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Abstract: Understanding the space-time variations of extreme rainfall plays an important role in
the management of water-related disasters in Sahel countries. This study investigates temporal
changes in rainfall characteristics and explores the link between Atlantic Sea surface temperature and
extreme rainfall in the southern part of Burkina Faso. We find substantial spatial heterogeneity in
rainfall trends across the study area. In contrast to national and supra-national studies that found
predominantly increasing trends in extreme rainfall, we detect more downward than upward trends,
particularly for indices representing extreme rainfall. This difference is presumably a consequence of
the high spatial variability in rainfall trends that can only be detected with sufficiently dense climate
networks. We use the Poisson-General Pareto (Poisson-GP) distribution to quantify the frequency
and intensity of extreme rainfall. Our comparison of the traditional, stationary Poisson-GP model
with the nonstationary version where rainfall depends on Atlantic SST shows that the nonstationary
model outperforms the traditional approach. This finding suggests that the assumption of stationary
nature must be considered with care when modeling the frequency and intensity of extreme rainfall
in the study area. Overall, our results suggest that the recent increase in flood disasters in Burkina
Faso is rather caused by land use and land cover changes and population and urban growth and not
by increasing rainfall extremes.

Keywords: Burkina Faso; extreme rainfall; nonstationary; peaks-over threshold; Poisson-GP model;
sea surface temperature; trends

1. Introduction

In recent decades, heavy rainfall has been the main driver of numerous flood disasters
in the Sahelian countries of West Africa, with enormous consequences for people and their
properties [1]. In Burkina Faso the occurrence of (riverine and flash) floods has increased
significantly to five flood events per year during the decade of 2006–2016 compared to one
event per year in the period of 1986–2005 [2,3]. For instance, from June to September 2009,
flood events affected 512 031 and killed 22 people in the Sahelian countries of West Africa,
including Burkina Faso [4]. During the same year, Burkina Faso experienced unprecedented
flooding that affected the city of Ouagadougou and the surrounding areas due to extreme
rainfall of about 263 mm in just 10 h [5], which destroyed private and public properties. In
2016, 9 out of 13 regions of Burkina Faso suffered from flooding as a result of heavy rainfall,
affecting 27,826 people, causing 15 deaths and 35 injuries, while 7032 people were left
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homeless [6]. In addition to direct consequences, flood disasters weaken the public health
system, making people, particularly children, most vulnerable to water-borne diseases [7].
Furthermore, climate and socioeconomic changes are expected to lead to future flood
risk hotspots in Africa [8,9]. Against this background, the analysis of extreme rainfall
becomes crucial for water resource management, water-related disaster risk reduction, and
climate adaptation.

Changes in extreme rainfall in the West African Sahel have attracted significant atten-
tion in the last two decades. Studies have pointed out that extreme rainfall has become more
frequent and intense in the Central Sahel of West Africa [5,10–12]. However, these studies
were carried out on a national or even supranational scale, using low density of climate
stations, and thus provided large-scale results rather than local information. Such results
are not detailed enough to develop risk management and climate adaptation measures at
the municipal, household, or farmer level [13]. As trends in rainfall characteristics were
found to vary substantially in space in the West African Sahel [11], small-scale studies are
necessary to understand the local changes in extreme rainfall behavior.

Precipitation results from complex atmospheric processes and can be highly variable
in space and time. At the same time, they are influenced by regional and global climate
conditions. For instance, the state of the El Niño–Southern Oscillation (ENSO) affects precip-
itation in many regions globally [14]. If substantial links between global or regional climate
conditions and precipitation exist, such links can be used to understand past changes in
precipitation, to forecast precipitation for the next season or to project precipitation under
climate change [15–19]. Recently, a number of studies have explored the relation between
extreme rainfall in West Africa and climate indices. For Ghana, Atiah et al. [20] found
that several rainfall indices, some of them representing heavy rainfall, were positively
correlated with SST anomalies in the Atlantic Ocean and negatively correlated with SST
anomalies in the Pacific and Indian Oceans. Furthermore, extreme rainfall over the whole
of the West African Sahel was found to be mainly teleconnected with the state of the Eastern
Mediterranean Sea, whereas extreme rainfall over the West Sahel and Central Sahel were
observed to be associated with ENSO and the Madden Julian Oscillation [21]. Given these
studies that identified climate-precipitation links for West Africa, we explore whether there
are substantial relations between SST anomalies and heavy rainfall in our study area.

