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Abstract: This study analyzed extreme precipitation events, using daily rainfall data for 1966–2015.
A Mann–Kendall trend test was used to evaluate trends in extreme precipitation, copula functions
were applied to compute the joint return periods of extreme events, and univariate and bivariate
distributions were used to determine risk. The results showed that the decrease in consecutive wet
days (CWD) was significant in the west and the northwest of Iran, while the consecutive dry days
(CDD) index was increasing therein. The precipitation on more than the 90th percentile (P90) very
wet days and annual number of days with precipitation less than the 90th percentile threshold (D90)
indices followed similar patterns, with no significant trend in most parts of Iran, but at several
stations in the north, west, and northwest, their decline was extreme. Furthermore, the increase of
D10 (annual number of days with precipitation less than the 90th percentile threshold) and P10 (total
precipitation of D10 of a year) was extreme in the wet regions of Iran, including the north, west, and
northwest areas, and also part of the center. More than 50 percent of Iran experienced a low risk level,
with a return period of extreme events (CWD, CDD) of more than 27.5 years, and the joint return
periods of (D10, D90), (P10, P90), and (D10, P10) pairs were less than 100 years in most regions of
Iran. Due to the increasing number of dry days in the north, west, and northwest of Iran, the drought
risk increased. Based on the changes in extreme precipitation indices in recent years, the findings
of this study will be useful for copula-based frequency analysis under a changing environment at
regional and global scales.

Keywords: extreme precipitation indices; copula functions; joint return period; bivariate risk analysis

1. Introduction

Climate change is defined as the pattern of variation of climatic variables in excess
of the normal variation and which may occur over a long duration at a regional or global
level [1]. Climate change and global warming have caused a serious challenge to water
resource management all over the world, especially the increasing frequency of extreme
weather events, which are a hugely damaging to the economic, social, and ecosystem
sectors [2,3]. A lot of evidence exists indicating that the frequency and severity of extreme
events have increased since 1990. Several investigators have reported that the extreme
precipitation trend is increasing in the mid-latitude regions of the earth [1], China [2],
Australia [4], Europe [5], and southeast Asia [6,7]. Furthermore, an analysis of extreme
precipitation in arid and semi-arid regions of Iran [8], and the north east, northwest, and
southwest of Iran [9,10] indicated that extreme precipitation events were increasing.
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The spatial and temporal variation of precipitation due to climate change tends to
increase the severity of extreme weather events, such as drought, floods, and fires, and also
changes the behavior of hydrological variables [10]. Thus, the probabilistic behavior of
extreme events, especially extreme precipitation, which increases risks for various aspects
of human life, has received much attention in recent decades.

Univariate frequency analysis is not able to reflect the complex and latent features of
climatological events. On the other hand, climate variables are significantly correlated and
univariate analysis of meteorological events is apparently insufficient; thus, multivariate
analysis is needed to describe the structure of dependence among variables [11]. In gen-
eral, in multivariate analysis, the marginal distributions of dependent variables are not
similar and these variables are usually correlated [12]. To account for the dependence and
dissimilarity of marginal distributions, the copula approach has been developed.

Copula functions have recently been employed for hydrological multivariate analysis
of precipitation, runoff, drought, and floods [12]. These functions produce multivariate
distributions from different or similar marginal distributions of dependent variables [13].
There is a large family of copulas. Zhang and Singh [14] applied the Archimedean copula
to precipitation frequency analysis. In their study, an overview of the selection of the
Archimedean copula is presented. Kao and Govindaraju [13] considered the Plackett family
of copulas for trivariate analysis of extreme rainfall events. Their results showed that
the Plackett family not only performed well for bivariate analysis, but also allowed for
a trivariate analysis, where the lower dependencies between variables were preserved.
Zhang and Singh [15] applied copula and entropy methods for bivariate analysis of runoff
and precipitation and showed that the maximum entropy–copula successfully modeled
rainfall and runoff variables. Jun et al. [16] used copula functions for frequency analysis
of precipitation severity and duration and showed that copula models more realistically
described the characteristics of rainstorm events and storms. Kao and Govindaraju [17],
Chen et al. [18], Wong et al. [19], Mirabbasi et al. [20], and Bazrafshan et al. [12,21] applied
copula functions for multivariate analysis of drought events. Their results showed that the
copula functions was useful for the study of dependent variables. However, the choice of
copula is a crucial step for a successful application.

