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Abstract: The accurate prediction of atmospheric wind speed in near space is of importance for both
middle and upper atmospheric scientific research and engineering applications. In order to improve
the accuracy of short-term wind speed predictions in near space, this paper proposes a multi-step
hybrid prediction method based on the combination of variational modal decomposition (VMD),
particle swarm optimization (PSO) and long short-term memory neural networks (LSTM). This paper
uses the measurement of wind speed in the height range of 80–88 km at the Kunming site (25.6◦

N, 103.8◦ E) for wind speed prediction experiments. The results show that the root mean square
error (RMSE) and the mean absolute percentage error (MAPE) of multi–step wind predictions are
less than 6 m/s and 15%, respectively. Furthermore, the proposed VMD–PSO–LSTM method is
compared with the traditional seasonal difference autoregressive sliding average model (SARIMA)
to investigate its performance. Our analysis shows that the percentage improvement of prediction
performance compared to the traditional time series prediction model can reach at most 85.21% and
83.75% in RMSE and MAPE, respectively, which means that the VMD–PSO–LSTM model has better
accuracy in the multi-step prediction of the wind speed.

Keywords: near space; wind field; VMD–PSO–LSTM; multi-step prediction

1. Introduction

Near space covers the altitude region of approximately 20–100 km, which is the transi-
tion region between the lower atmosphere and the upper atmosphere with very complex
dynamic processes [1]. It is the resident area for various high-altitude balloons, high altitude
vehicles, suborbital vehicles and low orbiting spacecraft [2]. The atmospheric parameters
have an important impact on the design and safe operation of the various vehicles. For ex-
ample, the temperature in near space directly affects instrument performance and material
temperature fatigue damage of the vehicle, ozone is very corrosive, density and wind fields
affect the attitude and position of the near-space vehicles and neutron radiation can cause
single-particle effects, etc. [3]. As one of the most critical parameters in the atmospheric
dynamics of near space, the atmospheric wind field directly affects reliable operation of the
near-space vehicles. For example, the residency ability of vehicles depends on the wind
field environment [4], and high-altitude solar UAVs’ pneumatic characteristics and range
are also importantly affected by the wind [5]. Therefore, it is important to conduct research
on the wind field in near space and obtain accurate wind field prediction information for
the mission planning, trajectory planning and flight control of near space vehicles [6].

At present, wind speed prediction methods in near space mainly include two types:
the numerical weather prediction method and the statistical model method [7]. Numerical
weather forecasting requires complex physical models and large computational systems
to obtain predicted values of wind speed, wind direction, temperature, humidity and
other meteorological elements through meteorological theory and computational fluid
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dynamics [5]. The statistical modeling method mainly adopts the idea of mathematical
statistics to make predictions by mining the inherent laws existing among data [5]. Statis-
tical models are mainly divided into continuous models, classical statistical models and
artificial intelligence models. Among them, classical statistical models are mainly time
series forecasting models, such as the autoregressive moving average (ARMA), seasonal
autoregressive integrated moving average (SARIMA), etc. The artificial intelligence mod-
els are mainly neural network models, such as recurrent neural networks (RNN), long
short-term memory (LSTM), etc. Conventional numerical weather prediction systems focus
on meteorological information within the troposphere that is closely related to human
socio-economic activities [8]. It has been studied earlier and has advanced numerical
forecasting techniques. Compared with weather forecasting, space weather forecasting is
currently dominated by statistical models, and numerical forecasting techniques are in the
development stage. The forecasting of the near-space atmospheric environment has just
started, and statistical modeling methods still play an important role [8]. Therefore, the
statistical model approach is usually used in the prediction of the wind field in near space.

The forecast height range of the near-space atmospheric environment is between
meteorological forecast and space weather forecast. There are relatively few studies on the
prediction of near-space atmospheric environment parameters [8]. In terms of numerical
forecasting techniques, the U.S. Navy has used the global numerical prediction model of
NOGAPS-Advanced Level Physics and High Altitude (NOGAPS-ALPHA) to achieve the
medium-range forecasts (1–2 weeks) from the ground to an altitude of 85 km and multi-
year climate forecasts [9]. In order to ensure the safe operation of high altitude vehicles,
Jason A. Roney et al. studied the 18–30 km wind field in near space and built a statistical
forecasting model based on the observation data in Akon, OH, USA and White Sands, NM,
USA [10]. The National Space Science Center of the Chinese Academy of Sciences has
developed the exploration of numerical near space forecasting, and established a global
three-dimensional near space assimilation forecasting principle system [11]. In terms of
statistical forecasting, Hu Xiong et al. used an autoregressive model to carry out wind speed
prediction experiments at 20–100 km for the next 48 h for the Langfang area in 2014, and
the results showed that the model could effectively predict the atmospheric environment
in near space. However, due to the influence of small-scale atmospheric fluctuations, the
predicted results had a large deviation from the actual wind field changes [12]. In 2018, Liu
Tao et al. exploited the ARMA to predict zonal wind at 88 km in Langfang. The results
showed that when the wind field changes regularly, the ARMA model predicts the future
wind field better, but when the wind field changes significantly, the prediction of the ARMA
model becomes less effective. The sudden change of wind field makes the wind speed
series seriously non-stationary and stochastic, and it is difficult for the traditional time
series method to solve the problem of the complex non-linear relationship of the series [8].

