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Abstract: Climate-related hazards such as sand and dust storms (SDS) have various impacts on
human health, socio-economy, environment, and agroecosystems. Iran has been severely affected by
domestic and external SDS during the last two decades. Considering the fragile economy of Iran’s
rural areas and the strong dependence of livelihood on agroecosystems, SDS cause serious damage to
human communities. Therefore, there is an urgent need to conduct a vulnerability assessment for
developing SDS risk mitigation plans. In this study, various components of SDS vulnerability were
formulated through a geographic information system (GIS)-based integrated assessment approach
using composite indicators. By implementing a GIS multiple-criteria decision analysis (GIS-MCDA)
model using socioeconomic and remote sensing data, a map of rural vulnerability to SDS was
produced. Our results show that about 37% of Iran’s rural areas have experienced high and very
high levels of vulnerability to SDS. Rural areas in the southeast and south of Iran, especially Sistan
and Baluchestan and Hormozgan provinces are more vulnerable to SDS. The findings of this study
provide a basis for developing SDS disaster risk-reduction plans and enabling the authorities to
prioritize SDS mitigation policies at the provincial administrative scale in Iran.

Keywords: sand and dust storms; rural community; vulnerability mapping; GIS-MCDA; best–worst
method

1. Introduction

Sand and dust storms (SDS), as a global environmental hazard, occur under a wide
range of climatic conditions. This phenomenon originates from the interaction of natural
drivers, such as drought, and anthropogenic factors, such as mismanagement of water, soil,
and plant resources [1]. Due to the ability to transport fine-grained sand and dust particles
over long distances [2], they can have significant impacts on human health [3–6], and plant
species [7], even in places far from their emission sources [8].

As one of the vast and densely populated countries of the Middle East, Iran is located
in the so-called global dust belt, which starts from northwest Africa and ends in northeast
China [9,10]. Due to factors such as latitude, hydro-climatic characteristics, and topographic
features, very large areas of the country have dry and semi-dry climates, which makes SDS
activities a long-term, natural, and intrinsic feature of many plains across central Iran [11].
In addition to overexploitation and improper management of surface and groundwater
resources, unsustainable agricultural activities have resulted in the occurrence of land
degradation and desertification phenomena [12,13], which have led to the formation of
SDS sources across Iran over the last few decades [14–16]. In general, SDS events affecting
Iran come from both domestic and external sources [17]. The external SDS often originates
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from emission sources in Iran’s western border, i.e., Iraq, Syria, and Saudi Arabia [1,15,18].
In recent years, the frequency and intensity of SDS in Iran have increased significantly [19].
Mainly the rural areas located in the southwest, south, and southeast of the country in Ilam,
Khuzestan, Bushehr, Hormozgan, and Sistan and Baluchestan provinces are more affected
by SDS.

The geographical extent of Iran along different latitudes has led to climatic variabil-
ity [20]. Accordingly, water and land resources are available to expand agriculture, but only
in limited areas across the country. Approximately 70% of Iran has an annual rainfall of less
than 250 mm., while only 3% (i.e., 4.7 million ha) has an annual rainfall more than 500 mm.
The spatial distribution of the rural population mainly corresponds to agricultural lands in
Iran. With a predominantly arid climate, Iran has been facing an unprecedented water crisis
in recent decades due to climate change, periodic droughts, and anthropogenic activities.
These have adversely, and in some cases irreversibly, affected the ecosystem, economy, and
other aspects of livelihoods in many parts of the country, including rural areas [21,22].

Iran’s rural economy mostly depends on agricultural activities (crop farming, orchard
raising, and animal husbandry) [23]. About 50% of the active rural population is engaged
in the agriculture sector as their main source of income [24]. According to the general
population and housing census in 2016, about 26% of the country’s population is in rural
areas [25]. Today, rural communities in Iran are facing various challenges, including the
weakening of the rural economy, food insecurity, severe poverty and unemployment, and
a high migration rate [26]. The effects of these problems reverberate far beyond the rural
areas and afflict other sectors of the country with serious challenges. These include the
effect of high migration rates on the destination urban areas, the threat of food insecurity
due to declining agricultural production, and ecological imbalance resulting from the
excessive exploitation of natural resources [26].

