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Abstract: In the thermal spectral range, there are millions of individual absorption lines of water
vapor, CO2, and other trace gases. Radiative transfer calculations of wavelength-integrated quanti-
ties, such as irradiance and heating rate, are computationally expensive, requiring a high spectral
resolution for accurate numerical weather prediction and climate modeling. This paper introduces a
method that could highly reduce the cost of integration in the thermal spectrum by employing an
optimized wavelength sampling method. Absorption optical thicknesses for various trace gases were
calculated from the HITRAN 2012 spectroscopic dataset using the ARTS line-by-line model as input
to a fast Schwarzschild radiative transfer model. Using a simulated annealing algorithm, different
optimized sets of wavelengths and corresponding weights were identified, which allowed for accu-
rate integrated quantities to be computed as a weighted sum, reducing the computational time by
several orders of magnitude. For each set of wavelengths, a lookup table, including the corresponding
weights and absorption cross-sections, is created and can be applied to any atmospheric setups for
which it was trained. We applied the lookup table to calculate irradiances and heating rates for a large
set of atmospheric profiles from the ECMWF 91-level short-range forecast. Ten wavelength nodes
are sufficient to obtain irradiances within an average root mean square error (RMSE) of upward and
downward radiation at any height below 1 Wm−2, while 100 wavelengths allowed for an RSME of
below 0.05 Wm−2. The applicability of this method was confirmed for irradiances and heating rates
in clear conditions and for an exemplary cloud at 3.2 km height. Representative spectral gridpoints for
integrated quantities in the thermal spectrum (REPINT) is available as absorption parameterization
in the libRadtran radiative transfer package, where it can be used as an efficient molecular absorption
parameterization for a variety of radiative transfer solvers.

Keywords: simulated annealing; radiative transfer; numerical weather prediction; thermal infrared;
gas absorption; earth’s atmosphere; heating rates

1. Introduction

Quantities such as irradiance and heating rates have complex spectral line structures,
which vary widely from one atmospheric scenario to another. The complexity of spectral
irradiance is demonstrated in Figure 1. The values of spectrally integrated irradiances and
heating rates depend on the vertical prevalence and distribution of different trace gases
in the atmosphere. Water vapor plays an important role, but variations in other trace gas
concentrations, as well as clouds, have a large impact on their integrated value. Figure 2
shows simulated irradiances at the top of the atmosphere, without gas absorption, and
irradiances including absorption by only one of the trace gases H2O, CO2, and O3 at a time.
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Figure 1. Spectral upward irradiance at the ground and at the top of the atmosphere, considering
emission and absorption for an exemplary atmosphere in the dataset of [1].
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Figure 2. Spectral upward irradiance at the ground and at the top of the atmosphere, considering the
emission and absorption of different trace gases separately for the atmosphere from Figure 1.

To model the irradiances throughout the atmosphere, one needs to represent the
complex structure of the spectral absorption. A straightforward approach to calculating



Atmosphere 2023, 14, 332 3 of 14

spectrally integrated irradiances would be to choose a fine spectral resolution with a high
number of sampling nodes. This has the disadvantage that about 100,000 nodes are required
for a precise calculation of the thermal spectrum, which is computationally expensive. To
minimize computational time, smarter methods have to be applied.

One such method [2] is the correlated-k approximation approach. Instead of inte-
grating radiative quantities over wavelength nodes, this method introduces a distribution
function of absorption cross-sections, which defines a corresponding probability for their
occurrence. This distribution is a more tractable, continuous function, in contrast to a
spectrum. To calculate the irradiance, an integral over the smoother distribution of the
absorption cross-section space is performed. This approach is also recurring in a recent
paper by [3], where user-specified bands are partitioned into subbands, and the correlated-k
approximation is applied. Several groups are working on such parameterizations at present,
employing low amounts of wavelength bands to reduce computational cost.

The methods introduced by [4,5] for shortwave resp. longwave radiative transfer
avoid monochromatic calculations by considering equivalent grey systems instead. The
thermal spectrum is then separated into spectral bands, which are each parameterized via
the Malkmus band-model.

