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Abstract: Climate science involves various functional relations and needs to investigate the domi-
nance or relative importance of the variables in their relation. In our previous studies, we examined
several problems in which causal relations are established, showing how the dependent quantity
is affected by two or more independent variables. With linear fitting, the relative contributions of
the variables to the variation of the quantity are compared. In this study, we examine constraint
relation, which is a simultaneous multivariate relation, with all variables in the relation being equal
in position. The relation can generally be nonlinear. To be convenient for examining the dominance,
plane equation fitting can be used to linearize the relation. The equation of state for ideal dry air is
investigated as a simple case of the relation. For this special case, a linearized relation can be obtained
from both the fitting and the derivation. The scale analysis tool used in dynamic meteorology is
applied here for the dominance analysis. Through comparing the scales of the terms, we can simplify
the equation. The simplified relations correspond, respectively, to Charle’s law, Boyle’s law, and
Gay-Lussac’s law. The geographical preferences of the different dominance patterns are exhibited.
In addition, when considering the change of the variable that is smallest in scale, we can identify
which factor is the dominator. The ideal gas law is intentionally chosen as the example, since the
relation is simple in form, and the results of dominance can be deduced analytically. A comparison
demonstrates that the methods used here for the dominance analysis are reliable.

Keywords: dominance; nonlinear; multivariate; scale analysis; ideal gas law

1. Introduction

Quantitative studies in climate science involve various functional relations. They
may include the statistically established relations, e.g., the prediction of precipitation with
preceding sea surface temperature and snow cover over the Tibetan Plateau, along with
other possible factors. The functional relations include the physical laws, e.g., the equation
of state for ideal dry gas, which provides a linkage among atmospheric pressure, density,
and temperature. The functional relations may also include those that are mathemati-
cally defined based on physical considerations, e.g., the link of relative humidity with
atmospheric water vapor and air temperature.

These functional relations can be classified into two types. One is the causal relation,
in which a dependent quantity is affected by two or more independent variables, as in
the example of using sea surface temperature and the snow cover over the plateau to
predict the precipitation. The other type is the constraint relation. As a simultaneous
relation, it includes three or more variables in an equation. There is no causality, and all the
variables are equal in position. The ideal gas law is an example of this type. The relation
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of relative humidity, water vapor, and air temperature can be treated as a causal relation
when examining how water vapor and air temperature influence relative humidity. It may
also be treated as a constraint relation, as in meteorological calculation when computing
one of the humidity quantities with the data of the other two variables.

Dominance analysis [1,2] can be performed with quantitative relations to better un-
derstand the corresponding issues. For causal relations, we can compare the relative
contributions from the independent variables to the variation of the dependent quantity
and identify which variable is more important to the variation. Lu et al. [3] studied the
interannual variations of streamflow and other hydrological components and examined
whether precipitation or temperature, the two input climate variables, dominates the varia-
tions. Lu et al. [4] investigated the interannual variation of the seasonal rainfall total, with
different thresholds for defining the precipitation and explored whether the number of
rainy days or the averaged rainfall intensity dominates the variation. Precipitation can be
affected by changes in atmospheric water vapor and air temperature, which can both be
influenced by atmospheric circulation. Tu and Lu [5] revealed whether the change in water
vapor or the change in air temperature is more important to the interannual variation of
seasonal precipitation. Derivation shows that the atmospheric static stability is a function
of air temperature and its vertical difference. Lu et al. [6] provided the results of whether
temperature or the vertical difference of temperature is more important to the seasonal,
interannual, and spatial variations of the static stability. In the present study, we turn to
examining the constraint relation. As an example, here we consider the ideal gas law [7]
and investigate the pertinent dominance issues.

Broadly speaking, all quantitative relations can be treated as nonlinear relations. For
the dominance analysis, it would be convenient if the relations can be linearized. With
observed data, statistical fitting can be used to obtain the linear relations. Significance tests
are required to ensure the robustness of the linearization. Previous studies showed that for
many of the problems examined, statistical fittings could well linearize the corresponding
relations [1–6,8]. For the different causal relations, the independent variables are regressed
with respect to the dependent quantity [3–6]. In this study, for the constraint relation, the
linearization of the relation will be performed by using the plane equation fitting [9–13], in
which the noise may come from all the variables. The advantage of the plane equation is
that the relation fitted can cover all the situations, including those degenerate cases, i.e., the
special cases with the simplified relations being between different pairs of the variables.