Like other developing countries, Iran is highly vulnerable to climate change. Today,
both its urban and rural areas are facing the consequences and risks of climate change, such
as drought and SDS, through complex feedback mechanisms that affect infrastructural,
economic, social, and political systems [27]. What requires special attention is the severity
of the damage to the agricultural sector and its related businesses, as one of the most
SDS-affected economic sectors. SDS can have different effects on the agricultural sector,
including the quantitative and qualitative reduction of crop production and orchard yields,
the reduction of livestock products [28], and the spread of plant pests and diseases [29,30].
Low human development, poor infrastructure, heavy dependence on natural resources,
and limited government attention, have made rural areas more vulnerable to SDS, which
can seriously threaten the income and well-being of households. Considering the increase
in the severity and frequency of SDS events affecting Iran in recent years, this phenomenon
is considered a serious threat to sustainable rural development.

Given the key role of rural communities in sustainable development, one effective
and necessary action is risk mitigation and adaptation planning to tackle the adverse
effects of SDS. Combating SDS, developing capacity, and increasing the resilience of human
communities are costly issues that require careful planning. According to [31–33], assessing
vulnerability to climate change-derived hazards could effectively contribute to mitigating
their adverse effects. Even though vulnerability assessment is the first necessary step in
planning adaptation strategies and disaster risk reduction to combat SDS, the literature
shows that the vulnerability of Iran’s rural areas to SDS has not yet been investigated
comprehensively and remains largely unclear. Meanwhile, the few existing studies have not
focused much on SDS and mainly deal with villages and households [34]. Therefore, they
cannot provide a comprehensive understanding of the spatial patterns of rural vulnerability
to SDS in Iran.

Vulnerability is a multidimensional [35], complex, dynamic [36], and context-specific [37]
phenomenon that changes in space and time and is rooted in past conditions [36]. Many
approaches have so far been developed by researchers and institutions for the conceptual-
ization of vulnerability to different hazards, emphasizing different aspects of vulnerability,
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includes biophysical and socio-economy [38]. Meanwhile, approaches such as integrated
assessment consider relatively all aspects of vulnerability and can provide a better un-
derstanding of this phenomenon [39]. Vulnerability as a subjective concept is difficult to
measure. Therefore, it is better to make this concept operational instead of measuring it [40].
Vulnerability can be operationalized by mapping it to an observable concept, which is
called “vulnerability assessment” [40,41]. There are various definitions and interpretations
for vulnerability due to their wide application in different fields [42]. The lack of consensus
on the definitions of vulnerability has led to the development of different quantitative and
qualitative approaches to assessing it [43]. Efforts to operationalize vulnerability and its
related concepts have gradually built the foundation of index-based approaches for vulner-
ability assessment [44]. These approaches generally involve indicators that are operational
representations of a system’s feature or quality [40,41]. The composite index-based ap-
proaches have been more widely used since they use different indicators and can examine
various aspects/components of a vulnerable system [35,43,45].

There are various tools and techniques for vulnerability mapping of natural hazards
based on the composite index approach. Geographic information systems (GIS) is one
commonly used tool for vulnerability mapping [46]. Accordingly, many studies have em-
phasized the efficiency of GIS in combination with multi-criteria decision analysis (MCDA)
approaches for vulnerability mapping of hazardous phenomena, such as drought [47],
flood [48], landslide [49], and SDS [50].

This study is the first attempt to use GIS-MCDA to integrate an assessment of the
vulnerability of Iran’s rural areas to SDS on the national scale. Hence, it focuses on the
analysis of spatial distribution of multi-level vulnerability mapping of Iran’s rural areas to
SDS through a composite index approach.

