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Abstract: More than 60 percent of the global surface is covered by clouds, and they play a vital
role in the hydrological circle, climate change, and radiation budgets by modifying shortwaves
and longwave. Weather forecast reports are critical to areas such as air and sea transport, energy,
agriculture, and the environment. The time has come for artificial intelligence-powered devices
to take the place of the current method by which decision-making experts determine cloud types.
Convolutional neural network models (CNNs) are starting to be utilized for identifying the types
of clouds that are caused by meteorological occurrences. This study uses the publicly available
Cirrus Cumulus Stratus Nimbus (CCSN) dataset, which consists of 2543 ground-based cloud images
altogether. We propose a model called Cloud-MobiNet for the classification of ground-based clouds.
The model is an abridged convolutional neural network based on MobileNet. The architecture of
Cloud-MobiNet is divided into two blocks, namely the MobileNet building block and the support
MobileNet block (SM block). The MobileNet building block consists of the weights of the depthwise
separable convolutions and pointwise separable convolutions of the MobileNet model. The SM block
is made up of three dense network layers for feature extraction. This makes the Cloud-MobiNet
model very lightweight to be implemented on a smartphone. An overall accuracy success of 97.45%
was obtained for the CCSN dataset used for cloud-type classification. Cloud-MobiNet promises to be
a significant model in the short term, since automated ground-based cloud classification is anticipated
to be a preferred means of cloud observation, not only in meteorological analysis and forecasting but
also in the aeronautical and aviation industries.

Keywords: Cloud-MobiNet; remote sensing; artificial intelligence; convolutional neural network;
climate change; machine learning; radiation budget; weather forecast; cloud prediction; smartphone

1. Introduction

Cloud observation forms part of the core duties of meteorologists as it helps them to
make informed decisions in weather forecasting. Clouds are masses of water droplets or
ice particles floating in the sky. The type of cloud, the total amount of cloud (cloud cover),
and the height of the cloud are the three main factors that meteorologists consider while
observing clouds. Essentially, there are ten main types of clouds. They are classified as
high clouds, medium clouds, or low clouds by the World Meteorological Organization
(WMO). High clouds include cirrus (Ci), cirrocumulus (Cc), and cirrostratus (Cs), whereas
medium clouds include altocumulus (Ac), altostratus (As), and nimbostratus (Ns). Stratus
(St), stratocumulus (Sc), cumulus (Cu), and cumulonimbus (Cb) are some of the low clouds.

More than 60 percent of the global surface is covered by clouds, and they play a
vital role in the hydrological circle, climate change, and radiation budgets by modifying
shortwaves and longwave [1]. Each cloud, as well as the combination of two or more
clouds, has its meteorological phenomena. For instance, in the aviation industry, though
aircraft can experience turbulence in clear air, clouds contribute to the greater amount of
turbulence experienced by the aircraft. Although most commercial airlines fly above much
of the clouds, they still fly through clouds during landing and takeoff at the airports. A
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typical commercial jet has a cruising altitude of around six to seven miles (nine to 11 km)
above sea level; hence, on a long-distance flight, a plane will generally be above most
clouds, except for cirrus and the towering cumulonimbus.

Air passengers experience a bumpy flight when the aircraft enters clouds ranging
from puffy cumulus clouds, which are also known as fair-weather clouds, to monstrous
cumulonimbus clouds with their characteristic anvil-shaped tops, billowing sides, and
ominously dark bases. When clouds are cooler than the surrounding air, the contrast in
density between the clouds and the surrounding air creates a sort of “pothole” in the sky,
resulting in a less-smooth flight. Storm clouds, such as cumulonimbus, are the types of
clouds that most pilots want to avoid. Cumulonimbus clouds generally contain heavy
rain, lightning, hail, strong winds, and occasionally tornadoes. Pilots and air traffic control
pay close attention to the weather and route flights around these types of storm clouds.
Similarly, clouds can block light and heat from the Sun, making Earth’s temperature cooler.