A different approach is proposed by [6,7], who introduced methods using a weighted
mean with representative wavelengths. These methods seek to identify wavelength sam-
pling nodes, for which the monochromatic atmospheric quantities determine the optimal
corresponding integrated quantities for different atmospheric scenarios using a weighted
mean. Both approaches include a training set, on which well-performing wavelength nodes
are identified and subsequently verified by a different testing set. In [6], the targets of the
method were radiances for satellite channels, while in [7], the radiances and irradiances for
spectral bands of different widths, as well as satellite channels, were targeted.

This work uses a similar approach, but instead of targets, the integrated thermal
spectrum is used for optimization. The introduced method allows for the calculation of
integrated irradiances and heating rates for any atmospheric scenario while reducing the
computational time by several orders of magnitude compared to line-by-line calculations.
An optimal set of sampling nodes, as well as corresponding weights, are determined to
replace the integration over wavelengths by a weighted sum. The method involves the
following steps: first, from a training set of atmospheres [1], the corresponding altitude-
dependent absorption optical thicknesses are calculated. These are obtained through the
atmospheric radiative transfer simulator (ARTS) line-by-line model by [8] using the high-
resolution transmission molecular absorption database (HITRAN) 2012 line catalogue [9] as
input. We applied the lookup-table method described by [10], which allows for us to obtain
absorption cross-sections for arbitrary temperatures and pressures by interpolation from a
lookup-table. Additional interpolation in teh water-vapor mixing ratio is necessary due to
the self-interaction between water-vapor molecules. The next step involved the calculation
of spectral irradiances using the previously calulated optical thicknesses by solving the
radiative transfer equation, neglecting scattering (Schwarzschild approximation) in the
thermal spectral range. This approximation can used to find representative wavelengths,
since scattering properties are a comparatively smooth wavelength function. Please note
that this simplified solver is only used to determine an optimized set of wavelengths, which
can then be applied, together with any radiative transfer solver of arbitrary complexity.
The simplification is only required to keep the computational cost of the optimization
process reasonably low. For each atmosphere layer in the training dataset, upward and
downward high-spectral-resolution (HSR) irradiances, as well as their integral over the
full thermal spectral range, were calculated. Using the simulated annealing algorithm, as
described in [6], a set of wavelength nodes and corresponding weights were determined,
so that the weighted sum of the monochromatic irradiances could optimally approximate
the integrated irradiances in the training dataset.

The determined set of wavelength nodes and weights was then applied to a different
testing dataset for verification. For this purpose, subsets of the 5000 atmospheres in the
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dataset by [11] were employed. This dataset covers the complete spatial and seasonal
variability in atmospheric profiles sampled to verify radiation models. We tested the
applicability of the method for clear and cloudy atmospheres, as well as for different
radiative transfer solvers.

2. Thermal Radiative Transfer Model

Since the scattering properties are smooth (compared to molecular absorption) wave-
length functions, these suffice to model the radiative transfer without scattering in a
plane-parallel setting for the optimization process. To simulate the irradiances and heating
rates under different atmospheric scenarios, the Schwarzschild equation was solved

µdL(λ) = −L(λ)dτ + B(λ, T)dτ (1)

with the cosine of propagation zenith angle µ, wavelength λ, radiance L(λ), optical thick-
ness τ and the Planck-function B(λ, T).

Spectral upward and downward irradiance Eup
i+1, Edn

i+1 on each level was recursively
calculated via

Eup/dn
i+1 (λ) = Eup/dn

i (λ)e
− τi(λ)

µ + πB(λ, Ti)(1 − e
− τi(λ)

µ ) (2)

where the index i represents the level index for irradiance Ei and the layer index for the
absorption optical thickness τi. Upward irradiance at the surface, as well as downward
irradiance at the top of atmosphere, are set to

Eup
0 = πB(λ, Tsurf) (3)

Edn
N = 0 (4)

where Tsurf denotes the surface temperature and N the uppermost level of the atmospheric
profile. Equation (2) is an approximate solution of the Schwarzschild Equation (1). To
reduce computational cost, we considered only one propagation direction (µ = 0.5) and
used this as an approximation of the irradiance.