With the continuous development of deep learning technology, some deep learning
models are gradually applied to the study of time-series data [13]. Among many deep
learning models, recurrent neural networks (RNN) show better performance in time series
prediction. Long short-term memory (LSTM) is an improved RNN with better long-term
prediction capability and fault tolerance, which can solve the problem that RNN cannot
achieve: the memory and forgetting of long-term historical information [14]. However,
when the non-smooth characteristic of the sequence is strong, the local variation of wind
speed cannot be accurately learned, which will make the training of deep learning meth-
ods more difficult and reduce the accuracy of model prediction [15]. Therefore, for the
significantly varying wind speed series, it is necessary to decompose the wind speed series
into a simple and smooth subseries by the signal decomposition method before inputting
it into the neural network to simplify the network model complexity and improve the
prediction accuracy [16]. The main typical signal decomposition methods include wavelet
decomposition and empirical mode decomposition (EMD). However, wavelet analysis
is a non-adaptive decomposition method, which relies on the selection of wavelet basis
functions, and EMD is prone to the problems of modal confusion and endpoint effects,
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which can affect the decomposition results [17]. In 2014, Dragomiretskiy et al. proposed
the variational mode decomposition (VMD) method, which can not only overcome the
shortcomings of wavelet analysis and EMD, but also effectively solve the problems such as
strong non-smoothness of a wind speed series [18]. VMD can decompose a wind series into
multiple subsequences of different frequency scales and relative smoothness, i.e., intrinsic
mode function (IMF) components [19]. Therefore, the LSTM network can be used to predict
wind IMF components, and then reconstruct the corresponding prediction results, im-
proving the prediction accuracy of the LSTM network [20]. Currently, many optimization
algorithms have been used as a deep learning method to find an optimal set of parameter
combinations in a short time to improve the network prediction performance [20]. The
particle swarm optimization (PSO) algorithm is an efficient optimization algorithm that can
find a set of global optimal solutions by constant particle updates and iterations, which has
the advantages of fast convergence and high accuracy [21]. PSO can effectively optimize
the hyperparameters of the LSTM network such as the batch size, epoch and learning rate
to improve the prediction performance of LSTM networks [20].

Based on the above study methods, this study proposes a novel hybrid prediction
method (VMD−PSO−LSTM) by combining the VMD method, PSO algorithm and LSTM
network to achieve the accurate prediction of wind speed in the upper layer of near space
(80–100 km). The VMD−PSO−LSTM method is constructed as follows: (1) using the
VMD method, the wind speed sequence is decomposed to obtain a limited number of
smooth subsequences with different frequency scales; (2) for the decomposed subsequences
(IMF components) of different scales, corresponding LSTM prediction models are built,
respectively, using the PSO algorithm to optimize the hyperparameters of each LSTM
prediction model, and using the optimized LSTM network to predict the subsequences;
(3) the prediction results for each wind speed subsequences are reconstructed to obtain the
final wind speed prediction results.

The main contents of this paper are organized as follows. Section 2 describe the
general idea of constructing a hybrid model. Section 3 uses a new model to conduct
multi-step prediction experiments at different heights in the Kunming area. Section 4
verifies the effectiveness of the new model by building a comparison experiment between
the traditional time series predictive model and the new prediction model. Section 5
summarizes the results of the study and draws experimental conclusions.

2. Network Construction

The VMD–PSO–LSTM wind speed prediction model includes five main steps: data
preprocessing, variational mode decomposition, construction of the PSO–LSTM network
model, IMF prediction reconstruction and model evaluation. The flow chart of model
construction is shown in Figure 1.

2.1. Data Preprocessing

The measured wind field data of the Kunming meteor radar at 86 km height from
1 May to 23 June 2019 are used as the experimental data samples with a sampling step of
1 h, and the data preprocessing process is shown in Figure 2. First, the interpolation method
is used to fill the invalid points. Second, to eliminate the large prediction error caused by
the inconsistency of the sample data dimension, the deviation standardization method is
adopted to normalize the data preprocessing. This method makes the data values between
[0, 1] for each sample, and the normalization is calculated as follows:

Y =
X− Xmin

Xmax−Xmin
(1)

where Xmax and Xmin represent the maximum and minimum values in the wind speed
subsequence, respectively.
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The workload of network computation and maintenance costs are relatively large
when the number of prediction time steps is high. This study uses a multioutput prediction
strategy in Equation (2), where l denotes the length of the training data and ∆ denotes the
number of prediction steps at the overrun moment. To build the input-output data set, the
continuous IMF wind speed series are transformed into (n, m) vector data, where n is the
number of samples and m is the number of sample dimensions. m is denoted as m = l + ∆,
i.e., the wind speed in the first l hours predicts the wind speed in the next ∆ hours [22]. In
this paper, the first 48 h are used to predict the wind speed values for the next 5 h, and
the data set is divided in the ratio of 7:1:2. That is, 70% is used as the training data set for
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training data, 10% is used as the validation data set for network parameter optimization
and 20% is used as the test set to check the network prediction performance.

pre(t + 1), pre(t + 2), pre(t + 3), . . . , pre(t + ∆)
= model(real(t− 1), real(t− 2), real(t− 3), . . . , real(t− l))

(2)

2.2. Variational Model Decomposition

VMD is an adaptive and completely non-recursive approach to modal variation and
signal processing [23]. VMD can decompose the wind sequence into multiple subsequences
called IMF components, according to the characteristics of the wind sequence. VMD can
adaptively match the optimal center frequency and bandwidth of each IMF. The main
decomposition process is as follows.

(1) In the VMD method, each IMF component is defined as a non-smooth Amplitude
Modulation–Frequency Modulation (AM–FM) signal [24]:

uk(t) = Ak(t) cos(φk(t)) (3)

where Ak(t) represents instantaneous amplitude and φk(t) represents phase function.
(2) Conducting the Hibbert transform on each IMF component uk(t) to obtain the unilat-

eral frequency spectrum and analytical signal of the IMF component:

[δ(t) +
j

πt
] ∗ uk(t) (4)

where “∗” represents the convolution operation, δ(t) represents dirac distribution, j
represents the imaginary part and t represents time.