In the fitted plane equation, the dominance can be examined by using the “scale
analysis”, which is a powerful tool in mathematical sciences for simplifying equations that
contain multiple terms [14–18]. The method has conventionally been used in dynamic
meteorology for analyzing the balance equations, such as the conservations in momentum,
mass, and energy [19–21]. In the present study, through linearization, we establish a balance
equation that has three terms. Because of the normalizations, the changes of the different
variables can be compared. The scales of the three terms can be measured simply with the
three coefficients contained in the linearized equation. For this specific gas law issue, a
linearized relation can be obtained from both statistical fitting and analytical derivation.

With the balance equation of the three terms, the dominance analysis includes two
aspects. One is simplifying the equation. With neglecting the term that is smallest in
scale, the equation can be simplified as a rough balance between the other two terms. The
three types of the simplifications can reflect the three ideal gas laws, that is, Charle’s law,
which states that when pressure does not change, the density is inversely proportional to
temperature [22], Boyle’s law, with temperature remaining unchanged and density being
proportional to pressure [23], and Gay-Lussac’s law, in which density is constant while
pressure is proportional to the temperature [24]. The other aspect of dominance analysis is
to locate the dominant quantity when examining the variation of the term that is smallest
in scale. The term is a residual between the two larger terms. The largest term dominates
the variation, while the second largest term exerts a negative effect on the variation. For
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the different dominance types and patterns, their geographical preferences are revealed in
this study.

The equation of state for ideal dry air provides a nonlinear and simultaneous multi-
variate relation. The physical relation of the three quantities, as an equation, is simple in
form. While we determine the dominance quantitative by use of the calculation approach,
we may also deduce the dominance analytically from the original physical relation. Thus,
their results can be compared. This is the reason why we deliberately choose the ideal gas
law as the example for the dominance analysis. The comparison demonstrates that the
approach used for the study is reliable.

Atmospheric pressure, temperature, and density are important climate quantities.
They can both influence and be influenced by the atmospheric circulation. The spatial
inhomogeneity of the pressure, as well as the high and low pressure systems, can affect the
regional and large-scale circulations [25–28]. The horizontal difference of air temperature
may lead to thermal wind and jet streams [29–32]. The temporal–spatial variations of the
air density may relate to the convergence of the air parcel and then the wind energy, the
gravity waves, and the greenhouse temperature [33–37]. In this study, we focus on the
interannual variations of the near-surface atmosphere.

The NCEP/NCAR Reanalysis I [38], provided by the National Centers for Environ-
mental Prediction (NCEP) and the National Center for Atmospheric Research (NCAR), is
used in this study. The data used include the monthly surface air temperature and pressure,
with a horizontal resolution of 2.5◦ × 2.5◦ in latitude and longitude over the 71 years from
1948 to 2018. The monthly surface air density is then calculated with the ideal gas law.

The main goal of the present study is to raise the question, propose the method, and
take the state equation of dry air near surface as an example to locate the regions, over
the globe where the relation of the three quantities is dominated by the different types
and patterns. In Section 2, plane equation fitting is applied, as for the general nonlinear
problem, to linearize the relation. In addition, for this special problem, the gas law, the
linear relation is also obtained from the derivation. In Section 3, we assess the relative
importance for each pair of the quantities through comparing their coefficients obtained
in the linearized relation. In Section 4, comparisons are further performed among the
three coefficients to display the regional patterns for the dominance. The scale analysis
tool is introduced to simplify the three-quantity equation and determine the dominant
relation and the dominant quantity. An example is provided in Section 5, for the most
common pattern, to present the details pertinent to the coefficients and the scales and the
correlations and the normalizations, as well as the balance of the terms in the equation and
their interannual variations. A summary and discussion are given in Section 6.

2. The Linearized Relation and the Coefficients
2.1. The Linear Fitting as a General Nonlinear Problem

Consider a general relation F(X, Y, Z) = 0, in which the three quantities X, Y, and Z
are nonlinearly linked. If they are simultaneous variables and there is no definite causality
among them, we may not simplify the relation, say, as Z = f (X, Y), which defines X and Y
as independent variables and Z as a dependent quantity. For the general nonlinear relation,
we may use a statistical fitting, i.e., the plane equation aX + bY + cZ + d = 0, to linearize
the relation. By using the data sampled from the variations of the three quantities, the plane
fitting is performed with the total least squares (TLS) method [9,11,13,27]. It minimizes the
total squares of the distance from each sample point to the fitted plane, with the constraint
a2 + b2 + c2 = 1.