We focus on the southern part of Burkina Faso, which represents the garnary of Burkina
Faso because of its favorable climatic and land surface characteristics for agriculture.
Agriculture, livestock, and forestery activities in Burkina Faso are the main sources of
income, and employ more than 90% of the working population and contribute to about
40% of the Gross Domestic Product [22]. Despite this economic relevance, its vulnerable
and poor rural population, which is largely dependent on rain-fed agriculture, has a
limited capacity to respond to climate variability and change [2]. Understanding changes
in extreme rainfall at the local scale in this part of Burkina Faso is thus important to support
local autorities, households, and farmers with more specific information about extreme
rainfall variability. To the best of our knowledge, no local study about extreme rainfall
has been carried out in southern Burkina Faso. Hence, this study aims to understand past
changes in heavy rainfall. To this end, we investigate trends in rainfall characteristics and
explore the relation between extreme rainfall and SST in the Atlantic Ocean.

2. Study Area, Data, and Methods
2.1. Study Area

The study area is the southern part of Burkina Faso (Figure 1). The study area has a
size of 45,526 km2, representing 16,6% of the territory of Burkina Faso. With its tropical
climate, the rainy season lasts approximately six months starting in around May–June
and ending in around September–October with an annual rainfall ranging between 900
and 1200 mm. It is the rainiest region of Burkina Faso, and its vegetation is dominated by
Sudanese savannah. The daily temperature varies between 16 and 45 ◦C and reaches its
highest values in April. The Mouhoun river, also known as the Black Volta river, is the main
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river of Burkina Faso which allows rural people to develop market gardening activities
during the rain-off period.
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Figure 1. Topography, main rivers, and rainfall stations of the study area are located in the southern
part of Burkina Faso. Eastern, central eastern, northwestern, southeastern and southwestern are
administrative areas of Burkina Faso corresponding to Nahouri, Sissili, Haut-Bassins, Sud-Ouest,
and Cascades.

2.2. Data

We use daily rainfall and sea surface temperature data in this study. The rainfall
data for the rainy season, recorded between May and October over 32 years (1986–2017),
were collected from the National Meteorological Service (ANAM) of Burkina Faso. Access
to in-situ rainfall data was granted by a data request to ANAM. We obtained data from
22 stations, distributed rather equally across our study area (Figure 1).

The West African Sahel rainfall was shown to be positively correlated with the At-
lantic SST [20,23], thus being a promising predictor for extreme rainfall in our study area.
Atlantic SST data was downloaded from the NOAA National Centers for Environmental
Information (NCEI) website (https://www.ncei.noaa.gov/products/avhrr-pathfinder-sst,
13 July 2022). The data is globally available twice a day (day and night) on a grid of 4 km
resolution. We use the daily average of SST between May and October over 1986–2017.
Since different regions of the Atlantic could have different links with extreme rainfall, we
divide the Atlantic area into three equal subregions (North Atlantic, Middle Atlantic, and
South Atlantic). The North Atlantic (NA) covers the area between 20◦ N and 60◦ N. The
Middle Atlantic (MA) comprises the region between 20◦ N and 20◦ S, and the region from
20◦ S to 60◦S represents the South Atlantic (SA). We calculated the daily average of SST of
all grid values within each subregion and use this average as potential predictors for the
frequency and intensity of extreme rainfall.

2.3. Methods

Missing data is one of the major challenges when processing data in climatology and
hydrology. About 70% of climate stations obtained from ANAM contained missing data.
The percentage of missing data per station ranges between 0.6% and 13.6%. We compare
several gap-filling methods [24], namely the Arithmetic Mean (AM), Inverse Distance

https://www.ncei.noaa.gov/products/avhrr-pathfinder-sst
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Weighting (IDW), Normal Ratio (NR), Geographical Coordinates (GC), and Coefficient
of Correlation Weighted (CCW) in order to identify the most appropriate one to fill the
rainfall data gaps in the study area. Due to a large number of stations, we evaluate the
performance of the different methods for one station and use the best-performing method
to fill data gaps at all stations with missing data. The Kendall coefficient of correlation (τ)
and root mean square error (RMSE) are used to quantify the performance of the candidate
methods [25].