(3) Using the exponential operator e−jωkt to modulate its spectrum to the fundamental band:

[(δ(t) +
j

πt
) ∗ uk(t)]e−jωkt (5)

where ωk represents the central frequency of uk(t).
(4) The bandwidth of each IMF component can be obtained from the Gaussian smoothing

of the demodulated signal. With the bandwidth estimation, the constrained variational
problem can be expressed as:

min
{uk},{wk}

{
K
∑

k=1

∥∥∥∂t[(δ(t) +
j

πt ) ∗ uk(t)]e−jωkt
∥∥∥2

2

}
s.t.

K
∑

k=1
uk(t) = f (t)

(6)

where {uk} = {u1, u2, . . . , uk} represents the K IMF components obtained from the
decomposition of wind speed sequence f (t), {ωk} = {ω1, ω2, . . . , ωk} represents the
central frequency of each IMF component, and ∂t represents the time derivative.

(5) The constrained variational problem can be converted to an unconstrained variational
problem by introducing a penalty factor α and Lagrange operator λ(t). The extended
Lagrange expression is:

L(uk, ωk, λ) = α
K
∑

k=1

∥∥∥∂t[(δ(t) +
j

πt ) ∗ uk(t)]e−jωkt
∥∥∥2

2

+

∥∥∥∥ f (t)−
K
∑

k=1
uk(t)

∥∥∥∥2

2
+

〈
λ(t), f (t)−

K
∑

k=1
uk(t)

〉 (7)



Atmosphere 2023, 14, 315 6 of 21

(6) The above problem can be solved by the alternating direction multiplier method, and
the updated uk and ωk are, respectively:

_
u

n+1
k (ω) =

_
f (ω)− ∑

i 6=k

_
u

n
i (ω) +

_
λ

n
(ω)
2

1 + 2α(ω−ωn
k )

2 (8)

ωn+1
k =

∫ ∞
0 ω

∣∣∣∣_u n+1
k (ω)

∣∣∣∣2dω

∫ ∞
0

∣∣∣∣_u n+1
k (ω)

∣∣∣∣2dω

(9)

λn+1(ω) = λn(ω) + τ( f (ω)−
K

∑
k=1

un+1
k (ω)) (10)

where τ is the noise tolerance of the signal, n represents the number of iterations,

and
_
u

n+1
k (ω),

_
f (ω),

_
λ

n
(ω) represent the Fourier transform of un+1

k (t), f (t), λn(t),
respectively. Iterating until the convergence condition is met or the maximum number
of iterations is reached:

K

∑
k=1

∥∥∥∥_u n+1
k −_

u
n
k

∥∥∥∥2

2∥∥∥_u n
k

∥∥∥2

2

< γ (11)

2.3. Building the PSO-LSTM Network Model

(1) LSTM network structure
LSTM replaces the implicit nodes of the RNN with memory units. The purpose is to

solve the problem that RNNs cannot effectively transfer historical information due to the
long interval of implicit nodes [25,26]. One of the LSTM network memory cells mainly
consists of memory cells and three gate controllers (forgetting gate, input gate and output
gate) [27], as shown in Figure 3. The three gates are all a function of the input feature xt at
the current moment and the short-term memory ht−1 at the previous moment. The detailed
processes are as follows.
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The first step of the LSTM network is to select the forgetting of information in the
cell state. This step is determined by the forget gate. The output ht−1 and input xt are
input into the sigmoid activation function and the output is a number between 0 and 1 to
each number in the cell state ct−1 at the previous moment, 1 represents the “fully keep”
state and 0 represents the “fully forget” state. The calculation equation of the forget gate is
as follows:

ft = σ(W f · [ht−1, xt] + b f ), (12)

The next step will determine what wind speed characteristics information will be
saved in the current cell state. This step is determined by the input gate. This step consists
of two parts. One is the input state it whose values need to be updated by the sigmoid
function σ, and the other is the candidate state c̃t which adds to the memory unit state by
the tan activation function. The input gate is calculated as follows:

it = σ(Wi · [ht−1, xt] + bi), (13)

c̃t = tanh(Wc · [ht−1, xt] + bc), (14)

Then this step is to update the old cell state ct−1 to the new cell state ct. ct is equal to
the sum of the value of the long-term memory ct−1 at the previous moment through the
forgetting gate and the value of the new knowledge c̃t generalized at the current moment
through the input gate. The new state ct is calculated as follows:

ct = ft ∗ ct−1 + it ∗ c̃t, (15)

Finally, the next step will determine what information will be output. This step is
determined by the output gate and the newly obtained cell state ct. The output ht−1 and
input xt are input into the sigmoid activation function, and ct is then input into the tanh
activation function; subsequently, the two parts are multiplied as follows:

ot = σ(Wo · [ht−1, xt] + bo), (16)

ht = ot ∗ tanh(ct) (17)

where ft represents the forget gate, xt represents the input gate and ot represents the output
gate; ct represents the cellular state of long-term memory, and c̃t represents the candidate
state waiting to be stored in long-term memory; ht−1 represents the short-term memory
of the previous moment, and ht represents short-term memory of the current moment;
W f , Wi, Wc, Wo represent the weight vector matrix corresponding to the three gates; b f , bi,
bc, bo represent biasing terms. σ and tanh represent the sigmoid activation function and
hyperbolic tangent activation function, respectively, and are calculated as follows [20]:

sigmoid =
1

1 + e−X (18)

tanh =
eX − e−X

eX + e−X (19)

(2) PSO Optimization Search Process
From Figure 3 and Equations (12)–(17), the LSTM network implicitly contains a variety

of internal parameters, and some of them need to be set artificially [28]. However, the
prediction performance of the models trained with different parameters varies widely.
Therefore, this paper introduces the PSO algorithm of the adaptive learning strategy to find
the key parameters of the LSTM model [29,30]. The specific process is shown in Figure 3.
The main optimization process is as follows.