2. Materials and Methods
2.1. Methodology

The integrated assessment approach presented in the vulnerability framework of
IPCC’s Fourth Assessment Report (AR4) [51] is adapted here for vulnerability mapping of
Iran’s rural areas to SDS. Accordingly, vulnerability is generally defined as a function of
three interrelated components, including (i) exposure (E), which refers to the physical effects
of a hazard as well as the nature and degree to which elements of a system are exposed
to the risk of that hazard; (ii) sensitivity (S), which generally refers to a system’s degree of
susceptibility or the degree of variability and is open to the effects of hazard drivers; and
(iii) adaptive capacity (AC), which quantifies the ability of the system to cope with, manage,
recover from, and adapt to the possible adverse effects of hazardous phenomena [44,50]. In
general, the vulnerability of a system has a positive relationship with E and S components
and a negative relationship with AC [52]. Considering the type of relationship between E
and S components, the addition (+) [52] and multiplication (×) [50] arithmetic operators
can be used for modeling. The effects of E and S components on vulnerability is converse
to that of AC. Accordingly, the geometric mean of E and S components is computed and
subtracted from AC through Equation (1):

Vulnerability = (E × S)
1
2 − AC (1)

To map and assess vulnerability based on the composite index approach, the present
study uses various indicators to formulate different components of vulnerability. As shown
in Figure 1, the procedure includes five steps:

(1) Defining indicators as GIS layers to formulate vulnerability components;
(2) Normalizing indicators based on their type of relationship (direct or inverse) with

corresponding component;
(3) Weighting indicators based on expert knowledge to involve their relative importance

in GIS-MCDA modeling;
(4) Creating a vulnerability map by combining components; and
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(5) Analyzing the sensitivity of the spatial pattern of the vulnerability levels to changes
in the component’s weights.
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Figure 1. Methodology developed to assess the vulnerability of rural areas to sand and dust storms.

2.1.1. Vulnerability Indicators

In general, two approaches are used to define an indicator; one is based on the
theoretical understanding of relations, and the other is based on statistical relations. The
first approach is deductive and the second is inductive [53]. Based on the theoretical
understanding of the SDS phenomenon, literature review, expert knowledge, and data
availability, this study developed indicators using socioeconomic and remote sensing data
to formulate vulnerability components, i.e., E, S, and AC (Table 1).

Vulnerability can be assessed at different scales, such as the household, local, national,
regional, and global [53]. Issues concerning scale are essentially related to how data are
collected and displayed [39]. Considering that data for calculating S and AC indicators
were available at the county scale, we adapted our modeling at this spatial scale. Hence,
the indicators were defined based on the data for the rural areas of the counties in Iran.
The county is between the village and the province scales in Iran’s political–administrative
divisions. Therefore, the county scale (Figure 2) is expected to provide satisfactory details
about the SDS vulnerability pattern in rural areas of Iran.
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Table 1. Components and corresponding indicators for assessing vulnerability of rural areas to SDS.

Component Indicator Description Time Scale Relationship BWM Weight Data Source Reference

Exposure

Precipitation
(Pr)

Average annual
cumulative

precipitation
2000–2021 - 0.331 TerraClimate

[54,55]
Air

temperature
(AT)

Average annual
air temperature 2000–2021 + 0.169 FLDAS

Aerosol optical
depth (AOD)

Average AOD as a
measure of the

columnar atmospheric
aerosol concentration

2000–2021 + 0.331 MODIS-
Terra/Aqua [16,56]

Visibility
(Vis)

It is the measure of the
distance at which an
object can be clearly

observed by
unaided eye

2000–2021 - 0.169 Meteorological
stations [57]

Sensitivity

Occupancy
(Occ)

Ratio of people
per dwelling 2016 + 0.252

Population and
Housing
Censuses

[58–60]