The heating rate H is defined as the temperature tendency dT
dt , usually calculated

from the divergence in the net flux. For the Schwarzschild model introduced above, this
amounts to

H =
g
cp

Ei+1
up − Ei+1

dn − Ei
up + Ei

dn

pi − pi+1
. (5)

where p denotes the pressure, g = 9.81 ms−2 the standard acceleration of gravity and
cp = 1004.67 Jkg−1K−1 for the heat capacity of air.

Training and testing datasets contain vertical atmospheric profiles of the volume
mixing ratio (VMR) of trace gases, pressures as well as temperatures. The VMR of a gas
is defined as the volume fraction of the trace gas. Optical thicknesses were calculated
from the pressure, temperature and given VMRs ξij on each layer for each trace gas in the
following way

τi(λ) = ni ∑
j

ξijσij(λ, p̄i, T̄i). (6)

The σij are the absorption cross-sections of the considered trace gases, and ni is the
number density of the air in layer i. For layer properties such as temperature, water vapor
concentration and pressure, the average values on the adjacent levels were determined.

The number density ni of layer i is determined using the hydrostatic equation:

ni = (pi − pi+1)
NA

gMd
, (7)

NA being the Avogadro constant and Md = 0.0289 kg mol−1 the molar mass of dry air.
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Absorption cross-sections vary the most strongly with respect to wavelength, due
to the discrete nature of the energy transitions allowed in the molecules contained in
the atmosphere. For this reason, interpolation is not performed in the wavelength and
absorption cross-sections are stored on a grid with 100,000 wavelength nodes.

The shape of the absorption lines also has a significant dependency on pressure and
temperature due to Doppler- and pressure-broadening. In addition to the spectral lines, the
continuum needs to be considered, which is a non-linear function of the VMR in case of the
self-continuum. The absorption cross-section of water vapor, therefore, is dependent on its
own VMR

σi,H2O = σi,H2O(λ, p̄i, T̄i, ξ̄i,H2O). (8)

For the absorption line parameters, data from the HITRAN2012 molecular spectro-
scopic database were chosen [9], while MT_CKD (Mlawer-Tobin-Clough-Kneizys-Davies)
version 1.0 was used as water vapor continuum model [12], which is consistent with
HITRAN2012. With the atmospheric radiative transfer simulator ARTS [13], absorption
cross-sections were calculated for 100,000 wavelengths between 4 µm and 200 µm on a set
of different pressure, temperature and VMR values of H2O (called perturbations in ARTS)
to encompass all atmospheric variations in the datasets of [1,11].

The parameters used in ARTS are specified in Table 1. The calculation of optical
thicknesses from the lookup table was implemented on the basis of the method described
in [10].

Table 1. Parameters used for the generation of a lookup table using ARTS. The non-linear species
(NLS) perturbations enable a calculation of the absorption of cross-sections of H2O depending on
their own concentration. Each perturbation corresponds to the factor by which the water vapor
concentration of the reference atmosphere is altered.

Parameter Amount Scope

T Perturbation 9 (−120, 120) °C
NLS Perturbation 5 (0, 10)

Pressure grid 41 (110,000, 0.0006892) Pa
Gas species 9 H2O, CO2, O3, N2O, CO,

CH4, O2, HNO3, N2

As the absorption cross-sections vary with temperature, pressure, and in case of H2O
with its own VMR, an interpolation method was developed, which optimally considers
these dependencies. For a general trace gas, the method first identifies the position of the
desired absorption cross-section σij( p̄i, T̄i) in the grid of the stored absorption cross-sections,
producing the following four values:

σ(plow, Tlow) σ(pup, Tlow)
σ(plow, Tup) σ(pup, Tup)

(9)

Next, a bilinear interpolation of the absorption of cross-sections in terms of pressure
and temperature is conducted, via a polynomial of the form