Using the gap-filled rainfall time series, we analyze rainfall trends across the study
area. To this end, we select 8t rainfall indicators that are part of the 27 indices of rainfall and
temperature indicators defined and recommended by the Expert Team on Climate Change
Detection and Indices (ETCCDI, [26]). Our set of indices contains three metrics describing
the mean behavior of rainfall and five metrics quantifying extreme rainfall (Table 1).

Table 1. Precipitation indices were used in this study to characterize (extreme) rainfall behavior.

Index Name Unit Description

R1day Wet days Days Annual number of wet days (day with rainfall ≥ 1 mm)
R10 Heavy precipitation days Days Annual number of days with rainfall ≥ 10 mm
R20 Very heavy precipitation days Days Annual number of days with rainfall ≥ 20 mm

R95p Very wet days Days Annual number of days with rainfall ≥ 95th percentile of the wet days
SDII Simple daily intensity mm/day Mean rainfall on wet days

RX1day Maximum 1-day precipitation Mm Annual maximum 1-day rainfall
RX5day Maximum 5-day precipitation Mm Annual maximum of consecutive 5-days rainfall

PRCPTOT Total wet-day precipitation Mm Annual total from wet days

Trends are quantified by Sen’s slope and the Mann–Kendall test with a significance
level of 5%. Both methods are non-parametric approaches that are widely used for an-
alyzing gradual trends in climatological and hydrological time series (e.g., [27–30]). To
obtain maps of rainfall trends, station trends are spatially interpolated by means of In-
verse Distance Weighting (IDW), which is one of the recommended methods for rainfall
interpolation [25,31].

In order to analyze the influence of the Atlantic SST on the frequency and intensity of
extreme rainfall, we apply the Peak-Over-Threshold (POT) approach of Extreme Value The-
ory within a nonstationary framework [32–34]. The POT approach is frequently preferred
over the Block Maxima approach as it makes better use of extremes [34]. When the threshold
u is optimally selected, POT converges toward a Generalized Pareto (GP) distribution:

GP(z|σu(s), γ(s)) = 1−
(

1− zγ(s)
σu(s)

)−1/γ(s)

+
, (1)

where σu (s) and γ(s)(γ(s) 6= 0) are the scale and shape parameters, respectively, at the
site s to be estimated and z is a value of rainfall over the threshold u with z > 0. The shape
parameter determines the type of distribution. Negative values of γ(s) imply that the
distribution GP is bounded, while the distribution GP has no upper bound for γ(s) > 0.
Thus, for positive shape values, the distribution is heavy-tailed [34].

The main challenge of the POT approach is the selection of an optimal threshold that
minimizes the bias in the parameter estimation; too high a threshold generates too few
excesses leading to high variance, while too low a threshold likely violates the asymptotic
basis of the model leading to bias [34]. We use the graphical methods of threshold stability
and mean excess plots to select an optimal threshold. These methods consist of finding
an appropriate threshold where the plots are approximately linear. Above the threshold,
the excesses tend to form clusters, creating a form of dependency amongst elements of the
same cluster, while Extreme Value Theory assumes that the data should be independent
and identically distributed. A simple way to handle this dependence of exceedances above
the threshold is to decluster them by determining clusters of excesses and replacing them
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with their maximum [35]. The new dataset sampled from the maximum of each cluster is
used to estimate the model parameters.

Given an optimal threshold, the excesses over the threshold u converge to the Poisson
process with rate parameter λ(s) [33,36,37]. The probability mass function of the Poisson
process is given as:

PP[λ(s)] =
exp(−λ(s))λ(s)n

n!
, (2)

with n = 1, 2..., N, where λ(s) > 0 is the rate parameter and N is the number of exceedances
of daily rainfall above the threshold u.