Zhang et al. [2] investigated the joint probability of extreme precipitation indices and
analyzed the trends of these indices using a modified Mann–Kendal trend test. It was
found that the northwest regions of China exhibited a wetting tendency but northeast
China exhibited a drying tendency.

Azhdari et al. [22] compared linear principal component analysis and canonical cor-
relation analysis (PCA-CCA) with non-linear (copula) methods for drought monitoring
in the South of Iran. The linear methods produced an overestimation, while the copula
method was not influenced by an anomaly in one or more variables.

Achite et al. [23] proposed a joint drought hydrological-meteorological index (JDHMI)
for hydro-meteorological drought monitoring. Their study showed that multivariate
analysis provided comprehensive information about the spatial and temporal patterns of
drought in the Wadi Ouahrane basin in Algeria. The spatial and temporal distribution of
precipitation extremes exerts a considerable influence on the occurrence of droughts/floods
in each climate. Iran is an arid and semi-arid region and often faces the adverse effects of
heavy rains (floods) or severe droughts. Therefore, the analysis of spatio-temporal extremes
of precipitation is needed to develop measures to reduce socio-economic damages. Many
studies have analyzed trends of precipitation extremes (e.g., [9,10,24,25], but no reports
on the joint probability of precipitation extreme indices in Iran using copula functions
are available.

The study of extreme precipitation events is needed for risk management, policy
making and planning in the agricultural sector, water resources management, and envi-
ronmental resource management. To that end, it is necessary to analyze the probability of
extreme precipitation characteristics, their joint probabilities, return periods, and their risk
for various durations. The objective of this study, therefore, was to perform (1) a spatial and
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temporal analysis of extreme precipitation trends in Iran over the last five decades; (2) an
analysis of univariate and multivariate probability behavior of extreme precipitation based
on copula functions; and (3) an analysis of return periods and risk of extreme precipitation
in Iran.

2. Materials and Methods
2.1. Data

Iran is located in the mid-latitude belt, with an area of 1,648,195 km2, of which more
than 75% is arid and semi-arid. The annual precipitation of these areas is 50 mm to
350 mm per year [21] and precipitation dominantly depends on geographical latitude and
topographical altitude [26]. According to Zarrin and Dadashi-Roudbari [27,28], the climatic
characteristics of Iran are somewhat different from the usual climate of Southwest Asia.
The extended De Martone climate classification classifies climate into eight main classes
and 18 sub-types. Most of the precipitation in southern regions of Iran is influenced by the
Sudanese system, while the southeast region is affected by the Monsoon, and the north and
the middle parts are influenced by the Siberian High Pressure System (SHPS) [29,30].

This study used historical daily observed rainfall data for 1966–2016 from the me-
teorological organization of Iran [31]. Figure 1 displays the spatial distribution of these
stations in Iran. All synoptic stations were subjected to an initial quality assessment. Table 1
shows the stations used in the analysis. The missing gaps were filled based on linear
regression [32]. To check the adequacy and randomness of the precipitation data, the Hurst
coefficient [33] and the return point test [34] were used. According to Hurst [33], if K > 0.5,
the length of the time series is sufficient. Therefore, the data were found to be adequate. In
addition, based on Table 2, in the turning point test, if RTp > 1.65 at a 95% confidence level,
and the null hypothesis of data independence was confirmed.
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Figure 1. Spatial distribution of synoptic stations in Iran.

Table 1. Details of meteorological stations in different climatological zones in Iran.