Female-
headed

households
(FHH)

Ratio of Female-headed
households to total
female population

2016 + 0.224
Population and

Housing
Censuses

[43,54,60]

Elderly (El) Ratio of >65 years old
to total population 2016 + 0.125

Population and
Housing
Censuses

[55]

Children (Ch) Ratio of 0–4 age group
to total population 2016 + 0.399

Population and
Housing
Censuses

Adaptive
Capacity

Literacy (Lit)
Ratio of literate people

to rural population
>6 years old

2016 + 0.050
Population and

Housing
Censuses

[54,60,61]

Active
population

(AP)

Ratio of 15–64 age
group to

total population
2016 + 0.150

Population and
Housing
Censuses

[62]

Labor force
participation
rate (LFPR)

Ratio of labor force to
active population 2016 + 0.088

Population and
Housing
Censuses

[63]

Bank (Ba) Ratio of banks to 10,000
people 2016 + 0.032 Statistical

yearbook of Iran [58,60]

Women’s rural
funds (WRF)

Ratio of women’s rural
funds

to 10,000 people
2019 + 0.040

Agricultural
Research

Education and
Extension

Organization
(AREEO)

-

Membership in
cooperative
companies

(MCC)

Ratio of rural
cooperative companies

to 10,000 people
2016 + 0.040 Statistical

yearbook of Iran [64]

Road (Ro)
Ratio of rural asphalt

roads to total
rural roads

2016 + 0.105 Statistical
yearbook of Iran [54,61,64]

Agricultural
machinery

(AM)

Ratio of number of
combine harvester +

tractor to agricultural
land to county area

2016 + 0.095 Statistical
yearbook of Iran -

Agricultural
yield (AY)

Ratio of agricultural
production to
cultivated area

2018 + 0.075 AREEO -
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Table 1. Cont.

Component Indicator Description Time Scale Relationship BWM Weight Data Source Reference

Adaptive
Capacity

Livestock per
capita (LPC)

Ratio of livestock to
population 2016 + 0.092 Statistical

yearbook of Iran [60]

Irrigated
cropland area

(ICA)

Ratio of irrigated lands
to croplands to

county area
2018 + 0.033 AREEO [61]

Rural health
centers (RHC)

Number of rural health
centers per

10,000 population
2016 + 0.067 Statistical

yearbook of Iran

[54,60]
Rural health

houses (RHH)

Number of health
houses per

1000 population
2016 + 0.133 Statistical

yearbook of Iran
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Figure 2. Iran county map (a number of 429) and SDS-affected areas determined using the proposed
threshold by [16], i.e., average MODIS AOD > 0.19 from 2000 to 2022.

2.1.2. GIS-MCDA Weighting

Indicators have relatively different importance for producing the component maps of
SDS vulnerability. Therefore, it is essential to determine the weight of each indicator, which
is a key step in vulnerability assessment [65]. Various subjective and objective weighting
methods have been developed in the literature. The former approaches have been used in
many fields; however, they are dependent on expert knowledge and suffer from subjectivity.
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Although the latter methods do not have a subjectivity problem, they are highly dependent
on objective data [66].

This study employed the best-worst method (BWM) [67], which is a subjective weight-
ing method relying on pair-wise comparisons of indicators. BWM is similar to analytic
hierarchy process (AHP) [68], except that it has fewer pair-wise comparisons and pro-
vides more consistent and, ultimately, more reliable results. To implement BWM, the best
(i.e., most important/desirable) and the worst (i.e., least important/desirable) indicators
are identified vis-à-vis each of the SDS vulnerability components. Then, through the
best-to-others and others-to-worst vectors, the priority of the best indicator compared to
other indicators and the priority of other indicators compared to the worst indicator are
determined, respectively. This procedure uses pair-wise comparisons and a numerical scale
between 1 and 9. The final weights of the indicators are determined by formulating and
solving a maximization problem [69].