The combination of both Poisson and GP distributions is known as the Poisson-GP
model, and the probability that the cluster maximum of the Poisson-GP model is less than
z > u is expressed as [38]:

Pr{max 1<i<N Yi ≤ z} = exp

{
−λ(s)

(
1 + γ(s)

z− u
σu(s)

)−1/γ(s)
}

, (3)

where σu(s) and γ(s) are the scale and shape parameters of the GP model, respectively, and
λ(s) is the rate parameter of the Poisson distribution. The Poisson-GP model allows the
description of the intensity of extreme rainfall via the GP distribution and the frequency of
extreme rainfall via the Poisson distribution.

To quantify the influence of the Atlantic SST on extreme rainfall in the study area, we
define SST as a covariate in the nonstationary POT approach. We thus consider the scale
and rate parameters as functions depending on the daily average of SST of the Atlantic
Ocean. For both dependencies we use an exponential function, ensuring positive values
of these parameters [34] for all SST values. As the estimation of the shape parameter is
highly uncertain, it is not recommended to express this parameter as a function depending
on covariates in a nonstationary framework [34]. The parameters of the nonstationary
Poisson-GP model are thus expressed as:

σu(s, T) = exp(α0,s + α1,sT1 + α2,sT2 + α3,sT3 )
λ(s, T) = exp(β0,s + β1,sT1 + β2,sT2 + β3,sT3)

γ(s, T) = γ0,s

, (4)

where σu, γ, and λ are the scale, shape, and rate parameters, and T1, T2, and T3 denote the
average daily SST of the NA, MA, and SA. αi,s and βi,s (i = 0, 1, 2, 3) are parameters to be
estimated for site s. The distribution of GP characterized by σu(s, T) and γ(s, T) is used to
analyze the intensity of extreme rainfall, and λ(s, T) characterizes the Poisson distribution
for analyzing the frequency of extreme rainfall. The parameters αi,s and βi,s are slopes
of σu(s, T) and λ(s, T), respectively, which allow the evaluation of the change of extreme
rainfall intensity and frequency at each station s under the influence of Atlantic SST.

The likelihood ratio test at the 5% significance level is employed to determine which
of the two Poisson-GP models (stationary and nonstationary) is preferred given the sample
of extreme rainfall. We use the deviance statistic:

D = 2{l(M)− l(M0)}, (5)

where l(M) and l(M0) are the maximized log-likelihood functions of the nonstationary
model M and the stationary model M0, respectively. The deviance statistic D follows a
Chi-square distribution of υ degree of freedom, where υ is the difference in the number of
the parameters of M and M0 [34]. The model M0 is nested within M with the parameters of
M0 being a subset of the parameters of M. In this case, if the p-value of the deviance statistic
D is lower than 5%, then the hypothesis that the stationary model M0 is preferred over the
nonstationary model M is rejected. In that case, the nonstationary Poisson-GP model with
parameters depending on Atlantic SST better fits the extreme rainfall than the stationary
model with constant parameters. Once the choice between the stationary and nonstationary
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model was conducted based on the deviance test, it is necessary to check whether the
adopted model fits the data well. To assess model validity, quantile plots and probability
plots are commonly used graphical methods to perform model diagnosis in the univariate
framework of extreme value analysis [34]. Considering z1(s) ≤ z2(s) ≤ . . . ≤ zn(s) as an
ordered sample of the independent observations used to estimate the selected model, then
a probability plot consists of the points{(

F̂(zi(s)),
i

1 + n

)
, i = 1, 2, . . . , n

}
(6)

and the quantile plot consists of the points{( .

F̂−1
(

i
1 + n

)
, zi(s)

)
, i = 1, 2, . . . , n

}
(7)

where F̂ and F̂−1 are the estimated GP-Poisson model and its inverse function that was
selected based on the deviance test (see Equation (5)), respectively. Thus, the model is
considered to fit the data well when both the probability plot and quantile plot are close to
the unit diagonal [34].