In meteorology, cloud cover is measured in oktas, or eighths of the sky. The observers
divide the sky into eight boxes in their minds as they look up at it, and then picture all the
clouds they can see being crammed into these boxes. Then, they count how many boxes the
cloud fills. The number of boxes they will receive corresponds to the number of oktas of
clouds. Zero oktas represent a complete absence of cloud, 1 okta represents a cloud amount
of one-eighth or less, but not zero, 7 oktas represent a cloud amount of seven-eighths or
more, but not full cloud cover, while 8 oktas represent full cloud cover with no breaks.

Meteorologists also use terminology to convey generally how cloudy it is; for instance,
“few clouds” refers to 1 to 2 oktas, the “scattered cloud” refers to 3 to 4 oktas, where about
half the sky is covered, and the “broken cloud” is 5 to 7 oktas, where much of the sky is
covered and “overcast” is 8 oktas of cloud with no breaks in the cloud. When there is no
presence of clouds in the sky, the reported cloud amount as “nil”.

Similarly, at most synoptic observing stations, cloud base (height) is readily measured
by an instrument to a reasonable level of accuracy. The cloud base recorder employs a
pulsed diode laser LIDAR (light detection and ranging) technology [2], whereby short laser
pulses (eye safe) are sent out in a vertical or near vertical direction. The backscatter caused
by reflection from the surface of the cloud, precipitation, or other particles is analyzed to
determine the height of the cloud base. Many modern cloud base recorders are capable of
detecting up to three cloud layers simultaneously.

However, some meteorologists at weather observation stations still rely heavily on the
manual estimation of clouds’ height. The observers determine the types of clouds present
in the sky and use a generally estimated range of each of the 10 types of clouds’ heights to
estimate the height of the cloud observed. For example, low clouds, which include cumulus
clouds, can form anywhere from near the surface up to 2000 m (6500 feet). Middle clouds
form at altitudes of 2000–4000 m (6500–13,000 ft) above ground near the poles, 2000 to
7000 m (6500–23,000 ft) at mid-latitudes, and 2000 to 2600 m (6500–25,000 ft) at the tropics.
High clouds have base heights of 3000 to 7600 m (10,000–25,000 ft) in polar regions, 5000 to
12,200 m (16,500–40,000 ft) in temperate regions, and 6100 to 18,300 m (20,000–60,000 ft) in
the tropical regions.

The most important aspect of cloud observation is cloud identification, as opposed
to cloud base (height) and cloud amount (cloud cover). It is quite challenging for meteo-
rologists to determine the type of cloud present at any particular time due to the clouds’
similarity in shape, color, form, and texture. It depends on the observer’s knowledge,
experience, and color vision to identify clouds accurately.

Weather forecast reports are critical to areas such as transportation (air, sea, and land),
agriculture, energy, the environment, and the general public. Given the potential for
misclassification, clouds often cause weather forecasts to be inaccurate, thereby exposing
lives and property to extreme weather disasters.

To forestall such occurrences, a variety of measurement equipment, including satellite-
based and ground-based remote sensors, is used to collect the necessary cloud data for
classification tasks. Ceilometers are standalone devices that use laser-based light detection
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and range (LIDAR) technology to measure the height profiles of clouds and aerosols [2].
However, there are difficulties involved in using ceilometers to gauge cloud height. They
do not display the type of cloud observed, are extremely expensive and, when used
as a standalone instrument, are large and heavy, difficult to use, and require specialist
knowledge. Furthermore, they are fragile and unreliable due to their susceptibility to
weather conditions. Examples of ceilometers are the Eliason CBME80B and the Vaisala
CL31. Additionally, clouds may be observed, from a downward perspective, by satellite-
based weather equipment across wide regions. However, their spatial resolution is too low
to represent small-scale cloud features across large regions [3].