The gas law is a nonlinear relation, though it is simple in form. The above linear
fitting method that is for the general nonlinear problem is used here, as an example, to
linearize the gas law. Denote the monthly surface air pressure, density, and the ther-
modynamic temperature in kelvins as p, ρ, and t, respectively. With the data from the
interannual covariations, we first normalize the three quantities, which makes it easy to
compare the changes of the different quantities. Denote the normalized monthly surface air
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pressure, density, and temperature as P, D, and T, respectively. Namely, P = (p− p)/σp,
D = (ρ− ρ)/σρ, and T = (t− t)/σt, where x and σx are the average and standard deviation
of the x calculated from the data of the interannual variations.

Because of the normalizations, the constant term, i.e., the last term on the left side of
the plane equation, tends to be zero. So, the plane equation fitted can finally be written as

ADD + BTT − CPP = 0. (1)

Here, we use the prescription CP > 0. With this, the signs of AD and BT are then to be
determined. We also use the constraint relation AD

2 + BT
2 + CP

2 = 1. The plane fitting,
i.e., the calculation of the three coefficients AD, BT, and CP, is performed for each month
and for every grid point over the globe, by using the monthly data of the 71 years.

Significance tests are required to ensure the validation of the fitted linear relation.
Here, we use the coefficient of determination or the multiple-correlation coefficient [12], as
applied in [5]. Figure 1a,b show the distributions of the correlation for January and July
between the P calculated with the observed data and the P calculated with the relation
obtained from the plane fitting. The correlation coefficient is over 0.95 across the entire
field and is over 0.99 in almost all the grid points. This suggests the robustness of the
linearization, and the plane fitting of the relation is perfect everywhere.
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and (c–e) the three−dimensional scatter plots for January (blue) and July (red) with the three 

Figure 1. Distributions of the correlation between the surface air pressure observed and the sur-
face air pressure calculated with the relation obtained from the plane fitting for (a) January and
(b) July, and (c–e) the three–dimensional scatter plots for January (blue) and July (red) with the three
dimensions being the normalized surface air pressure (P), density (D), and temperature (T) and the
data from a grid point (90◦ E, 35◦ N) in the Tibetan Plateau. In plots (c–e), samples are viewed from
different angles.

Figure 1c–e show, as an example to display the plane fitted, the three–dimensional
scatter plots for a grid point (90◦ E, 35◦ N) over the Tibetan Plateau. In the space of the
D, T, and P, the scattered points represent the samples from 71 years. The three plots are
viewed from different angles, showing that gradually the view of these points can tend to
be a plane. In the last plot, which is from a specific angle, the points appear approximately
as a line, which actually represents a plane. The planes obtained for January and July are
slightly different.
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Figure 2 presents the distributions of the coefficients AD, BT, and CP for six selected
months. It is shown that in the fitted plane equation, corresponding to the prescribed
positive value for the CP, the AD and BT determined from the fitting are both positive for all
the grid points in the globe and for all the months. As will further be analyzed in Sections 4
and 5, the normalizations of the three quantities imply that they are all the in magnitude
of one. So, the magnitudes of the three terms in the equation, ADD, BTT, and CPP, can be
reflected with the coefficients AD, BT, and CP.
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2.2. The Linear Relation Derived for This Specific Problem

For this special problem, the gas law, we may obtain a linearized relation through
derivations. With the monthly quantities, the equation of state for dry air is

p = ρRt, (2)

where R is the gas constant for dry air. The state with the averages of the three quantities
can also satisfy the gas law, i.e., p = ρ · R · t, considering that the eddy effect between the
density and temperature is very small. With these, as derived in dynamic meteorology [27],
we obtain the linear relation

(p− p)/p = (ρ− ρ)/ρ + (t− t)/t. (3)

By using the normalized quantities and the standard deviations, the equation can be
expressed as

a′D + b′T − c′P = 0, (4)
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where a′ = σρ/ρ, b′ = σt/t, and c′ = σp/p. Through normalizing the three coefficients, we
finally obtain

A′DD + B′TT − C′PP = 0, (5)

where A′D, B′T , and C′P are the ratios of the a′, b′, and c′, respectively, to the
√

a′2 + b′2 + c′2.
Results indicate that Equation (4) is exactly the same as Equation (1). We also plot

the distributions of the coefficients A′D, B′T , and C′P for the six selected months (figures
not shown). Comparisons show that the plots of these coefficients are, accordingly, the
same as the plots of the coefficients AD, BT, and CP. We cannot perceive any difference
between the A′D and AD, the B′T and BT, and the C′P and CP in their global distributions of
each month.