Station Elevation (m) Longitude (Degree) Latitude (Degree) Climate Type (Extended De Martone [28])

Abadan 6.6 48.15 30.22 Extra arid-Warm

Ahvaz 22.5 48.4 31.2 Arid-Warm

Arak 1708 49.46 34.6 Semi arid-Cold
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Table 1. Cont.

Station Elevation (m) Longitude (Degree) Latitude (Degree) Climate Type (Extended De Martone [28])

Babolsar −21 52.39 36.43 Semi Mediterranean -Moderate

Bam 1066 58.21 29.6 Extra arid-Warm

Bandar Abbas 9.8 56.22 27.13 Extra arid-Warm

Bandar Anzali −23.6 49.27 37.29 Pre-Humid Moderate B

Bandar Lenge 22.7 54.5 26.32 Extra arid-Warm

Birjand 149 59.12 32.52 Extra arid-Cold

Boushehr 9 50.49 28.58 Arid-Warm

Isfahan 1550 51.4 32.37 Extra arid-Cold

Gorgan 0 52.24 36.54 Semi arid- moderate

Iranshahr 591 51.4 32.37 Extra arid-Warm

Kermanshah 1318 47.9 34.21 Semi arid-Cold

Kerman 1753 56.58 30.15 Extra arid-Cold

Khoei 1103 44.58 38.33 Semi arid-Cold

Khoram Abad 1147 45.3 33.26 Semi arid-Cold

Urmia 1328 54.17 37.4 Semi arid-Cold

Rasht −8.6 48.43 37.19 Pre-Humid Moderate A

Gazvin 1279 50.3 36.15 Extra arid-Cold

Ramsar −20 50.4 36.12 Pre-Humid Moderate A

Sabzvar 972 57.39 36.12 Extra arid-Cold

Saghez 1522 46.16 36.15 Semi arid- Semi Cold

Sanandaj 1373 47 35.2 Semi arid-Cold

Semnan 1127 5325 35.35 Extra arid-Cold

Tabriz 1361 46.17 38.5 Arid-Cold

Tabas 711 56.55 33.36 Extra arid-Moderate

Shahre-Kord 2048 50.51 32.17 Semi arid-Semi Cold

Zanjan 1663 48.29 36.41 Semi arid-Semi Cold

Tehran 1190 51.119 35.41 Arid-Moderate

Torbat-heydarieh 1450 59.13 35.16 Arid-Moderate

Yazd 1237 54.17 31.54 Extra arid-Cold

Zabol 489 61.29 31.2 Extra arid-Moderate

Zahedan 1370 60.53 29.28 Extra arid-Moderate

Mashahd 999 59.38 36.16 Arid-Cold

Hamedan 1679 47.43 35.12 Semi arid-Extra Cold

Dezful 143 48.23 32.24 Arid-Moderate

Shiraz 1484 52.36 29.32 Arid-Cold

Shahroud 1349 54.57 36.25 Arid-Cold

Table 2. Result of Hurst and turning point tests for synoptics stations.

Station
Turning Point Test

K (Hurst Test) Station
Turning Point Test

K (Hurst Test)RTp Tp RTp Tp

Ramsar 1.7 21 0.52 Abadan 2.1 37 0.53
Sabzvar 1.9 25 0.61 Ahvaz 2.5 37 0.39
Saghez 1.5 24 0.6 Arak 2.4 23 0.67

Sanandaj 1.9 18 0.64 Babolsar 1.8 24 0.53
Semnan 1.8 27 0.52 Bam 2.7 22 0.56
Tabriz 1.7 21 0.72 Bandae

Abbas 2.1 21 0.67

Tabas 2.3 17 0.78 Bandar
Anzali 1.7 24 0.68

Shahre-Kord 1.9 25 0.53 Bandar Lenge 2.5 21 0.56
Zanjan 2.1 23 0.53 Birjand 2.3 20 0.6
Tehran 1.8 27 0.54 Boushehr 2.7 22 0.63
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Table 2. Cont.