Several types of studies have been undertaken in an attempt to find a better method
of cloud observation. Although the acquired accuracy was not sufficient owing to dataset
constraints and the approach utilized, Zhuo et al. [4] developed a color-census transforma-
tion to extract texture and structural information from a color-sky image. Refs. [4–6] have
advocated using hand-crafted elements, including color, texture, structure, and others, to
classify ground-based cloud images in their investigations. He et al. and Labati et al. [7,8]
also explored the use of machine-learning-based convolutional neural networks to classify
ground-based clouds. Furthermore, Shi et al. [9], for example, denoted each ground-based
cloud image with deep convolutional activation-based features acquired through the pool-
ing of the convolutional activations of each feature map, and ran tests on two datasets with
784 cloud images in five classes and 1500 images in seven classes.

In another experiment to classify 1231 cloud images into nine groups, Ye et al. [10]
retrieved features from various convolutional layers, in which discriminative-local patterns
are picked and subsequently represented via the Fisher vector. The learning-group-patterns
method extracts cloud properties using wireless sensor networks [11]. The combined accu-
racy of the two databases, on the other hand, is 81%. The task-based graph convolutional
network (TGCN) model, which combines graph computation with a deep network to
classify ground-based clouds, was also suggested by [12]. CNNs, which are a type of
deep-learning architecture, have previously excelled in a variety of fields, including pattern
recognition and computer vision [13,14].

Orthodox methods fail to describe and extract the characteristics of clouds because of
the convolution of cloud texture and patterns, but CNNs can learn increasingly intricate
patterns and discriminative textures from vast pre-trained and labeled datasets [15]. Addi-
tionally, convolutional neural networks typically feature tiered characteristics-extraction
frameworks. On the whole, CNNs shallow layers capture fine textures, such as edge and
shape, but the deeper layers represent high-level semantic data based primarily on pixels.
Previous research findings indicate that both semantic features and textures are vital for
cloud characterization [4].

Despite CNN’s image-classification prowess, few researchers have evaluated its accu-
racy and effectiveness in cloud classification. Cloud images have different qualities in cloud
representation, particularly for contrails, since they are distinctive texture images with odd
forms. Given the incredibly varied and difficult-to-classify characteristics of clouds, the
adaptive-learning aspect of neural network classification provides a high-accuracy and
computationally efficient alternative to cloud classification [16]. Fabel et al. [17] used about
300,000 semantic segmentations of ground-based all-sky images (ASIs) in two different
pretext tasks for pretraining. One of them pursues an image reconstruction approach,
while the other is based on the deep cluster model, an iterative procedure of clustering
and classifying the neural network output. Li et al. [18] classified ground-based cloud
images by using contrasting self-supervised learning to pre-train the deep model with
a contrastive loss and momentum update-based optimization. Liu et al. [12] classified
ground-based cloud images by using a transformer-based GCI classification method that
combines the advantages of the CNN and transformer models. Toğaçar et al. [19] also
classified clouds by using super-resolution, semantic segmentation approaches, and binary
sailfish optimization methods with deep learning models.
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From cloud representation to cloud classification, the spatial format of fully connected
(FC) features, as well as the local texture data of shallower convolutional layers, are crucial.
Although these studies helped with cloud classification, a reliable cloud classification is
not yet possible. As a result, work on an automated method that can accurately classify
ground-based cloud images is continuing.

Therefore, we present Cloud-MobiNet, a robust CNN model for ground-based cloud
classification that not only provides excellent classification accuracy but is also compact,
efficient, portable, and can be used on smartphones. This study focuses on finding a
more reliable way of classifying clouds in real-time to curtail the problems associated with
employing ceilometers and other traditional methods, such as human cloud observation,
which depends on the observer’s training, expertise, and color vision.

The different sections of this study are arranged as follows. The Cloud-MobiNet model
is explained, followed by descriptions of the dataset and data preprocessing utilized in
the experiment, which is followed in turn by an explanation of Section 2’s model-training
procedure. The experimental results, model-performance assessment, classification report,
confusion matrix, and model deployment on a smartphone are then covered in depth in
Section 3. The results are discussed in Section 4. Finally, Section 5 provides a summary of
the findings.