3. Results
3.1. Rainfall Gap Filling

We generate artificial data gaps (5%, 10%, and 15%) at a station with few data gaps,
then we use all of the five candidate methods to fill the gaps and calculate τ and RMSE.
The performance of the five candidate methods to fill data gaps is given in Table 2 for three
fractions of missing data. IDW shows the best performance; it obtains the highest Kendall
coefficient of correlation and the smallest RMSE. Its performance is substantially better
than the performance of the other methods. This result agrees with other studies that found
IDW to be a suitable method for rainfall data gap filling [24,39]. Hence, we use IDW to fill
the data gaps in rainfall time series throughout the study area.

Table 2. Performance of gap-filling methods for station 1 (for location see Figure 1), which has few
data gaps, using the Kendall coefficient of correlation (τ) and root mean square error (RMSE).

5% of Missing Data 10% of Missing Data 15% of Missing Data

τ RMSE τ RMSE τ RMSE

AM 0.46 10.23 0.50 9.71 0.47 9.86
NR 0.46 10.21 0.50 9.73 0.47 9.84

IDW 0.96 2.29 0.92 2.93 0.88 3.71
CC 0.47 9.96 0.49 9.12 0.48 9.71
GC 0.47 10.11 0.47 9.12 0.48 3.91

3.2. Preliminary Statistics of Climatology Rainfall

The climatological average of the number of wet days (R1day); the total wet-day
precipitation (PRCPTOT); the annual maximum 1-day rainfall (RX1day); and the annual
number of days with rainfall ≥10 mm (R10), ≥20 mm (R20) and ≥95th percentile (R95p)
show some similarities in terms of distribution (Figure 2a–e,g,h). The higher values of these
indices with respect to their average (see Mean, Table 3) are observed in the southwest
part of the study area, while the eastern part has recorded values relatively lower than
their average. The climatological distribution of annual maximum precipitation over five
consecutive days (RX5days) differs from the distribution of previous rainfall indices. The
higher values of RX5days with respect to its average are observed in the western and
eastern parts, whereas its lower values are mostly found in the central part of the study
area. As for SDII (mean rainfall on wet days), it is almost uniformly distributed over the
study area (Figure 2f) with values more or less close to the average of 16.2 mm/day. Except
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for SDII and RX5day rainfall indices, most of the stations with rainfall index values lower
than their average are in the northern part of the study area, implying that the rainfall
indices have decreased climatologically from northeast to westsouth over the study area.
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Figure 2. Distribution rainfall indices given as the climatological average of R1day (a), PRCPTOT
(b), R10 (c), R20 (d), R95p (e), SDII (f), RX1day (g), and RX5day (h) distributed over the study area.
Circles denote climate stations. The blue (respectively red color) represents the areas with the index
value higher (respectively lower) than the climatological average of the study area and the white color
corresponds to the value close to the climatological average of rainfall indices. Maps are obtained by
interpolating station values using the IDW method.

3.3. Rainfall Trends

Changes in the number of wet days (R1day) show increases and decreases between
−9.9% and 4.4% per decade (Figure 3a). The three eastern regions show only decreasing
trends (some of them not significant), while the two western zones show a mixture of
upward and downward changes. For total wet-day precipitation (PRCPTOT) we also
detect a mixture of changes (Figure 3b) with 27% (41%) of stations showing significant
upward (downward) trends. The spatial pattern of changes shows a tendency towards
decreasing (increasing) precipitation in the southern (northern) parts. Trends at single
stations range from −6.8% to 4.6% per decade. Overall, we find different patterns for
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changes in R1day and PRCPTOT, and the direction of change in total precipitation is not at
all stations aligned with the direction of change in the number of wet days. The effect of the
superposition of both indicators is seen in SDII (mean rainfall on wet days, Figure 3f). Mean
daily rainfall intensity has changed significantly at 73% of stations with values between
−9.6% and 7.6% per decade. There is a tendency towards decreases in the south, while the
north shows a mixture of areas with increasing and decreasing trends.

Table 3. Climatology (normal) precipitation characteristics are given by minimum (Min), average
(Mean), standard deviation (SD), and maximum (Max). Min, mean, SD, and max of a given index
provide climatological precipitation of the corresponding index at the study area level.