Here, a questionnaire was designed in accordance with the purpose of the work, in
which the list of indicators, their definition, and their relationship with the corresponding
SDS vulnerability component were described. Then, 25 questionnaires were filled out by
experts in the fields of environmental sciences, natural resources management, agriculture,
and geography. Finally, after calculating the optimal weights, to involve the opinions of all
experts, the arithmetic mean of weights for each indicator was obtained [70].

2.1.3. Indicator Normalization

To assess vulnerability, it is necessary to convert different indicators into the same unit
to make them comparable [71]. The SDS vulnerability indicators were normalized based
on their functional relationship with the corresponding components. The minus and plus
signs in Table 1 show the functional relationship of each indicator to the corresponding
component. There is a direct relationship (+) when the value of a component increases
by increasing the value of its corresponding indicators, whereas an inverse relationship
(−) is in the opposite case [72]. Accordingly, maximum (Equation (2)) and minimum
(Equation (3)) methods were used to normalize indicators with direct and inverse relation-
ships, respectively.

vmaxij =
Xij − Xmin

i

Xmax
j − Xmin

j
(2)

vminij =
Xmax

j − Xij

Xmax
j − Xmin

j
(3)

where, vmaxij and vminij, respectively, express the normalized maximized and minimized
values of the ith pixel in the jth indicator, Xij is the original value of the ith pixel in the jth
indicator, and Xmin

i and Xmax
j , respectively, are the maximum and minimum values in the

jth indicator [73,74].

2.1.4. GIS-Based SDS Vulnerability Mapping

First, the GIS layers corresponding to the defined indicators (Table 1) were spatially
resampled to 1 km pixel size using the nearest neighbor algorithm. Then, using the
weighted linear combination (WLC) method based on GIS-MCDA, the obtained weights
and normalized indicators were combined, where the decision maker assigns relative
weights to each indicator map. Accordingly, the maps of the components are produced
through the weighted sum of the indicators using Equation (4) [75].

Ci =
n

∑
j=1

aijWj (4)

where, Ci represents the final value of the ith pixel in each component, aij is the normalized
value of the ith pixel of the jth indicator, and Wj is the weight of the jth indicator. By using
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the maps of E, S, and AC components in Equation (1), the SDS vulnerability map of rural
areas was produced. Finally, to investigate the spatial distribution of SDS vulnerability in
different rural areas of Iran, the obtained map was categorized into five levels/categories,
including very low, low, medium, high, and very high.

2.1.5. Sensitivity Analysis

The subjectivity of experts’ opinions causes the calculated weights for the indicators
to be accompanied by uncertainty, which may affect the results of the decision-making
issue [66]. Sensitivity analysis was performed to investigate the impact of the uncertainty
caused by changes in the weights of indicators obtained using BWM on the spatial distribu-
tion of SDS vulnerability levels. In this way, changes in the area of SDS vulnerability levels
can be interpreted as the result of changes in the weights of indicators. For this purpose,
the sensitivity of the overall score of vulnerability levels to changes in the weight of the
indicators was determined in a range from −10% to +10%, with a 1% change interval [69].
Since the sum of the weights of indicators for each component must be equal to 1, in each
repetition, by changing the weight of each indicator, the weight of other indicators was
changed to compensate for the weight change according to their proportion. Along with
the changes in the weights of the indicators, corresponding component and vulnerability
maps were reproduced. In all repetitions, the SDS vulnerability maps reproduced using
different weights were categorized into five levels (from very low to very high) and their
areas were measured. Finally, for each component, the average changes in the area of
very high level of vulnerability were analyzed relative to the changes in the weight of the
corresponding indicators.