3. The Comparisons between Each Pair of the Coefficients

Figure 3 shows the distributions of the ratios BT/AD, AD/CP, and BT/CP for the six
months. The plots of BT/AD illustrate the relative importance of the temperature and
density in the covariations. At most grid points in the globe, AD is larger than BT throughout
the year, especially at the belts over the mid-high-latitude oceans in the two hemispheres.
Thus, density is more important than temperature in the covariations. However, in some
areas, e.g., Central Africa, northern Eurasia, the Tibetan Plateau, the West Coast of North
America, Greenland, and Antarctica, the BT in some months can be larger than AD, thus
temperature is more important than density. The spatial pattern of the BT/AD also has
seasonal shifts, and this is mainly due to the significant seasonal shifts of the BT, along with
the smaller seasonal changes in the AD.

The plots of AD/CP compare the contributions of density and pressure. The AD is
larger than CP in most regions over the globe, especially over the lands and the tropical
and subtropical oceans, throughout the year. Hence, overall density is more important than
pressure in the covariations. The plots of BT/CP compare the contributions of temperature
and pressure. The general spatial pattern of BT/CP is similar with that of AD/CP. The
difference is that in the plots of BT/CP, there are large areas where CP is larger, e.g., over
the mid-high-latitude oceans in the two hemispheres. This may be associated with the
storm track in the middle latitudes, where the variations in pressure are relatively large,
while sea surface temperature (and hence surface air temperature) varies rather little. In
both the plots of AD/CP and BT/CP, seasonal shifts can be noticed for the belts in the two
hemispheres, where correspondingly, the C is larger.
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4. Scale Analysis of the Balance Equation and Regional Dominance of the Relation
4.1. The Scales and Dominance Issues for the Three-Quantity Equation

Scale analysis, or the order–of–magnitude analysis, is a useful tool for the simplifica-
tion of an equation that contains multiple terms. It first approximates the magnitude of each
individual term in the equation and then neglects some small terms and thus simplifies
the equation. The scale analysis method has been applied in dynamical meteorology to
simplify balance equations, such as conservation equations [27]. The method is used to
simplify the equation that contains at least three terms or for three variables [14].

Consider the three-term equation. For simplicity, the equation can be expressed as
S−M− N = 0, where the three terms S, M, and N are all positive. Rewrite the equation
as S = M + N. What the three-term equation implies is a balance of the larger term S by
the two smaller terms M and N. Here, S is greater than both M and N in magnitude. By
using the concept of scale analysis, it can be termed as “the scale of the S is larger than the
scales of the M and N”. With mathematic notation, this can be written as O(S) > O(M)
and O(S) > O(N). In the present study, we examine the following two issues for the
dominance in the three-term equation.

One is to find the dominant relation by simplifying the equation. Assume that M is
much greater than N in magnitude, i.e., O(M) >> O(N). Then, we may ignore the small
term N and simplify the equation of the three terms as S ≈ M, a relation that describes a
rough balance between the two dominant terms, the S and M. The other is to locate the
dominant quantity when it is required to examine the variation of the smallest term N.
Rewrite the equation as N = S−M. The N is a residual between S and M, the two larger
terms. Here, the S has a positive effect and thus dominates the variation of the N. The
M has a negative effect on the variation. For the specific issue of the relation of density,
temperature, and pressure in this study, the differences of the magnitudes of AD, BT, and
CP may not be very large everywhere over the globe. However, the scale analysis is still
pretty useful.

4.2. The Six Dominance Patterns and Their Geographical Preferences

In Section 3, for each pair of the quantities, the magnitudes of the corresponding terms
in the equation are compared. The comparisons are all over the entire field. However, in
different regions, the balance relation of the three terms may be dominated by different
pairs of the quantities. In some regions, the relation can be simplified as the balance
between density and temperature, while in other regions, the relation may be dominated
by the balance between density and pressure or by the balance between temperature
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and pressure. Here, for each grid point, we use the scale analysis introduced above to
conduct the dominance examinations, i.e., to find the local relation dominated by two major
quantities and their relative importance to the variation of the third quantity.