Indices Min Mean (±SD) Max

R1day 48 58.2 ± 4.8 66
PRCPTOT 803.7 927.5 ± 57.6 1029.8

R10 28.3 31.1 ± 1.6 34.1
R20 14.3 16.6 ± 1.2 19.1

R95p 2.5 3.0 ± 0.3 3.5
SDII 14.4 16.2 ± 1.2 19.6

RX1day 61.8 74.5 ± 5.1 83.0
RX5day 92.8 106.7 ± 6.2 118.2

The spatial patterns for the annual maximum 1-day rainfall (RX1day) and annual
maximum of consecutive 5-days rainfall (RX5days) show some similarities (Figure 3g,h).
The south (southwestern and southeastern) tends to show downward trends, while the
western part of the northwestern region shows upward trends (up to 14.2% per decade) or
nonsignificant changes. Overall, we detect a tendency towards less intensive 1-day and
5-day rainfall maxima. Relatively to the frequency indices of heavy rainfall, i.e., the annual
number of days with rainfall ≥10 mm (R10), ≥20 mm (R20) and ≥95th percentile of the
wet days (R95p), respectively, we find mostly downward trends (Figure 3c–f). All climate
stations show significant downward trends for R95P with values between −13.5% and
−1.6% per decade. The spatial patterns for R10 and R20 are less homogeneous with some
areas in the northern part with significant upward trends.

3.4. Link between Atlantic SST and Heavy Rainfall

Using the threshold stability and mean excess graphical methods, we select an optimal
threshold beyond which daily rainfall is considered extreme rainfall. The optimal threshold
to ensure the stability of Poisson-GP parameters ranges from 30 to 53 mm with an average
value of 41.6 mm across all stations. With these thresholds, an average of 2.4% of daily
rainfall is considered extreme rainfall with a range from 1.1% to 4.5%. After the threshold
selection and the decluttering of excess values, we fit the stationary and the nonstationary
Poisson-GP models using the maximum likelihood method. Based on the deviance statistic
we find that the nonstationary Poisson-GP model with parameters depending on the daily
SST of NA, MA, and SA is preferred over the stationary model to represent the extreme
rainfall at all stations. Table 3 shows the deviance and the p-value associated with the
deviance test for each station (see Figure 1 for station locations). At the 5% significance level,
the deviance test at all stations is statistically significant, meaning that the non-stationary
model SST as a covariable outperforms the stationary model (see Table 3).

Table 4 shows that the nonstationary models with SST as covariables significantly
outperform the stationary models for all the stations. Thus, the validation of the nonstation-
ary model at the station level was performedusing probability and quantile plot methods.
The results pointed out that the nonstationary models are well-fitted to the rainfall data.
Figure 4 shows the quantile and probability plot results for stations 4, 13 and 18. We found
that the quantile and probability plots of these models are close to the unit diagonal. The
left column is the quantile plots, and the right column denotes the model probability plots.
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Figure 3. Trends in rainfall indices given as change per decade in % for R1day (a), PRCPTOT (b),
R10 (c), R20 (d), R95p (e), SDII (f), RX1day (g), and RX5days (h). Upward/downward triangles
denote stations with statistically significant upward/downward trends at the 5% significance level.
Circles show stations with non-significant changes. Maps are obtained by interpolating station values
using the IDW method.

Table 4. Performance of the deviance test at a 5% significance level for all the climate stations using
the p-values associated with deviance value (see Figure 1 for station localization).

Station 1 2 3 4 5

Deviance 85.07 148.58 42.76 60.49 38.99
p-value 3.19× 10−16 2.20× 10−16 1.30× 10−7 3.58× 10−11 7.18× 10−7

Station 6 7 8 9 10

Deviance 27.61 48.54 33.08 42.45 45.20
p-value 1.11× 10−4 9.03× 10−9 1.01× 10−5 1.50× 10−7 4.28× 10−8
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Table 4. Cont.