3. Results and Discussion
3.1. Vulnerability Indicator

The SDS vulnerability indicators at the county scale were produced based on the
expert knowledge and data availability. Hence, the various aspects of SDS, including
climatic characteristics, SDS events, the affected population and human resources, socio-
economic characteristics, infrastructures, and health services, were formulated in the form
of vulnerability indicators (Table 1). GIS layers produced for indicators of E, S, and AC
components are presented in Figure 3. The normalization process of the indicators was
performed based on their relationship with the corresponding component. As presented
in Table 1, the indicators related to the AC component all have a positive functional
relationship with it. According to Equation (1), increasing AC reduces the vulnerability of
rural areas to SDS. Therefore, in AC indicators, the higher values indicate a better condition
of rural areas against SDS. Contrary to the AC, the AT and AOD indicators of E and
all indicators of S components have a positive relationship with SDS vulnerability. The
two indicators, Pr and Vis, have an inverse relationship with the E component and SDS
vulnerability, which was considered in the normalization process. Hence, the increase of E
and S components has increased the vulnerability of rural areas to SDS.

3.2. Best-Worst Method

By taking the advantages of expert knowledge through questionnaires, the weights
of indicators were calculated using BWM. The results revealed that Pr and AOD, Ch, and
AP and RHH indicators of E, S, and AC components have received the highest weights,
respectively. While the AT, El, and Ba indicators of E, S, and AC components have received
the lowest weights, respectively (Table 1). It is worth noting that the indicators with the
highest and lowest weights will correspondingly have the highest and lowest impacts on
the related component maps and, subsequently, on the final vulnerability map.
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vulnerability assessment to sand and dust storm. See Table 1 for acronyms.

3.3. Vulnerability Components

Using Equation (4) and applying the weights obtained for the indicators (Table 1),
maps of E, S, and AC components were produced (Figure 4). The central, southwestern,
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southern, and southeastern regions of Iran experienced the highest SDS exposure in the
period from 2000 to 2021 (Figure 4). As [15,16] have also acknowledged, in addition to
domestic SDS sources, the SDS emitted from external sources located in Syria, Iraq, and
Saudi Arabia also contribute to affecting these areas (especially in spring and summer).
Regarding the SDS-affected areas in central Iran, despite the high SDS exposure, since
these areas have a very small and scattered population, they are less important than the
other exposed areas. As Figure 4 shows, the southeast of the country (especially Sistan and
Baluchistan province) has the highest SDS sensitivity. Since socio-demographics indicators
were used to calculate the S component (see Table 1), the results are in agreement with
the findings of [76], which showed that Sistan and Baluchistan province has the lowest
human development index (HDI) in Iran. The AC component is obtained from various
socio-economic indicators. As can be seen in the map of this component (Figure 4), the
northwestern and central parts of the country have better conditions, while the east and
southeast regions of Iran are suffering from lower adaptive capacities.
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3.4. Iran’s Rural Vulnerability to SDS

The SDS vulnerability map was produced using Equation (1). The map was catego-
rized into five levels, from very low to very high [77], through the Natural Breaks method
(Figure 5), which is performed by minimizing the average deviation of each category and
maximizing the deviation between them. In this method, the breaks determine categories
with values which satisfy the minimum and maximum intra-class and inter-class variance,
respectively [78]. As shown in Figure 5, the counties located in the southeast and south of
Iran have experienced the highest level of vulnerability to SDS.

It is noteworthy that high SDS exposure (i.e., high frequency and intensity) in an area
does not necessarily mean high vulnerability, because S and AC components also play a role.
For instance, Khuzestan province has been considered as one of the most SDS-affected areas
in Iran [50,79], which resulted in the high value of the E component. However, since the
amount of S and AC components in this province are relatively low and high respectively,
Khuzestan is placed in the medium vulnerability level (except for Hamidiyeh, Bavi, and
Karun counties). As another example, the E and S components were relatively high and
low, respectively, and the AC component was very low in South Khorasan province, which
caused most of the province to be placed in the high vulnerability level.