P(∆p, ∆T) = a∆p∆T + b∆p + c∆T + d (10)

with
∆p = p̄i − plow, ∆T = T̄i − Tlow . (11)

The polynomial parameters are determined via the four adjacent datapoints on the
corners of its domain.
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In the special case of water vapor, considering its dependence on its own VMR, the
position of the desired absorption cross-section σij( p̄i, T̄i, ξ̄i,H2O) in the grid of the stored
absorption cross-sections produces eight values:

σ(plow, Tlow, ξlow,H2O) σ(pup, Tlow, ξlow,H2O)
σ(plow, Tlow, ξup,H2O) σ(pup, Tlow, ξup,H2O)
σ(plow, Tup, ξlow,H2O) σ(pup, Tup, ξlow,H2O)
σ(plow, Tup, ξup,H2O) σ(pup, Tup, ξup,H2O).

(12)

In this case, the interpolation via the polynomial in Equation (10) was first conducted
in ξH2O and temperature for plow and pup each. Both values were then linearly interpolated
with respect to the pressure p̄.

The accuracy of the interpolation method was tested by comparison with line-by-line
(LBL) calculations of optical thicknesses with ARTS in the U.S. Standard Atmosphere [14].
Upward and downward irradiance on each level were simulated using the optical thick-
nesses derived from the lookup table by interpolation, and optical thicknesses calculated
line-by-line using ARTS. The absolute RMSE between the two simulations was 0.87 Wm−2.
This discrepancy, however, did not affect the optimization process, since both the to be
approximated values and the approximations use the same interpolation.

To include clouds in the simulations, the following simplified approach was imple-
mented: for one layer of the atmospheric profile the absorption’s optical thickness uniformly
increased by τi = 5 throughout the entire spectrum, a reasonable assumption since the
cloud optical thickness only weakly depended on its wavelength.

3. Simulated Annealing Method

This section describes the chosen approach for finding optimal wavelength nodes
using simulated annealing. This includes a closer description of the training set that was
used dataset, as well as the implementation of the simulated annealing algorithm.

3.1. Training Dataset

For a training set, the 42 atmospheres from [1] were selected to cover a wide variety of
atmospheres with respect to water vapor, ozone concentration and temperature. These were
specified for 43 layers, providing information about each layer’s pressure, temperature and
height, and the volume mixing ratio (VMR) of the trace gases H2O, O3, CO2, N2O, CO, and
CH4. For applications to different climatic scenarios, these atmospheres were additionally
modified in their concentrations of CO2 and CH4. For the data considered in this case,
each atmosphere in the Garand set of atmospheres was considered for 0, 1 and 5 times the
original concentration in CO2 and CH4. Hence, 378 atmospheric scenarios were defined as
a training set, with a total of 32,508 integrated values for upward and downward irradiance
at the respective atmospheric layer interfaces, as well as the corresponding spectral values
for 100,000 wavelengths each.

3.2. Simulated Annealing Algorithm

For a dataset of 100,000 points, the number of possible combinations for even only
10 nodes exceeds the number of possible positions in a chess game and cannot be solved by
brute force with a computer. We used the simulated annealing method [6] to determine
the optimal choice of sampling nodes over short calculation times. Using this method
for a fixed number of nodes (λi)1≤i≤n, their positions in the wavelength grid can be
repeatedly changed at random and evaluated at each step to determine their eligibility for
the representative wavelength method.

The first position of the sampling nodes is chosen at random. For each annealing
iteration, the wavelength position of one of the sampling nodes is randomly chosen. A
linear regression is then performed with respect to the exactly integral calculations and the
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spectral values for the irradiances of all atmospheric scenarios in the training dataset. This
produces spectral weights wj, which provide the best approximation of the exact integrals

∫
dλEi(λ) ≈

N

∑
j=0

wjEi(λj) . (13)

The resulting RSME is then compared to the RSME computed in the previous iteration.
If it is lower, the new constellation of wavelengths is chosen. To reduce the chance of being
trapped in a local minimum, a probability is still provided to be chosen if it is higher. This
probability depends on the “annealing temperature”

S = Sstart −
n

ntot
(Sstart − Send) (14)

where n is the current annealing iteration and ntot the total number of iterations. The
annealing temperature decreases with “cooling” compared to the chosen start anneal-
ing temperature.

