
relationships tan / ( )s d zθ ζ= −  and tan / ( )i d zθ ζ= − + . The resulting integrals are 

[ ]

( )
0

, 2

( / ) sin
4 1 cos

su

sl

t
s s

v h
o r s

i H t r c dE
v d v

θ

θ

λ θ θ
πε θ

−
=

−  
[ ]

( )
0

2

( / ) sin
4 1 cos

iu

il

t
i i

o r i

i H t r c d
v d v

θ

θ

λ θ θ
πε θ

−
−

−  (44)

These integrals can be solved analytically and the resulting expression for the  
velocity horizontal electric field is 

, ( , )v hE t ζ =  
1 1

1 cos 1 cosr r sl r su

k
vv v vθ θ

 
− − − 

   

        
1 1

1 cos 1 cosr r il r iu

k
vv v vθ θ

 
− − − − 

  

(45)

The total horizontal electric field at any point in space can be calculated by adding 
the contribution of the radiation field to the above equation. That is  
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0
, 2 2 2

0

( / ) sin cos( , ) ( , )
2 (1 cos )h v h

r

i H t r c v
E t E t

c r v
θ θζ ζ

πε θ
−

= +
−

  (46)

Equation (46) provides an exact analytical exporession for the horizontal electric field 
at any point in space.  

Electric Field at Ground Level 

When the point of observation is at ground level (i.e., r d= ), /2θ π=  and 
/ 2sl ilθ θ π= = . Moreover, ( ) ( )su iuz t z t=  and ( ) ( )su iut tθ θ= . Denoting the latter two 

distances and angles by ( )uz t  and ( )u tθ , the velocity electric field at ground level can be 
expressed as 

, ( ,0)v zE t =   1sin ( ) ( ) 11 1 22 tan tan
1 cos ( ) 2 1

u u r

r u r

t t vk
v v t c v

λ θ θ
θ λ

−
  +  +   − −     

 

1 11 22 tan
1

r

r

vk
v c v
λ

λ
−

  + − +  −    
  

(47)

In the above equation, the cosine of the angle ( )u tθ  is given by 

1 2 2( ) cos ( ( ) / ( ) )u u ut z t z t dθ −= − +  (48)

with 

2
0 0 0 0

0

4
( )

2u

B B AC
z t

A
− ± −

=  (49)

where  
2 2

0 (1 / 1 / )A v c= −  (50)

0 2( / ) /B t r c v= − +  (51)
2 2 2

0 ( / ) /C t R c d c= + −  (52)

With these parameters, Equation (45) gives the exact expression of the vertical 
velocity electric field at a distance dat ground level. The total vertical electric field is given 
by 

0
, 2

0

( / )( ,0) ( ,0)
2z v z

i H t r c v
E t E t

c dπε
−

= −   (53)

Obviously, the horizontal electric field goes to zero when the point of observation is 
at ground level. 

6. Exact Analytical Expression for the Electric Field of an Impulse Current Pulse at any 
Point in Space  

In the analysis of induced voltages by lightning using the Rusck’s coupling 
equations, the electric field of the step current is converted to the electric field pertinent to 
a typical return stroke current by using Duhammel’s theorem. In such analysis, it is 
convenient to have the electric field response for a delta impulse current instead of a step 
current. Knowing the impulse current response, the field due to any other current can be 
obtained using the convolution integral.  

Now, the expressions given by Equations (11) and (13) describe the vertical electric 
field at any point in space generated by the source current. When the current in the return 
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stroke channel is an impulse, the electric field generated by the source current can be 
written as 

2

, , 2
0

( / ) sin( , )
4 (1 cos )s r z

r

t r c vE t
c r v

δ θζ
πε θ

−= −
−

 (54)

[ ]

( )

, , 22
0

( / / ) cos1( , )
4 1 cos

suz t
s s

s v z
o s r s

dz t z v r cE t
c vr v

δ λ θζ
πε θ

− −  = − −  −  (55)

In the above equations, ( )tδ  represents the Dirac impulse function. Observing that 
( )suz t  is the solution of the equation / / 0st z v r c− − = , the integral in the above equation 

can be solved directly and the result is 

[ ], , 22

cos ( )( / ) 1( , )
4 ( ) 1 cos ( )

su
s v z

o su r su

tH t r cE t
c vr t v t

θλζ
πε θ

−  = − −  −
 

(56)