The mean square error MSE of neural network training is used as fitness function of
the PSO algorithm. The MSE equation is shown in (20). The core of the PSO algorithm is to
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find the set of parameters corresponding to the smallest value of the fitness function by
continuously updating the update equation.

MSE =
1
n

n

∑
i=1

(yi − ỹi)
2 (20)

where n represents number of samples, and yi and ỹi represent real and predicted values,
respectively.

The particle swarm optimization algorithm speed and position update equations can
be expressed as:

νid = νid + c1r1(pbest − xid) + c2r2(gbest − xid) (21)

xid = xid + vid (22)

where c1 and c2 represent learning factors for particle and population, respectively. r1 and
r2 represent two random values between 0 and 1, and vid and xid represent the velocity and
position of the particle, respectively. pbest represents the optimal solution currently found
for each particle, and gbest represents the optimal solution currently found for the entire
population. Batch size, epoch and learning rate are used as the PSO-seeking parameter in
this study. The parameters of the PSO algorithm are set as follows: the number of particles
is 50, the number of evolutionary iterations is 100, the learning factors c1 = c2 = 2 and the
particle dimension is 3.

2.4. Model Evaluation

In this paper, root mean square error (RMSE) and mean absolute percentage error
(MAPE) are defined as the criteria for judging the goodness of the models. At the same
time, the improved percentages PRMSE and PMAPE are used as the variability indicators to
quantify the evaluation criteria of each model, which are shown as follows:

RMSE =

√√√√ 1
K

K

∑
i=1

(ypred
i − yreal

i )
2
, (23)

MAPE =
100%

K

K

∑
i=1

∣∣∣∣∣y
pred
i − yreal

i

yreal
i

∣∣∣∣∣, (24)

PRMSE =
|RMSE2 − RMSE1|

RMSE1
∗ 100%, (25)

PMAPE =
|MAPE2 −MAPE1|

MAPE1
∗ 100% (26)

2.5. Kunming Meteor Radar

Meteor radar sounding technology is widely used in atmospheric dynamics and
climatology studies in the Mesosphere and Lower Thermosphere (MLT) region, mainly
for detecting the neutral atmospheric wind field and temperature in the MLT region.
The China Research Institute of Radiowave Propagation has built an atmospheric radar
comprehensive observation system in low latitude area at the Kunming observation station
(25.6◦ N, 103.8◦ E) to study atmospheric environment parameters in the Kunming area,
which includes an all-sky meteor radar and a stratosphere troposphere (ST) radar that
operate at 37.5 MHz and 53.1 MHz, respectively [31–33]. The ST radar has the observation
ability of troposphere and stratosphere atmospheres, and the observation mode of an
all-sky meteor radar [34–38]. This paper mainly uses the 53.1 MHz ST meteor radar data
of Kunming for prediction experiment research. The receiving and transmitting antenna
array of the ST meteor radar is about 500 m apart, which can be used to detect the popular
residual echo at the height of 70–110 km within the range of 300 km from the radar



Atmosphere 2023, 14, 315 9 of 21

antenna array [31]. The ST meteor radar is composed of one pair of mutually orthogonal
two element Yagi antennas as the transmitting antenna and five pairs of cross circularly
polarized two-element Yagi antennas as the receiving antenna. Table 1 shows the main
operating parameters of the ST meteor radar.

Table 1. The ST Kunming meteor radar main operating parameters.

Parameter Value

Transmitter operating frequency 53.1 MHz
pulse repetition frequency 430 Hz

peak output power 40 kw
correlation stack 4

distance precision 1.8 km
pulse type Gaussian pulse

detection range 70–110 km

3. Result
3.1. Experimental Data

The data are derived from the meteor radar in the Kunming area from 1 May to
23 June 2019 at 80–88 km altitude for meridional and zonal winds with a temporal resolu-
tion of 1 h. The data are divided into five height layers, which means there are 10 groups of
wind speed data with a total of 1298 data points in each group. First, the data set on each
height layer is decomposed into multiple subsequences using the VMD decomposition
algorithm, and a multi-step prediction strategy is conducted in each subsequence. In other
words, the wind speed values in the first 48 h are used to predict the wind speed values in
the next 5 h. Second, each data set subsequence is divided into a training set, validation
set and test set according to the proportion of 7:1:2. Finally, each data set subsequence is
constructed as: x_train = [997,48,1], y_train = [997,5], x_test = [249,48,1] and y_test = [249,5].

3.2. Model Parameters Determination

(1) Parameters K, α of VMD decomposition algorithm
The main parameters of the VMD algorithm are modal component K and penalty

factor α. These two parameters need to be selected empirically, and different values will
directly affect decomposition effect. Experimental studies [39,40] have been conducted to
show that if the value of K is too large, it will cause over-decomposition, which can generate
modal repetitions or additional noise disturbances. If the value of K is too small, it can
cause modal under decomposition, which results in underutilization of potentially useful
signals. In this paper, K values are determined by the central frequency method [41–43].
The original wind speed is decomposed under different K values, and each IMF can obtain
its corresponding “central frequency value”. When K is taken to a certain value, and each
IMF has a relatively safe center frequency interval between them and the maximum center
frequency does not change significantly again, then this value is the best value of K [42].
The penalty factor α mainly affects the spectral width of the modal components. The
larger the value of α, the smaller the bandwidth of each IMF component. Conversely, the
smaller the value of α, the larger the bandwidth of the components. A larger or smaller IMF
bandwidth can affect the reconstruction accuracy of the original sequence. The value of α
was taken with reference to the method in the literature [43,44]. The experimental results
show that α = 2000 was finally chosen after repeated experiments.