For examining the dominance, we may have three types (and further six patterns)
through comparing the values of AD, BT, and CP. Figure 4 shows the spatial distributions of
these types and patterns. The three types are classified in terms of the smallest coefficient,
from the AD, BT, and CP. In Figure 4, the grid points with the CP being the smallest, with
the BT being the smallest, and with the AD being the smallest are marked in red, blue, and
yellow, respectively. For each type, we may further divide it into two patterns in terms
of the comparison of the other two coefficients. For example, for the type in red, with the
CP being the smallest, the grid points are further divided into the pattern with BT > AD,
which is marked in dark red, and the pattern with AD > BT , which is marked in light red.
The overall spatial distributions of these patterns for all the months in Figure 4 suggest that
the patterns for the dominance possess significant geographical preferences.
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Figure 4. Geographical distributions of the three types (in red, blue, and yellow) and the final six
patterns for dominance analysis in terms of the comparison among the coefficients AD, BT, and CP.
In the last plot for December, a region with the box marked in green is selected for use in Figure 5.

Table 1 presents the percentages of the grid points for the six patterns and the ratios of
the grid points to the total over the globe. The percentages are provided for all the months,
and their averages are used to assess the overall situation for the patterns. Over most grid
points in the globe (75.7%; red), the type is the one with CP being the smallest. Among them,
the most popular pattern is the one with AD > BT > CP (61.5%; light red). Inside the wide
regions of this pattern (Figure 4), there are some areas with the pattern of BT > AD > CP
(14.2%; dark red). There is also a considerable number of grid points (23.1%; blue) where
the type is the one with BT being the smallest. They are mainly over the mid-high-latitude
oceans in the two hemispheres. Within these regions, there are areas with the pattern of
AD > CP > BT (15.5%; dark blue) and areas with the pattern of CP > AD > BT (7.6%; light
blue). The grid points for the third type with AD being the smallest (1.3%; yellow) are less
and are major as the pattern of BT > CP > AD (1.1%; dark yellow). This pattern occurs
mainly over Greenland in June and over Antarctica in December.
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Figure 5. (a) The coefficients AD, BT, and CP obtained for each month; (b) the correlation coefficients
(r) between each pair of the normalized quantities (with the chain lines indicating the significance
level of 0.01); (c) the year–to–year variations of the three normalized quantities D, T, and P for January;
and (d) the corresponding variations of the ADD, BTT, CPP, as well as the ADD + BTT. The curve for
ADD + BTT (green) overlies it for CPP (black). The data of pressure and temperature used for the
calculations are averaged over the region selected in Figure 4.

For each of the six patterns, the scale analysis method can be applied to examine the
two dominance issues. In the fitted plane equation ADD + BTT − CPP = 0, as mentioned
above, because of the normalizations, the three quantities D, T, and P are all in the mag-
nitude of one. Or the scales of the three quantities are all equal to one, and this can be
denoted as O(D) = O(T) = O(P) = 1. Then, the scales of the three terms AD, BT, and CP



Atmosphere 2023, 14, 293 10 of 15

can be represented by the corresponding coefficients A, B, and C. With the notation, this
can be expressed as O(ADD) = A, O(BTT) = B, and O(CPP) = C.

Table 1. The ratio (unit: %) of the number of the grid points with each of the six patterns to the
number of the total grid points over the globe.

Pattern January February March April May June July August Septe-
mber

Octo-
ber

Nove-
mber

Dece-
mber Mean

BT > AD > CP (Dark red) 14.7 9.1 12.8 14.4 17.0 16.6 18.3 17.3 16.4 14.7 9.8 9.1 14.2
AD > BT > CP (Light red) 58.3 66.6 66.3 65.9 62.5 55.2 54.9 56.3 64.4 66.2 64.6 56.4 61.5
AD > CP > BT (Dark blue) 14.0 13.4 14.4 15.8 17.0 19.7 16.8 18.0 17.0 14.7 13.8 11.3 15.5
CP > AD > BT (Light blue) 11.7 10.1 6.4 3.9 3.4 7.4 9.4 8.0 2.1 4.4 8.7 15.1 7.6
BT > CP > AD (Dark yellow) 0.8 0.7 0.2 0.0 0.1 0.8 0.5 0.4 0.2 0.0 2.5 6.9 1.1
CP > BT > AD (Light yellow) 0.5 0.1 0.1 0.0 0.0 0.2 0.1 0.1 0.0 0.0 0.5 1.2 0.2