A commonly used probability function [6] for a new RSME εnew > εold to be adopted is

P(λi) = e−
1
S (εnew−εold). (15)

We tested various functions and found that the following function provides the best
results at the end of the annealing process:

P(λi) = e
− 1

S
εnew
εold . (16)

In Table 2, the general parameters used to create reduced lookup tables by simulated
annealing are shown. The annealing start and end parameters determine how much
fluctuation is allowed during the annealing process. A low annealing start would prevent
the algorithm from trying further sampling node constellations, while a high annealing
end does not give the algorithm the incentive to optimize error. The number of annealing
datapoints is also an important tool to gauge precision compared to computational time.
If the indicated amount falls short of the amount of irradiance calculated for the training
dataset, a random subset of datapoints from the amount of the annealing datapoint number
is chosen. By taking a subset of the atmospheric data in the training set, it is assumed that a
set of sampling nodes that perform well on a random subset of the training set will also
perform sufficiently well on the whole training set.

Table 2. Parameters used to create reduced lookup tables with simulated annealing.

Annealing Parameters Values

Total annealing iterations ntot 10,000
Sstart 0.5
Send 1 × 10−7

Annealing datapoints 15,000
Sampling nodes 10, 30, 50, 100

3.3. Absorption Parameterization for the Thermal Spectral Region

From the chosen sampling nodes, a reduced lookup table is created, containing all the
necessary information from the original lookup table to calculate spectral optical thick-
nesses and irradiances. In this case, however, this is exclusively for the wavelengths that
correspond to the chosen sampling nodes. This implies that, instead of a large dataset
containing absorption cross-sections for 100,000 wavelengths, only a fraction of this in-
formation is stored. This reduces the calculation times of atmospheric quantities such as
irradiance by several orders of magnitude.
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Aside from the datapoints used in the interpolation process, the weights wj (see
(Equation 13)) calculated by linear regression are contained in this table.

4. Performance of the Parameterization

This section examines how the annealing algorithm performs for different parameters
and discusses the characteristics of the chosen sampling nodes. The amount of sampling
nodes, as well as the amount of annealing iterations, contribute to a more accurate result.

In Figure 3, the performance of a reduced lookup table with 10 and 100 wavelength
sampling nodes is displayed for different numbers of annealing iterations. For each data-
point, the average and standard deviation of thirty simulated annealing runs on a set of
6000 irradiance values are shown. It becomes clear that, for a given number of sampling
nodes, the minimum error converges to a lower bound, which cannot be improved by
the addition of more annealing iterations. The limit reached at the right end of the plot
indicates the maximum possible accuracy for a given number of sampling nodes.

101 102 103 104

Number of annealing iterations

10 1

100

101

Ab
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te
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E 
(W

m
2 )

nwvl = 10
nwvl = 100

Figure 3. Performance of the simulated annealing algorithm on a set of 6000 irradiance datapoints of
Eup/Eup for different profiles at different heights. The average RSME of 30 runs for each number of
annealing iterations is depicted on the graph for 10 resp. 100 sampling nodes.

As noted in [6], the values for annealing start temperature and end temperature, as
well as the amount of annealing iterations, had to be chosen to avoid wasting computational
time or depriving the algorithm of the chance to try new, potentially better wavelengths.

In Figure 3, the annealing result is shown to continually improve with the number of
annealing iterations. It can be observed that there is significant potential for improving the
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result, particularly for low iteration numbers. This progress is, however, slowing down so
that further calculations would not improve the result and waste calculation time. For the
purpose of these calculations, a total iteration number of ntot = 10,000 was determined to
be sufficient.

In Figure 4, the wavelengths and corresponding weights for four different annealing
runs with different numbers of sampling nodes are displayed. Some information about the
position and weights are summarized in Table 3. At least three conclusions can be drawn:

1. The linear regression method produces few negative weights. These did not produce
any unphysical results during testing.