Station
Turning Point Test

K (Hurst Test) Station
Turning Point Test

K (Hurst Test)RTp Tp RTp Tp

Torbat-
heydarieh 1.68 20 Isfahan 2.0 25 0.64

Yazd 1.8 27 0.73 Gorgan 2.7 16 0.83
Zabol 2.2 28 0.63 Iranshahr 2.8 19 0.53

Zahedan 2.3 22 0.66 Kermanshah 2.2 21 0.66
Mashahd 2.3 22 0.68 Kerman 2.2 27 0.55
Hamedan 1.8 27 0.5 Khoei 2.7 26 0.78

Dezful 2.1 23 0.61 Khoram Abad 2.3 17 0.57
Shiraz 2.5 24 0.59 Urmia 2.4 18 0.61

Shahroud 2.1 23 0.57 Rasht 2.3 21 0.57
Gazvin 1.9 25 0.49

2.2. Extreme Precipitation Indices

In this study, we used several extreme precipitation indices recommended by the
Expert Team on Climate Change Detection and Indices (ETCCDI) [35] and analyzed the
characteristics of extreme precipitation in Iran during the past 50 years. These indices are
given in Table 3.

Table 3. Extreme indices applied throughout this study.

Indices Definitions Unit

CDD (consecutive dry days) Annual number of days with precipitation less than 1 mm day per year
CWD (consecutive wet days) Annual number of days with precipitation more than

1 mm day per year

D90
Annual number of days with precipitation more than the 90th

percentile threshold. The 90th percentile threshold is calculated
based on the precipitation of all wet days at each station

day per year

D10
Annual number of days with precipitation less than the 10th

percentile threshold. The 10th percentile threshold is calculated
based on the precipitation of all dry days at each station

day per year

P90 (precipitation due to very wet days (>90th
percentile)) Total precipitation of D90 of a year mm per year

P10 (precipitation due to very dry days (<10th
percentile)) Total precipitation of D10 of a year mm per year

The selected indices were proposed by [2] to examine the joint probabilities of dry/wet
events. These indices are representative of extreme drier/wetter periods, where the proba-
bility of occurrence of one index is dependent on the probability of occurrence of another
index. For example, the more the probability of wet periods (D90) increases, the less the
probability of dry periods (D10) decreases.

The Mann–Kendall test (MKT) is a statistical approach for testing trends in data.
Depending on increasing or decreasing trends, the MKT statistic takes on positive or
negative values. The null hypothesis assumes that there is no monotonic trend in the
series and that the data are independent and identically distributed, while the alternative
hypothesis assumes that there exists a trend in the series, and the distribution of Xi and Xj
are not identical for all i 6= j(. . . , j ≤ y [36]. The MKT statistic is given by

S = ∑n−1
i=1 ∑n

j=i+1 sign
(
Xj − Xi

)
(1)

where sign (.) represents the indicator function that is defined by

sign
(
Xj − Xi

)
=


+1 forXj > Xi
0 forXj = Xi
−1 forXj < Xi

(2)
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with the variance

Var(S) =
n(n− 1)(2n + 5)−∑n

i=1 ti(i)(i− 1)(2i + 5)
18

(3)

and ti is the number of ties. Therefore, the test statistic is

Z =


s−1√
Var(S)

, if S > 0

0, if S = 0
s+1√
Var(S)

, if S < 0
(4)

where the Z score is the standard normal variable. The null hypothesis is rejected at the α

significance level if |Z| > Zα
2

.

2.3. Dependence Structure of Joint Variables and Marginal Distributions

The correlation existing between variables is a key condition for using copula functions
in multivariate analysis [37]. There are several quantitative and graphical methods for
assessing the correlation between variables. The graphical methods include scatter plot,
chi-plot, and Kendall plot [38]. The Pearson correlation coefficients r, Spearman rank
correlation ρ, and Kendal’s τ numerically represent the correlation between variables. More
details can be found in Bonnet and Wright (2000).