2. Materials and Methods
2.1. Model Architecture

Cloud-MobiNet is an abridged convolutional neural network model, based on Mobile-
Net, used for classifying ground-based cloud images. The architecture of Cloud-MobiNet is
divided into two blocks, namely the MobileNet building block and the Support MobileNet
block (SM block). The MobileNet building block consists of the weights of the depthwise
separable convolutions and pointwise separable convolutions of the MobileNet model,
while the SM block is made up of three dense network layers of neurons. The three dense
layers are purposely introduced for the extraction of features from the given cloud images.

The motive behind this methodology is to utilize the transfer of knowledge from
the source domain DS of natural images to our target domain of ground-based cloud
images DT .

Therefore, a predicted target image yTi is calculated as follows:

yTi = DS + DT , (1)

where the predicted target image yTi is the 11 categories of class images [yTi =
{Ci, Cc, Cs, Ac, As, Ns, St, Sc, Cu, Cb, Ct}].

The target domain DT is the total number of dense layers in the (SM Block)

[DT = {DL1 + DL2 + DL3}]

This means that a target classifier must be trained such that, given a ground-based
cloud image from the target domain DT , we obtain a prediction about the classes of the
image in 11 categories. Therefore, a predicted target image yTi is obtained through the
transfer of the weights of the source domain DS and the weight of the extracted features of
the target domain’s image by the 3 dense layers DT . This is specified in Equation (1). To
reduce the weight of the MobileNet parameters, the top 1000 neurons of MobileNet network
layers were frozen. The supplied image measures 224 × 224 × 3, which represents the
width, height, and RGB channel, respectively. MobileNet is meant to be utilized in mobile
applications [20], since it is a lightweight deep neural network. This makes Cloud-MobiNet
very light, and with a significantly reduced number of parameters compared to the already
existing cloud-classification architectures, such as CloudNet [21,22]. Figure 1 shows the
Cloud-MobiNet architecture.
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Figure 2. MobileNet building block.

MobileNet networks’ depthwise separable convolutions minimize the size and com-
plexity of the model. Since the models are small, they have fewer model parameters. The
depthwise separable convolution operation approximates a standard convolution using
a form of factorized convolution. The approximation operation factorizes a standard
convolution into a depthwise convolution, and a 1 × 1 convolution called the pointwise
convolution. A 1 × 1 convolution is then applied to the outputs of the depthwise and
pointwise convolutions to combine them. Using a conventional convolution, inputs are
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combined and filtered into a new set of outputs in one step. The depthwise separable
convolution divides this into two layers, one for filtering and one for combining [20].
The result of this factorization is a significant decrease in computation and model size
and is essential for embedded and mobile device deployments. Figure 3 shows how (a)
a standard convolution is factorized into (b) a depthwise convolution and (c) a 1 × 1
pointwise convolution.
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2.2. The Data

The two options for continuously observing clouds are ground-based cloud observa-
tion and satellite-based cloud observation. As a result, the majority of cloud classification
uses ground-based or satellite-based cloud images. A ground-based Cirrus Cumulus Stra-
tus Nimbus (CCSN) cloud dataset, which is well-known to many academics, was employed
in this work. The CCSN dataset’s quality is undeniable, and it also includes 11 different
types of clouds. Generally, 10 different types of clouds have been identified by the WMO.
In addition to these 10 unique cloud types, there is another type of artificial cloud, called
the contrail, which is created by high-flying jet planes, formed of water droplets evaporated
from water vapor in jet-engine exhaust. The CCSN dataset is owned by Harvard University
and is openly accessible to the public. The dataset contains 2543 cloud images prepared
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by experienced meteorological professionals following the WMO genera-based classifi-
cation recommendation [21]. The images are in JPEG format with a fixed resolution of
256 × 256 pixels, large lighting variations, and in-class variations. Table 1 shows the
description of the cloud types in the CCSN cloud dataset. The initial quantity column
represents the number of cloud images before performing the augmentation, while the
final quantity column denotes the number of images after the augmentation process.