2. Sampling nodes concentrate on the part of the spectrum in which most of the absorp-
tion of different trace gases takes place. This can be seen by comparing to the impact
of trace gas absorption (CO2, H2O and O3) in Figure 2.

3. Comparatively large weights at longer wavelengths, where little absorption takes
place, account for the bulk of the integrated value, while sampling nodes at shorter
wavelengths with high absorption determine the fine-tuned values with respect to
specific atmospheric scenarios.
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Figure 4. Positions of sampling nodes and chosen weights from reduced lookup tables for 10 (a),
30 (b), 50 (c) and 100 (d) sampling nodes.
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Table 3. Fraction of sampling nodes in weight and wavelength ranges.

nwvl 4 µm < λ < 20 µm 4 µm < λ < 40 µm |w| < 1000 |w| < 5000 w < 0

10 0.70 1.00 0.20 0.70 0.00
30 0.73 0.87 0.63 0.90 0.00
50 0.80 0.90 0.70 0.88 0.04

100 0.82 0.92 0.77 0.94 0.06

4.1. Test Dataset

To test the method, we used a database of [11] containing 5000 profiles with 91 levels.
These profiles were sampled from an even larger database containing 121,462,560 pro-
files from cycle 30R2 of the the European Centre for Medium-Range Weather Forecasts
(ECMWF) forecasting system. The dataset provides an exhausting variation in atmospheric
temperature and specific humidity. The database scenarios include clear and cloudy cases.

4.2. Accuracy of Irradiances

Figure 5 shows the absolute RSME of irradiances calculated by a weighted sum
over representative wavelengths with respect to the accurate irradiances calculated by
integration in the high-resolution spectrum. The blue dots correspond to lookup-tables
including 10 representative wavelengths, the orange dots to 30 representative wavelengths,
the green dots to 50, and the red dots to 100 representative wavelengths. For each reduced
lookup table, the same randomly selected set of 500 atmospheres from the test dataset
was used. As the figure shows, the training set of atmospheres by [1] is sufficient for the
creation of reduced lookup tables, which perform equally well for all different atmospheric
scenarios from [11].

0 1000 2000 3000 4000 5000
Index (1)

10 1

100

Ab
so

lu
te

 R
SM

E 
(W

m
2 )

nwvl = 10
nwvl = 30
nwvl = 50
nwvl = 100

Figure 5. Absolute RSME of irradiance, as determined by weighted sum and high spectral resolution
calculations, for 500 randomly chosen atmospheres in the dataset of [11].
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The average errors and standard deviations of the 500 profiles in Figure 5 are shown in
Table 4. As expected, a higher amount of sampling nodes improves the accuracy; however,
the computational time linearly depends on the number of sampling nodes.

Table 4. Average µ and standard deviation σ of the absolute RSME of radiative upward and down-
ward irradiance Eup, Edn for 500 atmospheric dataset profiles by [11], for four different reduced lookup
tables. Each calculation was made for the original atmosphere, as well as the same atmosphere with
an added cloud. The unit for values in the table is [Wm−2].

Clear Cloudy

nwvl µ σ µ σ

10 0.874 0.163 0.723 0.165
30 0.256 0.067 0.236 0.054
50 0.118 0.027 0.207 0.079

100 0.046 0.012 0.060 0.020

4.3. Accuracy of Heating Rates

In Table 5, the absolute RSME of heating rates, as determined via high spectral res-
olution simulations and weighted sum for the U.S. Standard Atmosphere, are shown for
nwvl = 10, 30, 50 and 100. Low irradiance errors still result in low errors in the correspond-
ing heating rates. Increasing the number of sampling nodes improves the accuracy of the
heating rate calculations. In Figure 6, the heating rates for the U.S. Standard Atmosphere,
calculated with 10, 30 and 50 sampling nodes and HSR-simulations, are depicted. The figure
illustrates the improvement in accuracy with an increased number of sampling nodes.