For the most common pattern with AD > BT > CP, which prevails over the wide
regions marked in light red in Figure 4, the scale of the CPP is the smallest of the three
terms. Actually, over these regions, the AD and BT are both much greater than the CP in
most of the grid points, as reflected in the plots of the AD/CP and BT/CP in Figure 3. That
is, CP << AD and CP << BT . As the first issue for the dominance, we may ignore the
term CPP and simplify the equation as ADD + BTT ≈ 0, representing a rough balance
between the terms of the density and temperature. It can be inferred from this dominant
relation that the D and T are negatively correlated. This means that corresponding to a
larger-than-normal density, there might be a lower-than-normal temperature. As the second
issue for the dominance, when examining the variation of the pressure, we rewrite the
equation as CPP = ADD− (−BTT). This suggests that the small term CPP is the residual
(i.e., the difference) between the two larger terms ADD and −BTT. For this pattern with
the AD > BT > CP, we can also infer from the rewritten equation that the D is positively
correlated with the P and thus dominates its variation. The T is negatively correlated with
the P and has a negative effect on its variation.

The two patterns with the BT being the smallest of the three, which appear over the
northern Pacific, the northern Atlantic, and the ocean belt north of Antarctica, are also
important. Similar to the above analysis, we may ignore the term BTT, and simplify the
relation as ADD− CPP ≈ 0, a rough balance between pressure and density. The D and P
may have a positive correlation. For the pattern with CP > AD > BT , with the equation
being rewritten as BTT = CPP− ADD, the term BTT can be treated as the residual between
the terms CPP and ADD. Thus, pressure dominates the variation of the temperature, and
density has a negative effect. For the pattern with AD > CP > BT , we rewrite the equation
as BTT = −ADD + CPP, and the term BTT can be regarded as the residual between the
terms ADD and CPP. The variation of temperature is dominated by its negative correlation
with density, i.e., the decrease in density, although the positive correlation with pressure
can have a positive effect on the variation.

The AD can also be the smallest of the three, and this is mainly for the pattern with
BT > CP > AD. This pattern appears mainly over Greenland in June and Antarctica in
December. With neglecting the ADD and simplifying the equation as BTT− CPP ≈ 0, the
balance is between temperature and pressure. For the variation, we rewrite the equation as
ADD = −BTT +CPP and conclude that the ADD is the residual between the terms BTT and
CPP. The variation of density is dominated by its negative correlation with temperature,
i.e., the decrease in temperature, although the positive correlation with pressure can have a
positive effect on the variation.

5. An Example with More Details from the Most Common Pattern

The most common pattern, with AD > BT > CP, is taken as an example in this section.
In the plot of December in Figure 4, a region with this pattern is selected and marked in
green. The region lies in the central equatorial Pacific (110◦ W–180◦ W, 10◦ S–10◦ N). The
pressure and temperature are averaged over the region. The density for the region is then
calculated with the gas law. The plane fitting is performed for this region. Figure 5 presents
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some more details of the pattern for the linear fitting, the scale analysis, and the results of
the dominance.

Figure 5a presents the coefficients AD, BT, and CP obtained for each month. Their
values are pretty stable over the months. The AD and BT are comparable and large, while
relatively the CP is rather small. Thus, in the three-term equation, we may neglect the
CPP and simplify the relation as a rough balance between the terms ADD and BTT, i.e.,
ADD + BTT ≈ 0. It can be inferred that D and T have different signs, suggesting that
density and temperature are negatively related. Figure 5b shows that the correlation
between D and T is truly negative, and it is very strong. The correlation coefficient can be
almost −1.0 for all the months.

For examining the variation of the pressure, we rewrite the equation as CPP = ADD + BTT.
Comparison shows that AD is greater than BT in all months (Figure 5a). For a positive CPP
in a year, we may infer from the equation that the ADD is positive, while the BTT is negative.
This is consistent with the calculated results in Figure 5b, which indicates that pressure has
a positive correlation with density but has a negative correlation with temperature. The
CPP is thus a residual (or difference) between the two terms ADD and −BTT. So, for this
pattern, density dominates the variation of the pressure. Because of the dominance, the
positive correlation of the pressure and density is strong. In contrast, temperature has a
negative effect on the variation of the pressure.