In this study, we have discrete (CWD, CDD, D90, D10) and continuous (P90, P10)
variables. Therefore, discrete distributions, such as Poisson, binomial, geometric, and
negative binomial, as well as continuous distributions, including normal, log-normal,
gamma, Weibull, logistic, and exponential, were used to obtain marginal distributions. The
best fitting distributions were selected, based on the Chi-square criterion of goodness-of-fit
and Akike information criterion (AIC).

Copula Functions

This study applied the Archimedean (Frank, Clayton, Gamble-Hoggard, and Joe)
and elliptical (Gaussian, and Student-t) copula families (Table 4). Their parameters were
estimated using the maximum likelihood estimation (MLE) method, and the best fitting
copula was determined, based on the von Mises (Sn statistic) [21] in the R package.

Table 4. Copulas used in this study.

Types of Copula Cθ(u,v) θ

Elliptical

Student-t
∫ t−1

θ (u)
−∞

∫ t−1
θ (v)
−∞

1
2π
√

1−r2

{
1 + x2−2rxy+y2

θ(1−r2)

}−θ+2
2

dxdy

tθ(x) =
∫ x
−∞

Γ( θ+1
2 )√

πθ Γ(θ/2)

(
1 + y2/θ

)−θ+1
2 dy

θ > 2, r ∈ 0, 1

Gaussian Φ2

(
Φ−1(u), Φ−1(v), ρ

)
−1 ≤ ρ ≤ 1

Archimedean

Clayton (
u−θ + v−θ − 1

)−1/θ θ ∈ (−1, 0) ∪ (0, ∞)

Frank − 1
θ log

[
1 + (e−θu−1)(e−θv−1)

e−θ−1

]
θ ∈ (−∞, 0) ∪ (0, ∞)

Joe 1−
[
(1− u)θ + (1− v)θ − (1− u)θ(1− v)θ

]1/θ
θ ∈ (1, ∞)

Gamble-Hoggard {−[− ln u)2 + (− ln v)θ ]
θ
]

1
θ } θ ∈ (1, ∞)

Computing return periods and univariate and bivariate risk analysis:
The return period of an event x can be obtained as:

T(xT) =
1

Pr(X > xT)
=

1
1− Pr(X > xT)

=
1

p(xT)
=

1
1− F(xT)

(5)
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The return period T(xT) is defined as the reverse of the probability function
p(xT) = 1 − F(xT) where F(xT) is the cumulative relative frequency function. A rare
event has a lower occurrence probability but a longer return period. Considering a very
long return period, an event greater than xT, on average, occurs once in every T years [21].

For random variables X and Y with the joint distribution function FX,Y(x, y) and
marginal distribution functions FX(x) and FY(y), the return period can be obtained using
the equation (Bazrafshan et al., 2020):

T{X>x,Y>y} =
1

P(X > x, Y > y)
=

1
1− FX(x)− FY(y) + FX,Y(x, y)

(6)

where T{X>x,Y>y} indicates the joint return period of X and Y greater than a threshold.
The bivariate drought risk value can be obtained through Equation (7);

R = 1− (1− 1
T
)

N
(7)

where T is the bivariate joint return period and N is the number of years. Table 5 shows
the bivariate return period based on the defined variables.

Table 5. Bivariate return period of extreme index.

TR Definitions

T{CWD>t1 ,CDD>t2}
Bivariate return period of an event with the wet and dry days greater

than a specific threshold in one year
T{D10>d1 ,D90>d2} Return period of an event with simultaneous occurrence of D10 and D90
T{P10>p1 ,P90>p2} Return period of an event with simultaneous occurrence of P10 and P90
T{P10>p1,D10>d1} Return period of an event with simultaneous occurrence of P10 and D10

The spatial distribution of return period values and bivariate risks is displayed, using
the Kriging interpolation method. A flowchart of the computational steps and practical
steps is shown in Figure 2.
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3. Results
3.1. Spatial Distribution of Extreme Indices