Using the VMD method to decompose wind speed sequences under different K values,
the central frequency distribution of each IMF component (IMF1, IMF2, . . . , IMFK) is
obtained as shown in Table 2 (Take 86 km zonal wind as an example).
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Table 2. Central frequency for the IMF components of the 86 km zonal wind.

K IMF1 IMF2 IMF3 IMF4 IMF5 IMF6 IMF7 IMF8 IMF9 IMF10 IMF11 IMF12

4 0.0007 0.0468 0.1805 0.3022
5 0.0005 0.0410 0.0811 0.1304 0.3032
6 0.0005 0.0408 0.0800 0.1203 0.1956 0.3054
7 0.0005 0.0407 0.0809 0.1186 0.1667 0.2474 0.4226
8 0.0005 0.0397 0.0624 0.0883 0.1706 0.3073 0.3993 0.4786
9 0.0005 0.0396 0.0602 0.0841 0.1179 0.1701 0.2416 0.3313 0.4554

10 0.0005 0.0396 0.0604 0.0842 0.1167 0.1627 0.2190 0.2989 0.3708 0.4524
11 0.0005 0.0396 0.0604 0.0842 0.1194 0.1656 0.2179 0.2881 0.3403 0.3958 0.4552
12 0.0004 0.0396 0.0594 0.0824 0.1000 0.1250 0.1619 0.1966 0.2461 0.3099 0.3807 0.4555

As can be seen from Table 2, for the IMF components of the 86 km zonal wind, the
central frequency of the IMF components of the last layer (value = 0.4554) starts to remain
stable after K is greater than 9. Therefore, when K is equal to 9, the central frequency
of adjacent IMF components is more spaced. As can be seen from Figure 4, the results
of central frequency decomposition are relatively better, which can effectively avoid the
phenomenon of mode mixing and can well explore the characteristic information inside
the wind speed. Similarly, we can obtain the best number of decompositions for 80–88 km
meridional and zonal winds. The best number of decompositions for wind sequences is
shown in Table 3.

Atmosphere 2023, 14, x FOR PEER REVIEW 11 of 22 
 

 

frequency of adjacent IMF components is more spaced. As can be seen from Figure 4, the 

results of central frequency decomposition are relatively better, which can effectively 

avoid the phenomenon of mode mixing and can well explore the characteristic infor-

mation inside the wind speed. Similarly, we can obtain the best number of decompositions 

for 80–88 km meridional and zonal winds. The best number of decompositions for wind 

sequences is shown in Table 3. 

 

Figure 4. IMF components of wind speed sequence for the 86 km zonal wind (K = 9). The IMFs 

diagram are shown on the left, and the center frequency corresponding to the IMFs are shown on 

the right. 

Table 3. Best number of decompositions for 80–88 km meridional and zonal wind sequences. 

Height Zonal Wind Meridional Wind 

 Best Number of Decompositions Best Number of Decompositions 

80 km 10 11 

82 km 12 10 

84 km 10 10 

86 km 9 8 

88 km 9 9 

(2) Parameter determination for PSO optimized LSTM 

Based on certain experience of setting hyperparameters, the three hyperparameters 

of batch size, epoch and learning rate in wind set in this study are set in the range [8, 66], 

[100, 400], and [0.001, 0.01], respectively, for the optimal search. In this study, based on 

the LSTM pre-diction model built from the wind subsequences, the hyperparameters of 

the optimal LSTM prediction model optimized by the PSO algorithm are shown in Table 

4 (take 86 km zonal wind as an example). 

Table 4. Results of hyperparameters optimized by PSO based on 86 km zonal wind. 

Figure 4. IMF components of wind speed sequence for the 86 km zonal wind (K = 9). The IMFs
diagram are shown on the (left), and the center frequency corresponding to the IMFs are shown on
the (right).



Atmosphere 2023, 14, 315 11 of 21

Table 3. Best number of decompositions for 80–88 km meridional and zonal wind sequences.

Height
Zonal Wind Meridional Wind

Best Number of
Decompositions

Best Number of
Decompositions

80 km 10 11

82 km 12 10

84 km 10 10

86 km 9 8

88 km 9 9

(2) Parameter determination for PSO optimized LSTM
Based on certain experience of setting hyperparameters, the three hyperparameters

of batch size, epoch and learning rate in wind set in this study are set in the range [8, 66],
[100, 400], and [0.001, 0.01], respectively, for the optimal search. In this study, based on
the LSTM pre-diction model built from the wind subsequences, the hyperparameters of
the optimal LSTM prediction model optimized by the PSO algorithm are shown in Table 4
(take 86 km zonal wind as an example).

Table 4. Results of hyperparameters optimized by PSO based on 86 km zonal wind.