Table 1. Details of CCSN cloud dataset.

Cloud Name Symbol Initial
Quantity

Final
Quantity Characteristics

Cirrus Ci 139 2665 Feathery, wispy clouds of ice crystals
Cirrostratus Cs 287 4773 Ice crystals, milky, translucent veil cloud

Cirrocumulus Cc 268 4623 White flakes, fleecy clouds forming ripples
Altocumulus Ac 221 3924 White or gray with shading and rounded clumps
Altostratus As 188 3424 Mainly gray or blueish clouds, opaque and ice crystals
Cumulus Cu 182 3371 Cauliflower shape, fluffy, occasioned by rain or snow showers

Cumulonimbus Cb 242 4274 Thunder cloud, icy, anvil-shaped top noted by heavy rain
Nimbostratus Ns 274 4610 Rain cloud, grey cloud with a dark and a vague outline
Stratocumulus Sc 340 5520 Compound dark grey layer cloud rollers or banks

Stratus St 202 3625 Low cloud, causes fog, drizzle, or fine precipitation
Contrails Ct 200 3625 Aircraft engine exhausts generate these line-shaped clouds

Total 2543 44,434

2.3. Preparation of Dataset

Neural network models thrive on the availability of huge and expertly labeled images.
Image-data augmentation is a method that can be employed to substantially increase the
amount of data artificially, through a modified version of images in the dataset. Several
kinds of research have attested to the benefits of using a large dataset for the training of
deep-learning neural network models and how an increased dataset makes models very
skillful and robust. Through the use of augmentation techniques, several variations of
images can be generated, which increases the fitted models’ capacity to transfer what they
have learned to new images.

During this experiment, we used Keras’ deep-learning neural network library, which
includes the ImageDataGenerator class, which allowed us to fit models using image-
data augmentation. This ImageDataGenerator class supports a variety of techniques and
pixel-scaling methods. We used image zoom, image shifts, and image flips, as well as
image rotations, such as the zoom_range argument, width_shift_range, and height_shift_range
arguments, horizontal_flip argument, and rotation_range argument, respectively. The counter
was set to 20, and this generated an additional 41,891 distinct images, which resulted in a
very substantial cloud-image dataset for our experiment.

The CCSN data contain 256 × 256 cloud images with 3 color channels and 11 classes.
The training set, validation set, and test set are the three subsets of the data. The validation
set forms 30% of the total data and the training set forms 70% of the total data. Finally,
110 randomly selected RGB cloud images from each of the 11 classes make up the test set.
Figure 4 shows some samples of cloud images from the CCSN dataset.

2.4. Model Training

The Cloud-MobiNet model is trained on a Jupyter notebook hosted by Anaconda
Integrated Development Environment (IDE) and runs on a 64-bit operating system, Intel(R)
Core (TM) i7—7500U CPU @ 2.70 GHz 2.90 GHz processor, 12.0 GB RAM, and Windows 10
Education. Furthermore, the model was trained in TensorFlow [23] with Keras backend
using Adam as our optimization method and a learning rate of 0.0001, batch size of 22, and
rescaling our image to 224 × 224.
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Some cloud features are not distinct, which makes it extremely difficult to distinguish
one from another. As a result, extracting features from them by directly applying FC layers
and convolutional layers does not yield high accuracy [9,10]. To curtail this drawback, we
introduced 3 dense layers without a dropout layer in our Cloud-MobiNet. For the model
to better fit the training data with each iteration, we initially introduced early stopping as
a form of regularization. This gave us an idea of the number of epochs we should run to
avoid over-fitting and overtraining the model. Through this process, we arrived at running
130 epochs. The running time of the model was 4 h and 38 min with an average epoch time
of 127 s and an average memory utilization of 3.5 GB.