Station 1 2 3 4 5

Station 11 12 13 14 15

Deviance 60.56 45.39 40.16 69.31 36.51
p-value 3.47× 10−11 3.92× 10−8 4.24× 10−7 5.66× 10−13 2.20× 10−6

Station 16 17 18 19 20

Deviance 83.93 49.67 51.28 65.77 19.34
p-value 5.51× 10−16 5.47× 10−9 2.60× 10−9 3.00× 10−12 3.63× 10−4

Station 21 22

Deviance 56.20 52.93
p-value 2.66× 10−10 1.22× 10−9
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Figure 4. Quantile (a,c,e) and probability (b,d,f) plots of the nonstationary GP-Poisson model for
stations 4, 13 and 18, respectively. These are located in the northwest, southwestern and eastern (see,
Figure 1) areas, respectively. The left column denotes the quantile plots (a,c,e) of the nonstationary
models for station 4, 13 and 18, respectively. The right column represents the probability plots (b,d,f)
of the same models estimated at stations 4, 13 and 18. The quantile plots (a,c,e respectively) and the
probability plots (b,d,f) of the nonstationary models for station 4, 13 and 18 respectively, are close to
unit diagonal which implies that the nonstationary models fit well the data.
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Figure 5 shows maps of the slope values (α1,s, α2,s , α3,s, β1,s, β2,s, and β3,s; Equation (4))
of the nonstationary models. The frequency of extreme rainfall is positively associated with
NA SST throughout the study area with comparatively high slope values in the range of
3.1–9.5 (Figure 5a). That means that the frequency of extreme rainfall increases by a factor
of 3 to 9 when SST of NA increases by one degree Celsius. The influence of MA and SA
SST varies in the study area (Figure 5c,e); extreme rainfall frequency is positively affected
by higher SST values in some areas, while other areas are negatively affected. The slope
values of MA and SA are somewhat lower compared to the slope values slopes of NA. The
average of the absolute slopes is 6, 0.6, and 2.6 for NA, MA, and SA, respectively. Hence,
changes in SST of NA tend to have a stronger effect compared to changes in SST in MA
and SA. For the eastern region we find large positive associations between the frequency of
extreme rainfall and SST in all three parts of the Atlantic.
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Figure 5. Slope values of the linear relations between SST and extreme rainfall. Left column: Slope
values (β1,s, β2,s, and β3,s) for the frequency of extreme rainfall. A value of n means an n-fold increase
in the frequency of extreme precipitation per ◦C increase in SST. Right column: Slope values (α1,s,
α2,s, and α3,s) for the intensity of extreme rainfall. A value of n means an n% increase in the intensity
of extreme precipitation per ◦C increase in SST. Rows represent the different covariates, i.e., SST of
North Atlantic (upper), SST of Middle Atlantic (middle), and SST of South Atlantic (lower). The
impact of Atlantic SST on extreme rainfall is estimated at the station level and interpolated spatially
using the IDW method. The circles are rainfall stations. Figures (a,c,e) express the influence of upper,
middle, and lower Atlantic SSTs, respectively, on the frequency of extreme rainfall. Figures (b,d,f)
represent the influence of upper, middle, and lower Atlantic SSTs, respectively, on the intensity of
extreme rainfall.
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The intensity of extreme rainfall is significantly linked to the SST of NA, MA, and
SA, but the sign of this correlation is not homogeneous over the study area (Figure 5b,d,f).
SST of NA is positively associated with the intensity of heavy rainfall for most stations.
The slope values vary between 3.9% and 20.1% per ◦C. SST of MA only locally influences
the intensity of extreme rainfall in rather small areas in the central, southern, and eastern
parts. SA SST tends to increase extreme precipitation in the north and south, and decrease
extreme precipitation in central parts. For the Eastern region, we find a strong positive
association for all three parts of the Atlantic Ocean. Here, we find the highest slope values.
The intensity of extreme precipitation increases by 20.1%, 40.1%, and 39.9% per ◦C increase
in SST of NA, MA, and SA, respectively.