2.00 1.75 1.50 1.25 1.00 0.75 0.50 0.25
Radiative heating rate (Kd 1) 

0

200

400

600

800

1000

Pr
es

su
re

 (h
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)

HSR
nwvl = 10
nwvl = 30
nwvl = 50

Figure 6. Heating rates of the U.S. Standard Atmosphere, calculated using different numbers of
sampling nodes.
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Table 5. Absolute RSME ε and maximum error εmax for heating rates of the U.S. Standard Atmosphere
calculated with different numbers of sampling nodes. The unit for the values in the table is [Kd−1].

nwvl ε εmax

10 0.1817 0.3555
30 0.0323 0.0806
50 0.0178 0.0491

100 0.0049 0.0128

4.4. Cloudy Atmospheres

An important question posed in [6] is whether this method can be applied to atmo-
spheric scenarios involving clouds.

We modeled such a cloud by uniformly adding a value of τ = 5 to the spectral optical
thickness at its intended height in the atmosphere. In Figure 7, the heating rates calculated
with 10, 30 and 50 sampling nodes and HSR-simulations are depicted to add such a cloud at
the 10th layer in U.S. Standard Atmosphere. This corresponds to a cloud between 500 hPa
and 550 hPa.

We included this cloud layer in the 500 atmospheric profiles, whose irradiances were
determined in Section 4.2. In Table 4, the resulting RSMEs for the same 500 atmospheres
from [11] are shown to have an extra cloud. For each of those, a cloud was added to the
22nd layer (3.1 to 3.4 km) by again adding τ = 5 to the spectral optical thickness.

Comparing these errors with the errors in the original atmospheres without a cloud in
Table 4, the reduced lookup tables performed similarly, and slightly better for 10 sampling
nodes. Since the errors were stable under the addition of a cloud, the validity of the reduced
lookup tables for cloudy atmospheres is confirmed.
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800

1000
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Figure 7. Heating rates of the U.S. Standard Atmosphere with a cloud calculated using different
numbers of sampling nodes.
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5. Conclusions

In this work, we used the simulated annealing algorithm to determine a small set of
representative wavelengths to calculate integrated thermal irradiances and heating rates.
Using a weighted sum approach, the computational cost of integral calculation could be
decreased by several orders of magnitude. A cost-efficient lookup table approach was
adopted to calculate the optical absorption thicknesses. Using a simple Schwarzschild
radiative transfer model, we calculated irradiances at a high spectral resolution for various
atmospheric scenarions, which could be used as training data for the simulated annealing
algorithm. As the next step, for different numbers of sampling nodes, optimized lookup ta-
bles were produced, including representative wavelengths and corresponding weights. The
integrated irradiance can be calculated from this table using a weighted sum of irradiances,
which were calculated at the representative wavelengths. Through their application on a
large test dataset, we found that ten representative wavelengths are sufficient to achieve
an average RSME for irradiances below 1 Wm−2. With 100 wavelength nodes, an average
RSME below 0.05 Wm−2 can be achieved. The method was verified for a large variety
of atmospheric profiles taken from the ECMWF model. This performed equally well for
atmospheres with or without clouds.

Throughout this work, one specific training dataset was used, which used typical
atmospheric profiles from a numerical weather prediction (NWP) model. Alternatively,
for radiative transfer in climate models, the training data could be extended by including
higher variability in greenhouse gases to derive more precise lookup tables for these
scenarios. This method could also be used to train specifically for heating rates, in order to
achieve a higher accuracy in that area. The REPINT parameterization is available in the
libRadtran radiative transfer package [15,16]. This can be used in combination with various
radiative transfer solvers based on different methodologies, such as twostream or discrete
ordinate, which consider scattering in 1D and 3D geometry.

In the future, we plan to extend the methodology to the solar spectral region. Here,
scattering can no longer be neglected; therefore, another radiative transfer solver needs to
be applied. The simulated annealing approach is expected to work equally well in the solar
region, since it has already been used to generate the REPTRAN parameterization [7] for
spectral bands in both solar and thermal spectral regions.
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