3. Results

After 4 h and 45 min of training and validation of our Cloud-MobiNet model, the
model gave an accuracy of 97.45% and a loss of 0.07624, representing 0.76% of the total.
Figure 5a,b shows a graph of training and validation loss, and training and validation
accuracy, respectively.
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As shown in Supplementary Document: SD1_Cloud-MobiNet_Codes, we carried out
testing of the model to assess its performance by using the test dataset. Table 2 shows the
classification report of the classes predicted by the Cloud-MobiNet model. The classification
report was auto-generated as we employed the machine-learning library Scikit-Learn’s
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simple syntax: “from sklearn. metrics import classification_report”. Nevertheless, we explain
the mathematical principles behind this classification report based on four methods to
determine whether the extrapolations are correct or incorrect.

Table 2. Classification report.

Cloud Precision Recall F1-Score

Ac 1.00 1.00 1.00
Cb 1.00 1.00 1.00
As 1.00 0.90 0.95
Cc 1.00 0.90 0.95
Ci 0.91 1.00 0.95
Cs 0.91 1.00 0.95
Ct 1.00 1.00 1.00
Cu 1.00 1.00 1.00
Ns 1.00 0.80 0.89
Sc 1.00 1.00 1.00
St 0.83 1.00 0.91

Accuracy 0.96
Macro Average 0.97 0.96 0.96

Weighted Average 0.97 0.96 0.96

True Negative (tn): Indicates the case was and was anticipated to be negative. True-
Positive (tp): Denotes an instance that was both positive and projected to be positive.
False-Negative (fn): This means the case was positive, yet the aftereffect was predicted to
be negative. False-Positive (fp): This means the case was negative, but the outcome was
predicted to be positive.

The precision metric indicates how accurate our predictions were to the mark. The
Cloud-MobiNet model can detect a negative instance as positive. For each class, it is
determined as “the ratio of true positives to the sum of true positives and false posi-
tives”. Precision simply refers to the accuracy of positive predictions, which is calculated
as follows:

Precision =
tp

(tp + f p)
(2)

A recall is the ability of the Cloud-MobiNet model to discover all positive occurrences.
A recall is calculated as follows:

Recall =
tp

tp + f n
(3)

The F1 score is a weighted harmonic mean of precision and recall, with 1.0 being the
greatest and 0 representing the poorest. The following is how the F1 score is determined:

F1− Score(β) =

(
1 + β2)tp

(1 + β2)tp + β2 f p + f n
, (4)

where β is taken to be 1.
Accuracy is calculated as:

Accuracy =
∑c

c tpc

N
, (5)

where tpc is the number of tp for class c, C is the number of classes and N is the total number
of instances in the dataset.

Macro average is the simple mean of scores of all classes and it is calculated as follows:

βmacro =
1
q ∑q

λ=1B(tpλ, f pλ, tpλ, f nλ) (6)
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Micro average or the weighted average is the sum of the marks of all classes after
multiplying their class portions and it is calculated as follows:

βmicro = B
(
∑q

λ=1tpλ, ∑q
λ=1 f pλ, ∑q

λ=1tpλ, ∑q
λ=1 f nλ

)
(7)

The L = λj, (j = 1 . . . q) is the set of labels, where B(tp, tn, fp, fn) is evaluated centered
on the number of tp, tn, fp, and fn, respectively.

Let tpλ, f pλ, tnλ,∧ f nλ denote the number of tp, fp, tn, and fn after a binary estimate
for a label λ.