With January being an example, Figure 5c displays the interannual variations of the
three normalized quantities D, T, and P. They all have large year-to-year variations, and
they are all in the magnitude of one because of the normalizations. Hence, the scales of the
three terms ADD, BTT, and CPP can be measured simply with the corresponding coefficients
AD, BT, and CP. In addition, the curves can reflect the very strong negative correlation
between the D and T, as well as the strong positive correlation between the P with D.

Figure 5d shows the interannual variations of the ADD, BTT, and CPP, as well as the
ADD + BTT. Here, the CPP corresponds to the pressure observed, and the ADD + BTT is
the CPP calculated with the fitted plane equation. In the plot, the curves of the CPP and the
ADD + BTT coincide exactly. This confirms the conclusion that for the gas law, a nonlinear
relation, the plane fitting adopted in this study is perfect in linearizing the relation. We
then may utilize the scale analysis method to assess the terms in the balance equation.
The year-to-year perturbations of the ADD and BTT are truly large in scale, but they are
opposite in sign. The CPP or the ADD + BTT is small in scale and reflects the net effects of
the terms ADD and BTT. The ADD is greater than BTT in magnitude, thus ADD dominates
the variation of the CPP, and BTT has a negative effect on the variation.

6. Conclusions and Discussion

Dominance analysis is usually performed for the causal relation to find out the relative
importance of the independent quantities to the dependent quantity. In this study, we
examine the constraint relation with no causality and try to understand the dominance
patterns in the relation.

Pressure, temperature, and density are important quantities for diagnosing the atmo-
spheric circulation and the climate. For dry ideal gas, they are nonlinearly linked as the
gas law. The relation is a simultaneous constraint. Although the three quantities are equal
in position and they may all have changes regionally because of the interactions in the
climate system, it is possible that one quantity does not change much, and the relation can
be simplified as a balance between the other two quantities. In some regions, the relation
may become Charle’s law, with the density and temperature being inversely correlated.
Over other regions, the relation may tend to be Boyle’s law, with density and pressure
being positively correlated, or Gay-Lussac’s law, with temperature and pressure being
positively correlated.

To be convenient for assessing the dominance, it is better to linearize the original
nonlinear relation. For a general nonlinear problem, we use statistical fitting to linearize
the relation. With the normalized quantities D, T, and P, the fitted plane equation can
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be expressed as ADD + BTT − CPP = 0, where CP > 0, and AD
2 + BT

2 + CP
2 = 1.

Statistical tests indicate that the linearization is robust. Results show that corresponding
to CP > 0, the coefficients AD and BT are both positive everywhere. For this specific
nonlinear problem, the gas law, the linearized relation can also be obtained from analytical
derivations. Comparison indicates that the results are the same.

Scale analysis is a useful tool for simplifying equations that contain multiple terms. It
has been applied in dynamical meteorology for analyzing conservation equations. Here, in
the equation ADD + BTT − CPP = 0, because of the normalizations, the quantities D, T,
and P are all in the magnitude of one. So, the D, T, and P are actually the “dimensionless”
variables for density, temperature, and pressure. Then, the coefficients AD, BT, and CP
can be regarded as the “scales” of the three quantities. Through comparing the scales, we
examine two issues for the regional dominance. The first is to simplify the equation. After
finding the smallest of the three scales, we may ignore the term and retain the other two
terms in the equation. The second is to examine the variation of this term, which is the
smallest in scale. The other two terms are opposite in sign but comparable in magnitude.
Thus, the small-scale term we examine is a residual between the two large-scale terms. One
of them dominates the variation, and the other has a negative effect on the variation.

For the dominance analysis, three types (and six further patterns) are obtained through
comparing the three coefficients AD, BT, and CP. The geographical distributions of the six
patterns are provided for each of the months. The most common pattern is the one with
AD > BT > CP (e.g., over the central equatorial Pacific), which appears over 60% of the
grid points in the globe. The CP is the smallest coefficient. In most of the regions, the CP is
actually much smaller than the AD and BT. So, in the equation, we may ignore the CPP, and
simplify the equation as ADD + BTT ≈ 0. It is inferred that the D and T are opposite in
sign and negatively correlated. When examining the variation of the pressure, we rewrite
the equation as CPP = ADD + BTT. Since AD > BT , it can also be inferred that ADD has a
positive correlation with CPP and thus dominates the variation of the CPP. The BTT has a
negative effect on the variation. Hence, the CPP is a residual (or difference) between the
terms ADD and −BTT.