86 km Zonal Wind Batch_Size Epoch Learning Rate

IMF1 14 226 0.0092
IMF2 16 195 0.0087
IMF3 13 289 0.0098
IMF4 26 169 0.0073
IMF5 33 247 0.0067
IMF6 17 215 0.0089
IMF7 21 336 0.0097
IMF8 13 337 0.0093
IMF9 19 238 0.0086

3.3. Prediction in the 80–88 km Height Range at Kunming

The prediction results of the VMD–PSO–LSTM model for meridional and zonal winds
on 23 June 2019 for the next 1–5 h are given in Figures 5 and 6, respectively. The horizontal
coordinates indicate the dates from 14–23 June 2019, and the prediction interval is from
13 June 2019, 19:00 to 24 June 2019, 04:00. The first row indicates the actual meteor radar
measurements, the second row means the results of the VMD–PSO–LSTM model 1–5 step
predictions and the third row presents the error absolute difference of the observed and
predicted values.

As shown in Figure 5, the zonal wind amplitude varies from −40 m/s to 100 m/s at
altitudes of 80–88 km, with significant diurnal and semidiurnal tidal activities [11]. The
multi-step prediction results of the VMD–PSO–LSTM model show that the prediction
accuracy of this model is high, especially in the presence of persistent westwards winds on
20–21 June. Compared with the measured results, the absolute error range of the zonal wind
predicted by the VMD–PSO–LSTM model is −12~+12 m/s. Meanwhile, the cumulative
effect of prediction error increases with the increase of prediction step length, so the single-
step prediction error of each height is the minimum, and the five-step prediction error is
the maximum. The meridional wind (shown in Figure 6) varied from −80 m/s to 100 m/s,
accompanied by periodic characteristics of diurnal and semidiurnal tidal fluctuations. The
predicted results can well reproduce the variation in the measured results, although the
difference between the measured and predicted results is within the range of −17~17 m/s.
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Figures 5 and 6 already demonstrate the high accuracy prediction of VMD–PSO–
LSTM at 80–88 km. To further recognize the strengths of the VMD–PSO–LSTM model, the
prediction evaluation indexes for the meridional and zonal winds on each height layer
are calculated and displayed in Table 5. The error values of the single-step prediction
are very small, although they increase with the increasing prediction step. However, the
error does not strictly increase with increasing height. For example, the maximum value
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of RMSE for meridional winds is 5.26 m/s in the five-step prediction occurring at 82 km
and 88 km, and the minimum value is 1.20 m/s in the single-step prediction at 80 km. The
maximum value of MAPE is 14.92% in the five-step prediction at 82 km, and the minimum
value is 4.13% in the single-step prediction at 80 km. The maximum value of RMSE for
zonal winds was 4.24 m/s in the five-step prediction at 80 km and the minimum value was
1.11 m/s in the single-step prediction at 86 km. The maximum value of MAPE was 13.52%
in the single-step prediction at 80 km and the minimum value was 3.40% in the single-step
prediction at 86 km. Overall, the RMSE of the multi-step prediction error of meridional
wind within 80–88 km height is less than 5.3 m/s and the MAPE is less than 15%, and the
RMSE of the multi-step prediction error of zonal wind is less than 4.3 m/s and the MAPE
is less than 14%, which means that the predicted wind field and the actual observed wind
field are in good agreement and the prediction model has good prediction stability.

Table 5. VMD–PSO–LSTM prediction errors at different heights.

Height
Zonal Wind Meridional Wind

Predicted
Steps RMSE MAPE (%) Predicted

Steps RMSE MAPE (%)

80 km
1 2.07 6.76 1 1.20 4.13
3 3.58 11.78 3 2.73 9.44
5 4.24 13.52 5 3.58 11.36

82 km
1 1.60 4.57 1 2.54 8.14
3 2.70 8.29 3 3.55 11.45
5 2.93 8.92 5 5.26 14.92

84 km
1 2.21 6.54 1 2.17 6.49
3 3.43 10.06 3 3.75 10.83
5 4.11 11.81 5 4.66 14.72

86 km
1 1.11 3.40 1 3.29 9.67
3 2.23 6.93 3 4.37 12.93
5 3.05 9.40 5 5.13 14.40

88 km
1 2.48 7.55 1 2.28 6.99
3 3.35 9.83 3 4.72 13.14
5 4.17 13.27 5 5.26 14.59

In the prediction experiments, VMD can adaptively decompose a complex wind speed
sequence into a suitable number of simple model components [41] because the prediction
accuracy of the components is higher than that of the original sequence. In addition, the
PSO could highly enhance the prediction accuracy. In other words, the VMD–PSO–LSTM
model has a good prediction ability in multi-step prediction of the upper atmospheric wind
in near space.

4. Discussion

To verify the superiority of the VMD–PSO–LSTM prediction method, the multimodal
decomposition algorithm and the traditional method were compared on the same data set.
Based on the results of the comparison experiments, this paper further analyses the effects
of different decomposition algorithms on the hybrid prediction results and the improved
performance of the VMD–PSO–LSTM method compared to traditional prediction methods.

4.1. Experimental Data

The data sample of this experiment is the warp wind data of the Kunming station
meteor radar from 1 May to 23 June 2019 at 86 km altitude. The time resolution is 1 h. The
variability of the wind field is significantly periodic in near space, with a variation period
of 24 h dominating [11]. The wind direction is represented by + or −, where + means
north wind and −means south wind. To eliminate the influence of the magnitude between
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different factors, the input data of the neural network are normalized to [0, 1]. In addition,
inverse normalization of the test set predictions is performed based on the data features of
the training set. The results of data normalization are shown in Figure 7.
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4.2. Comparison Experiments of Different Decomposition Algorithms