Similarly, the velocity field produced by the image channel is given by 

[ ], , 22

cos ( )( / ) 1( , )
4 ( ) 1 cos ( )

iu
i v z

o iu r iu

tH t r cE t
c vr t v t

θλζ
πε θ

−  = − −  −
 

(57)

Thus, the total electric field at the point of observation at times /t r c≥  is given by  
2

2 2 2
0

( / ) sin( , )
2 (1 cos )z

r

t r v vE t
c r v

δ θζ
πε θ

−= −
−

 

       
[ ]22

cos ( )( / ) 1
4 ( ) 1 cos ( )

su

o su r su

tH t r c
c vr t v t

θλ
πε θ

−  − −  −
 

       
[ ]22

cos ( )( / ) 1
4 ( ) 1 cos ( )

iu

o iu r iu

tH t r c
c vr t v t

θλ
πε θ

−  − −  −
  

(58)

All the variable parameters in this equation were defined in the previous section. 
Equation (58) gives the vertical electric field at any point in space when the return stroke 
current is a delta impulse. The electric field corresponding to any other current waveform 
can be obtained from this using the convolution integral. In a similar manner, one can 
obtain the horizontal electric field at any given point in space and the resulting 
expresssion is given by 

[ ]2 2 2 22
0

( / )sin ( )( / ) sin cos( , )
2 (1 cos ) 4 ( ) 1 cos ( )

su
h

r o su r su

H t r c tt r v vE t
c r v r t v v t

λ θδ θ θζ
πε θ πε θ

−−= +
− −

  

      
[ ]22

( / )sin ( )
4 ( ) 1 cos ( )

iu

o iu r iu

H t r c t
r t v v t

λ θ
πε θ

−
−

−
  

(59)

If the point of observation is at ground level, the horizontal electric field goes to zero 
and the vertical electric field reduces to (with the notation ( ) ( ) ( )su iu ut t tθ θ θ= =  and 
( ) ( ) ( )su iu ur t r t r t= = ) 

2
0

( / )( , 0)
2z
t d c vE t

c d
δ

πε
−= −  

       
[ ]22

cos ( )( / ) 1
2 ( ) 1 cos ( )

u

o u r u

tH t d c
c vr t v t

θλ
πε θ

−  − −  −
  

(60)

All the parameters in Equation (60) were defined in the previous section. 
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7. Discussion  
The analytical expressions given in the previous sections are exact and valid for any 

point in space except along the vertical axis where the lightning channel is located (i.e., θ 
= 0). Moreover, it is important to point out that when the speed of propagation of the pulse 
is equal to the speed of light, the total electric field reduces to the radiation field. However, 
one cannot make v c=  in Equation (34) because the analytical expression for the 
integral is obtained for the case where v c≠ . Of course, this will not reduce the generality 
of the expression because the field expression for the velocity fields goes to zero when 
v c=  and there is no need to perform the integration in the first place. Observe also that 
the use of the charge acceleration and moving technique in this paper simplified the 
analysis to a great extent because, had we used the dipole equations, it would have been 
necessary to perform integration with field terms also varying as the current derivative 
and current integral terms.  

It is important to point out that in the analysis we have used the electromagnetic field 
formulation based on accelerating charges instead of the more convensional dipole 
approximation. This choice made it possible to derive the final field expressions in a closed 
and compact form. However, both the charge acceleration equations and the dipole 
approximations give rise to identical results for the total electromagnetic fields at any 
given point in space. This was demonstrated analytically in reference [38].  

8. Conclusions 
In the Rusck’s field-to-transmission line coupling model, the electric field used in the 

coupling equations is obtained from an expression derived by Rusck [5] for the electric 
field of a step current propagating up along a vertical channel with constant velocity. Our 
results indicate that Rusck’s field equation is not exact. As a consequence, the induced 
over-voltages suffer from inaccuracies which are of the order of 10% for the peak over-
voltages and as high as 50% for voltage derivatives. 

Based on the results obtained in this paper, one can conclude that the Rusck formu-
lation is a suitable approximation if the interest is to evaluate the peak values of induced 
over-voltages in power lines. However, if the interest is to study the rate of change of the 
over-voltages, the exact formulation presented here is recommended. 
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