For the type with CP being the smallest coefficient, another pattern is the one with
BT > AD, which appears mainly over some land areas within the wide regions of the above
pattern. The type with BT being the smallest coefficient appears over the mid-high-latitude
oceans in the two hemispheres. In the equation, we may ignore the BTT and simplify
it as ADD − CPP ≈ 0, suggesting a balance between the terms of pressure and density.
The D and P can be positively correlated. The variation of the BTT can be analyzed with
the equation BTT = CPP− ADD. This type contains two patterns. For the pattern with
AD > CP, the D and T are negatively correlated, and −ADD dominates the variation of
BTT, while CPP has a negative effect. For the pattern with CP > AD, CPP dominates the
variation of BTT, and −ADD has a negative effect on the variation. The type with AD being
the smallest coefficient, especially the pattern with BT > CP, may appear over some land
areas in some months.

The example for the most common pattern displays many details on the plane fitting
and the scale analysis. The quantitative results from this case examination are consistent
with the results qualitatively inferred above from the fitting and the scale analysis. For
instance, for this pattern with AD > BT > CP, the linear fitting is perfect. The year-to-year
curve of CPP from the observation and the curve of CPP from the fitted equation coincide
exactly. The coefficients AD and BT are comparable, and they are truly much larger than
the CP. The normalized D, T, and P all have large interannual variations, although all in
magnitude of one. The D and T have very strong negative correlation. The variation of the
pressure is truly dominated by density, and the effect of temperature is negative.

For the linearized equation ADD + BTT − CPP = 0, it is displayed that the spatial
patterns of BT and CP, the scales of the terms of temperature and pressure, have significant
seasonal shifts. The belts with small values of BT and the belts with large values of CP,
which are over mid-high-latitude oceans in the two hemispheres, move northwards during
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the first half of the year and southwards in the second half. This may be related to the
seasonal movements of the incident solar radiation between the northern and southern
hemispheres. This may be related to the storm tracks being located at slightly lower
latitudes in winter than in summer. However, the spatial pattern of the AD, the scale of the
term of density, does not change much seasonally. Further investigations will be conducted
to better understand these.

The task of the present study is to raise the question, propose the method, and locate
the regions over the globe where the relation of the three quantities is dominated by
the different types and patterns. It is the major finding of this study that the different
dominance types and patterns have their geographical preferences. The two patterns with
the CP being the smallest of the three appear over most of the regions in the globe. The
patterns with the BT being the smallest appear over the northern Pacific, the northern
Atlantic, and the ocean belt north of Antarctica. The patterns with the AD being the smallest
appear mainly over Greenland in June and Antarctica in December.

Atmospheric dynamics and physics will be investigated in our future work for the
different types or patterns of the dominance in the relation. They are the final regional
display, resulting from the dynamics and physics, as well as the interactions among the
quantities. The investigation may also include the large-scale atmospheric circulation. This
study needs to be conducted, individually, for each of the regions. The BT > AD > CP
pattern, for example, appears over many land areas, including Antarctica, the Tibetan
Plateau, South Africa, Eurasia, Greenland, and West America. For this pattern, the questions
we may examine include why the variations of the temperature and density can offset
each other and why the variation of the pressure is dominated by temperature rather than
density. For the different land areas, the atmospheric circulation and physical processes
responsible for the two questions can be different. For the pattern BT > CP > AD, which
only appears over Greenland in June and Antarctica in December, we may examine to find
out what is special in the corresponding atmospheric circulations.

Water vapor is also an important quantity in real atmosphere. The relation among
the pressure, temperature, density, and relative humidity (or other quantity that indicate
moisture) is much more complex. The effect of the moisture will also be investigated in our
future work. As a first step, we focus on the dry air in the present study and examine the
dominance among pressure, temperature, and density, the three quantities for the dry air.
We will consider the moist air through introducing a moisture quantity and then compare
the relative importance of the moisture quantity with the dry-air quantities. Over the
different regions of different dominance patterns, we may identify whether the variation of
the moisture can be more important than the variations of the dry-air quantities or one or
two of them.
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