There are four commonly used modal decomposition algorithms: empirical mode
decomposition, ensemble empirical mode decomposition (EEMD), complete ensemble
empirical mode decomposition with adaptive noise (CEEMDAN) and variational mode
decomposition. To verify the effectiveness of the multimodal decomposition algorithm,
we constructed four prediction models to compare with the VMD–PSO–LSTM model
(i.e., LSTM, EMD–PSO–LSTM, EEMD–PSO–LSTM and CEEMDAN–PSO–LSTM) in this
paper. The results of the single-step, three-step, and five-step wind speed predictions for the
four prediction methods from 13–24 June are given in Figure 8. The horizontal coordinates
indicate the date of data coverage and the vertical coordinates indicate the predicted wind
speed values.
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From Figure 8, the amplitude of the measured wind field varies between−80~+95 m/s,
with significant quasiperiodic oscillations, such as diurnal and semidiurnal oscillations [11].
Figure 8 shows that the single-step prediction results of LSTM are more consistent with the
real wind speed, especially in the smoothly varying moments of the wind field. However,
the error is more obvious when the wind speed changes suddenly. For example, at the 36th
hour, the measured wind speed was approximately 93 m/s, while the single-step predicted
wind speed was approximately 79 m/s, with a maximum error of 14 m/s. At the 115th
hour, the measured wind speed was 89 m/s, while the single-step predicted wind speed
was 76 m/s, with an error of 13 m/s. The errors are evident in the three-step prediction and
the five-step prediction. For example, at the 36th hour, the difference is 37 m/s between
the three-step predicted wind speed and the measured wind speed, and at the 150th hour,
the difference is 40 m/s. Compared with the three-step prediction, the five-step prediction
not only has a larger error in wind speed but also appears to deviate from the measured
wind field in wind direction. For example, during the 227–231th hours, the measured wind
field was −10 to −43 m/s, while the predicted wind field was −1 to +30 m/s. The absolute
wind speed error was 41 m/s, and the wind directions were sometimes reversed from each
other. From the experimental results, the prediction accuracy is substantially improved
compared with LSTM after the introduction of modal decomposition and the particle
swarm optimization algorithm. Compared with the four modal decomposition methods,
the results of each modal decomposition method are similar when the wind field is in a
steady state. However, when the wind field changes abruptly, the VMD–PSO–LSTM model
has higher prediction accuracy, especially multi-step prediction. For instance, the measured
wind speed varies from −60~−30 m/s during the 50–60th hours, while the single-step,
three-step and five-step predicted wind speeds based on the EMD model decrease with
increasing number of steps. The single-step prediction based on the EEMD model agrees
well with the measured wind speed, but the five-step prediction difference ranges from
−15~+5 m/s. Similarly, the CEEMDEN model prediction results are similar to the EEMD
results. The single-step and three-step results of the VMD model prediction are in good
agreement with the measured data, and the error between the five-step prediction and the
measured wind speed is within 10 m/s.

As shown above, the predicted wind cannot reproduce the measured wind perfectly
at each moment. The errors between the prediction and the measured wind for each model
are given in Figure 9 at the single, three and five steps. The absolute of the multi-step
prediction error range is −70~70 m/s for the LSTM model; approximately −20~20 m/s for
EMD–PSO–LSTM, EEMD–PSO–LSTM and CEEMDAN–PSO–LSTM; and approximately
−10~10 m/s for VMD–PSO–LSTM. A comparison among them proves that the prediction
accuracy of VMD–PSO–LSTM is seven times better than that of LSTM. In addition, it
can also be seen from Figure 7 that the prediction error corresponding to each prediction
method increases with the increase of the prediction step. The main reason for this is that
the multi-step prediction strategy leads to an exponential growth in the number of the
model parameters and prediction errors can accumulate. Thus, the effect of multi-step
prediction will become worse and worse.

The calculated evaluation index for the quantitative description of error parameters is
shown in Table 6. The outstanding advantages of the VMD–PSO–LSTM prediction method
are very significant for single-step and multi-step predictions. For example, the minimum
values of the evaluation indicator RMSE in both single-step and multi-step predictions
of VMD–PSO–LSTM are 3.28, 4.16 and 5.06, respectively, and the values of the evaluation
indicator MAPE (%) are 9.46, 12.19 and 14.13, respectively.
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Table 6. Evaluation metrics for different decomposition prediction models.

Model Predicted Steps RMSE MAPE (%)