To create a general view of the rural vulnerability to SDS in Iran, the percentages of
villages, households, and population in different SDS vulnerability levels were extracted.
As shown in Figure 6, the highest and lowest percentage of villages, households and
population are placed in very low and very high SDS vulnerability levels, respectively.
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Figure 6. Percentage of villages, households, and rural population affected by different levels of SDS
vulnerability in Iran.

As shown in Figure 5, the provincial administrative borders impose an obvious spatial
distribution to the SDS vulnerability levels, which is somehow independent of the situation
of villages and counties to SDS exposure. This reveals the key role of provincial manage-
ment policies on rural vulnerability to SDS. For instance, Ilam and Khuzestan provinces in
the southwest of Iran have almost the same situation in terms of climatic characteristics and
SDS, but they are placed in different SDS vulnerability categories. This can be attributed to
the different levels of economic, social, and administrative development of the provinces.

Considering the provincial administrative borders of SDS vulnerability, the average
vulnerability values at the county level were used to obtain the provincial SDS vulnerability
map (Figure 7). Results suggest that the rural areas of Sistan and Baluchestan, Hormoz-
gan, Kerman, South Khorasan, North Khorasan, and Ilam provinces have experienced
the highest SDS vulnerability. In contrast, Gilan and Ardabil provinces have the lowest
SDS vulnerability.
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In different countries of the world, various mitigation measures have been taken to
combat SDS by considering the type and origin of the emission sources [80], including
stabilizing the soil surface by biological/chemical mulching, planting climate-adapted
shrubs and trees, setting up windbreaks, and creating mechanical and biological barriers
(e.g., dead vegetation) [81]. The SDS mitigation measures have been implemented to control
the internal SDS sources in Iran. Additionally, many areas of the country are highly affected
by external SDS sources, especially the sources downstream of the Tigris and Euphrates
River basins [82]. Due to the large extent of SDS emission sources, these activities usually
face many obstacles. Hence, to reduce the vulnerability of SDS-affected rural areas of Iran,
one of the most effective solutions is the improvement of AC indicators, which may lead to
increasing rural resilience against SDS. This highlights the importance of SDS vulnerability
assessment as a basis for planning procedures and budget allocation to improve AC by
authorities based on the provincial prioritization of the SDS vulnerability map presented in
this study (Figure 7).

3.5. Sensitivity Analysis

As shown in Figure 8, the most changes in the area of the very high vulnerability
level relative to changes in the weights of the corresponding indicators were obtained
for the exposure component. Meanwhile, the other components show relatively less area
changes. Here, more area changes are interpreted as more sensitivity of the component to
changes in the weight of the corresponding indicators. In general, the area of the very high
vulnerability level has significantly changed in negative weights for all components.
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4. Conclusions

Today, the effects of sand and dust storms (SDS) on human societies are in the spotlight
of environmental investigations. Rural communities deserve more attention due to their
livelihood depending on natural resources, including agricultural activities. In this study, a
vulnerability assessment of rural areas was carried out as the first necessary step to mitigate
the risk of SDS in Iran. For this purpose, a geographic information system-multiple criteria
decision analysis (GIS-MCDA) spatial–temporal modeling procedure was developed based
on socioeconomic and remote sensing data. Hence, the vulnerability was formulated
through the development of measurable indicators. The proposed methodology discovered
the key SDS rural vulnerability indicators and could be generalized to other countries, as
well as in different scales from local to national.

The produced SDS vulnerability map shows that about 37% of Iran’s rural areas
are subjected to high and very high vulnerability levels. Our results revealed that a
provincial administrative pattern is evident in the SDS vulnerability map. This highlights
the significant impact of provincial management policies on SDS vulnerability in rural
areas. The results of this work can be employed as a basis for developing insurance and an
SDS damage compensation index for rural areas of Iran. In addition, the findings can be
used as a guidance for policy making and budget allocation in line with SDS mitigation
and adaptation programmes in rural areas.

It is planned to implement the proposed methodology using freely available data to
map the global rural vulnerability to SDS.
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