4. Discussion

To inform disaster risk reduction and climate adaptation at the local scale in West
Africa, it is important to understand the space-time behavior of rainfall. Understanding of
space–time variation in precipitation is necessary for the identification and monitoring of
flash flood hotspots, which facilitates the appropriate allocation of resources to flood risk
projects for a more effective emergency response to floods. Our study shows that rainfall
trends are spatially heterogeneous in southern Burkina Faso. Large-scale trend studies at
the national or supranational scale have concluded that extreme rainfall has become more
frequent and intense in West Africa [5,10–12]. We find not only a much more nuanced
behavior, based on the much higher density of stations in our study, but also some opposite
effects. For most rainfall indices, we find decreasing trends at the majority of stations.
Similar results were found by other local studies in the Oti Bassin in Togo [40] and in the
Vea catchment in Ghana, where more than 78% of stations showed downward trends in the
intensity and frequency of extreme rainfall [41]. This discrepancy between the large-scale
studies and local studies suggests that national or supranational studies may misinterpret
rainfall trends when they are based on scarce data.

Besides the overall tendency towards decreasing trends, we also find areas with
increasing trends. Most stations with upward trends are located in the northern part of our
study area. As this part is drier than the southern part, the standard catchphrase ‘dry gets
drier, wet gets wetter’ does not hold in our study area. It needs to be mentioned, however,
that the evidence for this catchphrase is rather weak [42].

Our nonstationary Poisson-GP model suggests that the frequency and intensity of
extreme rainfall are linked to SST in the Atlantic Ocean. The northern part of the Atlantic
plays a larger role, in particular in the frequency of extreme rainfall. Given the observed and
expected warming of the Atlantic as a consequence of anthropogenic climate change [43],
our modeling approach suggests that the hypothesis of stationary is no longer suitable for
extreme rainfall analysis in the study area.

The impact of the Atlantic SST on the frequency and intensity of extreme rainfall was
estimated at the station level and spatially interpolated using the inverse distance weighted
method. This approach has the advantage of simplicity but does not consider the spatial
dependence structure. An alternative, more sophisticated approach would be the general-
ized pareto process modeling [44] which is able to capture the spatial correlation directly
in the modeling framework. Further, we considered only the SST of the Atlantic. A more
comprehensive analysis including SST of other regions and/or other atmospheric variables
could result in more skillful covariates in the statistical modeling of extreme rainfall.

Our trend results, i.e., more downward trends than upward trends, seem to contradict
the general evolution of increasing flood events in Burkina Faso and adjacent countries. We
cannot attribute the increasing number of flood events and affected people to increasing
rainfall extremes. Only in the northwestern part of our study area, did we find increasing
trends, particularly in RX1day. This area is the second most frequently flooded region in
Burkina Faso from 1986 to 2016, affecting many people and their properties, only surpassed
by the central region of Burkina Faso [3]. Upward trends in extreme rainfall may have
contributed to this flood hotspot. This is in line with a study conducted in Mali by [45]
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who found that flash floods are extremely related to extreme rainfall. Otherwise, our
analysis supports the explanation that has been concluded for the increasing flood risk
in Ouagadougou north of our study area; namely that land use and land cover changes,
and population and urban growth, accompanied by low investments in flood-resilient
infrastructure and management, have been the main drivers of flood risk [3,46]. Similar
results were found in Mali, the country that borders the study area, where [45] pointed out
that about 58% of floods occurrence were caused by normal rainfall. According to the same
authors, these floods could be due to changes in land use and land cover and the increase
in impervious areas.

5. Conclusions

The study has investigated the spatiotemporal variability of rainfall characteristics and
the impact of SST of different areas of the Atlantic Ocean upon the frequency and intensity
of extreme rainfall for the period of 1986–2017 in the southern part of Burkina Faso. In
contrast to large-scale, data-scarce trend studies that concluded that extreme rainfall has
become more frequent and intense in West Africa, our results show a more nuanced picture.
Although trends vary with rainfall characteristics and in space, we find more downward
trends across the study area, particularly for indices representing extreme rainfall. We
also show that a nonstationary Poisson-GP model with SSTs as covariables outperform the
stationary Poisson-GP model, which implies that the assumption of a stationary nature
has to be considered with care when modeling the frequency and intensity of extreme
rainfall. Future work should explore whether the linkage between Atlantic SST variations
and extreme rainfall are strong enough to be used in water resources management, for
instance, for seasonal rainfall forecasting. Our results suggest that the recent increase in
flood disasters is more attributed to land use and land cover changes, and population
and urbanization growth than to the increase in rainfall extremes in the southern part of
Burkina Faso.
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