LSTM
1 8.824 26.01
3 10.44 30.6
5 15.52 44.04

EMD–PSO–LSTM
1 8.8 25.6
3 9.6 29.4
5 13.44 38.25

EEMD–PSO–LSTM
1 3.55 9.94
3 6.1 17.18
5 7.83 24.83

CEEMDAN–PSO–LSTM
1 8.64 23.6
3 9.9 25.7
5 14.7 36.41

VMD–PSO–LSTM
1 3.28 9.46
3 4.16 12.19
5 5.06 14.13

4.3. Comparison Experiment with Traditional Model

At present, the traditional time series model is still an important method for prediction
in statistical models [8], among which seasonal autoregressive integrated moving averaging
(SARIMA) is a more common prediction method. However, the method has a large
shortcoming in the short-term prediction of wind due to its significant short-time scale
variation [29,30]. The major purpose of the VMD–PSO–LSTM prediction method in this
paper is to effectively solve the short-term prediction accuracy problem of wind in near
space. The comparison of the prediction results among the measured wind (blue line) and
the conventional SARIMA model (green line) and the VMD–PSO–LSTM model (red line) is
shown in Figure 10 for (a) single-step, (b) three-step and (c) five-step processes. In Figure 10,
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the time difference between the measured and predicted curves can be found clearly due to
prediction multiple moments ahead.
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For the single-step prediction results (Figure 10a), the VMD–PSO–LSTM model pre-
diction exactly matches the measured data, although the SARIMA model prediction has a
better match with the measured results in terms of variation trend, but obvious differences
in details. For example, the measured results increase first and then decrease during the
period of 16–18 h, with the maximum value occurring at the 17th hour. The SARIMA
model prediction shows the opposite trend during the same period and the SARIMA
model predicted value surprisingly lags behind the measured value in the 81–88th hours.
In the three-step prediction results, the VMD–PSO–LSTM model prediction has a fixed
time difference of 2 h ahead of the measured data. The three-step prediction results of the
VMD–PSO–LSTM model have high agreement with the measured data both in terms of
magnitude and change trend if the time difference is ignored. It is sad that the difference
between the SARIMA model three-step prediction and the measured data is significant. For
example, the VMD–PSO–LSTM model three-step prediction is highly consistent with the
measured data 2 h earlier in the 39–41th hour, which cannot be found in the SARIMA model
prediction. The five-step prediction results of the VMD–PSO–LSTM model (Figure 10c) are
in good agreement with the measured data in terms of prediction magnitude and predicted
change trend if the prediction time difference of 5 h ahead is neglected. However, the
prediction error of the SARIMA model is further enlarged. During the 14–19th and 41–43th
hours, the VMD–PSO–LSTM model can predict 5 h in advance, while the SARIMA model is
not able to achieve a five-step advance prediction. It is more clearly seen that the prediction
error accumulates with the increase of step length, and the results of multi-step prediction
become more and more inaccurate.

Table 7 shows the evaluation metric results of the SARIMA and VMD–PSO–LSTM
models. The VMD–PSO–LSTM model has a significant advantage in single-step and
multi-step predictions. The evaluation index of the single-step prediction error for the
VMD–PSO–LSTM model is 3.28 m/s, and the MAPE is 9.46%, much smaller than the
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RMSE and MAPE of the SARIMA model of 19.38 m/s and 43.8%, respectively. Similarly,
the RMSE and MAPE values of the three-step prediction VMD–PSO–LSTM model are
4.16 m/s and 12.19%, which are much smaller than those of the SARIMA model (30.2 m/s
and 68.53%, respectively). In contrast, the error variance of the five-step prediction is
greater. The RMSE and MAPE values of the five-step prediction VMD–PSO–LSTM model
are 5.06 m/s and 14.13%, respectively, compared with those of the SARIMA model of
34.69 m/s and 88.6%, respectively. In terms of prediction performance, the VMD–PSO–
LSTM model improved the prediction error RMSE by 83.02%, 85.52% and 85.21% on single,
three and five steps, respectively.

Table 7. SARIMA and VMD–PSO–LSTM model evaluation index results.

Evaluation Indicators Predicted Steps SARIMA VMD–PSO–LSTM

RMSE
1 19.38 3.28
3 30.20 4.16
5 34.69 5.06

MAPE (%)
1 43.80 9.46
3 68.53 12.19
5 88.60 14.13

PRMSE

1 / 83.02%
3 / 85.52%
5 / 85.21%

PMAPE

1 / 77.92%
3 / 81.13%
5 / 83.75%

5. Conclusions

Considering the disadvantages of the poor prediction accuracy of traditional pre-
diction models for the upper atmosphere in near space, the multimodal decomposition
method and traditional prediction methods are analyzed and compared. Then, this paper
describes a high-accuracy prediction model with a short term (VMD–PSO–LSTM). The
VMD–PSO–LSTM prediction model can effectively reduce the impact of the dual character-
istics of nonlinearity and non-stationarity in the wind speed series during the prediction
performance. Further prediction experiments on the wind speed at 80–88 km altitude over
Kunming led to the following meaningful conclusions.

1. The wind speed prediction at 80–88 km in the Kunming area shows that the multi-step
prediction errors RMSE and MAPE of VMD–PSO–LSTM at all heights are less than 6
m/s and 15%, which proves that the method has good effectiveness and stability in
predicting the atmospheric wind speed above 80 km in near space.

2. By analyzing several commonly used decomposition algorithms, VMD can better
decompose nonstationary data into multiple smooth subseries, reduce the complexity
of the data and improve the prediction accuracy.

3. Compared with the traditional time series prediction model SARIMA, the hybrid
prediction model VMD–PSO–LSTM has better prediction ability. The VMD–PSO–
LSTM model not only solves the single-point lag problem of the traditional prediction
method, but also improves the RMSE and MAPE relative to the traditional model by
85.21% and 83.75%, respectively.

4. The multi-step prediction results show that the prediction error increases with the
increasing number of prediction steps. The main reason may be that the multi-step
prediction strategy makes the input and output of the network model increase, and
then the nonlinear relationship between the input data and the output data increases,
which makes the function fitting more complicated. The result leads to the prediction
value deviating from the true value with the growth of the prediction steps.
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We can conclude that VMD–PSO–LSTM has more stable prediction performance
than several other prediction models, and the VMD algorithm has better decomposition
performance than several other algorithms. However, the model has some problems to be
improved. The details are as follows.

First, in this paper, we use the central frequency observation method and empirical
method to determine the decomposition layer K and penalty factor of VMD with some
error and chance. There is no guarantee that the parameters determined are the optimal
combination of parameters. Therefore, it is necessary to further study a more reasonable
method to determine VMD parameters.

Second, this paper only considers the characteristics of wind field data itself for model
prediction, without considering time, spatial latitude and other factors. Therefore, the
next step of this paper is to consider the influence of various factors, such as time and
space, on wind speed series prediction and establish a spatiotemporal network model with
multifactor integration to further improve the accuracy of the prediction of atmospheric
wind speed in near space.
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