Figure 6 shows the confusion matrix of the classes predicted by the Cloud-MobiNet
model. The confusion matrix of the Cloud-MobiNet predictions in Figure 6 clearly shows
our model’s confusion in classifying the clouds. For instance, confusing the cloud type of
Ns and St is understandable for the reasons that they are very identical in shape, structure,
transparency, and arrangement. The only difference that meteorological experts can some-
times use to distinguish them is their height, since the cloud type of Ns is a medium cloud,
while the cloud type of St is a low cloud. The non-zero off-diagonal elements (0.1, 0.1,
and 0.2) in the confusion matrix represent the percentage of the few misclassifications of
the model.
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3.1. Cloud-MobiNet Model’s Predictions and Interpretations

A prediction is an array of N numbers in which the N represents the number of classes
(labels or categories) in the dataset. Each element represents the confidence that the image
corresponds to in each of the image’s different classes (labels or categories). Figure 7 shows
the predicted cloud, cloud class, and array.
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Based on 11 classes (0~10) from the reference sample picture in Figure 7, the model
generated a prediction on index 0, since it had the highest confidence level of 99.99%, that
the image class was 0. The model’s percentage confidence for each class on the image
sample provided in Figure 7 is shown in Table 3.

Table 3. Outline of the model’s percentage confidence for the predicted Figure 8 sample image.

Label/Classes Number (%) Soil Name Position

0 99.99% Altocumulus 1st
1 0.000000286% Altostratus 2nd
2 0.0000000691% Cumulonimbus 5th
3 0.00000000807% Cirrocumulus 9th
4 0.000000000797% Cirrus 11th
5 0.00000000932% Cirrostratus 7th
6 0.0000000144% Contrails 6th
7 0.00000000907% Cumulus 8th
8 0.0000000833% Nimbostratus 4th
9 0.00000000155% Stratocumulus 10th

10 0.0000000912% Stratus 3rd

We randomly reserved 110 samples of the initial 2543 CCSN cloud dataset for testing
and then performed the augmentation processes on the remaining 2433 cloud samples
to have a unique test dataset not used for modeling. Out of 110 cloud images given to
the model to predict their various classes, the model successfully predicted 106 correctly.
Figure 8 shows some of the images of the clouds predicted by the Cloud-MobiNet model.

Each image has the name of the cloud (class) predicted by the model, the percentage
confidence that the model attributed to each of the classes, and the actual cloud’s name.
The graph beside each image shows how the model predicted the cloud images. A correctly
predicted cloud image has a green bar, green predicted cloud name, and green actual cloud
name. The red bar, red predicted cloud name, and red actual cloud name are those that the
model failed to predict correctly. Images with more than one bar are an indication of the
percentage confidence that the model gave to the image according to the features shared by
the other classes.

3.2. Implementation of Cloud-MobiNet Model on Smartphone

Several types of Android building application software can be used to build and
publish an Android app, such as the Cloud Prediction app. A software engineer’s or
developer’s decision to choose a specific Android software-development application is
determined by their expertise and familiarity with the program they select, as well as how
comfortable they are with it. Because the model is not software-specific, it is capable of
running on any preferred platform.
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The most basic interface-design requirement is to provide users with the option of
using the camera of their smartphone to capture real-time images of clouds or to select
a cloud image from their storage space. Figures 9 and 10 show the smartphone’s cloud-
prediction-app progressions and the basic flowchart for implementing a cloud-prediction
app on a smartphone using the Cloud-MobiNet model, respectively.
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4. Discussion

The classification report reveals the Cloud-MobiNet model’s performance in identify-
ing clouds in the CCSN dataset, as shown in Table 2. The cloud type of St has an excellent
recall of 100%, and a good accuracy of 83%. The accuracy of the remaining cloud classifica-
tions ranges from 91% to 100%. This is a strong indicator of how well our Cloud-MobiNet
model fits the problem, as it exhibits strong generalization, which eliminates overfitting and
under-fitting during training, robustness, and the ability to accurately classify clouds. The
performance of our Cloud-MobiNet model exceeds that of the much-touted CloudNet [21]
and ultramodern techniques [5,10,24], with average scores of 88%, 87%, 81%, and 95%,
respectively. The average score of 96% recorded by Cloud-MobiNet is a clear demon-
stration of how effectively the model can generalize the classification of the 11 classes of
clouds. Table 4 is the comparison of our model’s performance with the latest technological
approaches in the literature.
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Table 4. Comparison of this study with the latest technological approaches in the literature.

Article Dataset Year Model/Method Accuracy (%)

Zhang et al.
(2018a) CCSN 2018 CloudNet 88.0

Li et al.
(2022)

ASGC,
CCSN
GCD

2022 Transformer
94.2
92.7
93.5

Zhu et al.
(2022)

MGCD
NRELCD 2022 Combined

convolutional network
90.0
95.6

Fabel et al.
(2022)

All sky images
(Owned) 2022 Self-supervised

learning 95.2

Ours CCSN 2023 Cloud-MobiNet 97.45

The higher accuracy obtained by the model is a result of the robust dataset we gen-
erated and the smart model we constructed. In addition to its excellent performance, the
Cloud-MobiNet model is also efficient, as only 130 epochs were run with a batch size of 22.
This saves a significant amount of computational cost and resources, such as memory, time,
and energy, compared to CloudNet, which runs 20,000 epochs with a batch size of eight.

5. Conclusions

Several deep-learning models have now emerged as a result of continued research in
the area of artificial intelligence and neural networks. Based on MobileNet’s convolutional
neural network model, we propose a highly efficient deep-learning model called Cloud-
MobiNet for the classification of ground-based cloud observation images. Cloud-MobiNet
promises to be a significant model in the short term, since automated ground-based cloud
classification is anticipated to be a preferred means of cloud observation, not only in
meteorological analysis and forecasting but also in the aeronautical and aviation industries.

In addition to its compact and portable properties, the Cloud-MobiNet model’s
strength is that it can be used on mobile phones for real-time cloud classification. Contrary
to the claim made by [21] that the CCSN dataset is complicated, Cloud-MobiNet has proven
its supremacy in classifying the CCSN cloud dataset with a training and validation accuracy
of 97.45 percent and an average testing accuracy of 96 percent, which is an improvement
on CloudNet. Without ignoring its misclassifications of Ns and St, as well as Cc and Cs,
the model is apt, since these pairs of clouds are almost not mutually exclusive in terms
of texture, structure, and shape. We believe that with continued training, the model may
attain an optimal accuracy of around 99 percent.

Even though the model was run on a regular laptop computer, the study was unusual
in that it was not conducted in a controlled setting, nor was it based on camera sensors, nor
was it altered or boosted by lighting conditions, as in previous studies undertaken by many
experts. All of the resources needed, including energy (power), memory, speed, and disc
space, are within the capabilities of any normal smartphone. Because the model is small
enough, it was run on a laptop with standard hardware rather than a sophisticated server,
making it easier to reproduce on any standard smartphone.

To implement this, the model must be compiled and executed as a mobile app. The
cloud image must be accepted as input by the app’s UI. The user may either load the image
from a memory source, or utilize the phone’s camera to capture the cloud image in real-time
using the mobile app. The app with the model at the backend will process the image and
then predict the type of cloud that is captured or loaded from the memory in real-time. We
anticipate that after the model has been trained and tested on a variety of cloud images
in various lighting conditions and has delivered extremely accurate results, the type of
camera utilized by the cell phone will have little or no influence on the predictions.

Although the Cloud-MobiNet model predicts only the type of cloud, the identification
of cloud types is the most difficult process in cloud observation for meteorologists. In this
process, a wrongful determination of the type of cloud can have a strong influence on
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weather forecasting. However, meteorologists know the average height of each of the 11
types of clouds and, for this reason, obtaining the correct cloud type helps the observers to
determine their height. In weather forecasting, the cloud type is critically examined more
than the height. It is also easy for meteorologists to determine the cloud cover in the sky at
any time. Future work will concentrate on how feasible the model can be used to determine
both the height and cloud amount.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/atmos14020280/s1, Supplementary Document: SD1_Cloud-
MobiNet_Codes.
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