The spatial distribution of extreme precipitation, based on a long term average, is
illustrated in Figure 3. Generally, most parts of Iran, even the wet and severely wet climate
regions in the north, experienced more than 9 months of dry days.
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Most of the dry days belonged to the internal and coastal deserts (arid regions), which
on average were from 331 to 353 days in a year (11.4 months of year). The semi-arid and
Mediterranean regions of Iran (north eastern and north western) experienced 283 to 330 dry
days, while northern Iran (wet regions) experienced around 9 months of dry days. In the
analysis of CWD distribution, the highest frequency for most events belonged to northern
Iran (3 months), whereas the southern and middle regions of Iran experienced less than
one wet month. The spatial distributions of trends of D10 and D90 were similar to those
of CWD and CDD. While D10 and CDD followed a similar distribution, heavy rainfall
(greater than the 90th percentile, D90), on average, occurred for 3 days in the south and
10 days in the north of the country.

The minimum P10 index was 1.5 mm in Iran (in dry and desert regions) and the
maximum P10 was about 19 mm in the Caspian coastal (north) area. The P90 index or flood
precipitation was less than 211 mm in 90% of regions and was from 212 mm to 730 mm in
the north and northwest regions of Iran.

3.2. Spatial Distribution of Univariate Indices

Figure 4 illustrates the trends of extreme indices that were calculated using MKT for
the last 5 decades. As shown in Figure 4a, there was no significant trend in the CWD
(consecutive wet day) index in large parts of Iran, which includes arid and semi-arid
regions. This index was negative for west, northwest, southwest, and a small part in the
north of Iran. These regions include Mediterranean climate (west of Iran) and semi-arid
and cold climate (northwest and southwest of Iran), which are generally affected by the
Mediterranean Sea.
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Figure 4b shows the CDD (consecutive dry days) trend. The trend of dry days in-
creased in more than 92% of Iran. This increase was more intense in the west and the
middle parts of Iran. The spatial distribution of D10 is represented in Figure 4c, which
shows that this index was increasing in large areas, including the west, north, and east of
Iran. The trend was more severe in the north and west, while D90 was decreasing for the
entire country.

Furthermore, P10 (Figure 4d) followed an intensely increasing trend in the northwest
and northeast regions, while the trend of P90 index (Figure 4e) was not statistically signif-
icant. In a nutshell, the extreme precipitation indices indicated that the wet period was
decreasing, while the dry period was increasing in Iran.

3.3. Marginal Distributions of Extreme Precipitation Indices

Discrete and continuous distributions were fitted to the extreme precipitation indices.
The maximum likelihood estimation and L-moments methods were used, based on Student
t, to estimate the parameters, and the accuracy of models was assessed using the AIC
criterion and Chi-square goodness of fit test for continuous and discrete distributions.

Table 6 represents the parameters of discrete distributions fitted to CWD, CDD D90,
and D10 indices, and Table 7 displays the estimated parameters of P90 and P10 distributions
for the Babolsar station (as an example).

The results showed that, on the basis of the AIC criterion, the negative binomial type I,
Poisson, Poisson inverse Gaussian, and Poisson distributions performed best in modeling
CWD, CDD, D10, and D90, respectively, while the log-normal and gamma distributions
better fitted the P10 and P90 indices. Figure 5 displays the quality of the fitted distributions
for the P90 and P10 indices at the Bobolsar station based on graphical criteria.

3.4. Dependency Structure between Extreme Indices and Fitting Copula Functions

The joint dependency between indices was assessed using Spearman, Kendall, and
Pearson correlation coefficients. Figure 5 displays the PDF, CDF, and alignment lines
between the theoretical and empirical copulas at the Bobolsar station. The results showed
that the t-copula performed better at the majority of stations. The spatial distribution of
these indices is illustrated in Figure 6a–d on the basis of Kendall’s tau. This figure shows a
significant correlation between variables. After selecting the best marginal distributions
and correlations, five copula functions belonging to the Archimedean and Elliptical families
were used to construct the joint distribution of variables. The best copulas were determined,
based on the Sn criterion, and the parameters of the copula function were estimated using
the tau method. Table 8 shows the fitted copulas and goodness-of-fit test for the studied
variables at the Babolsar station.
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Table 6. Estimated parameters and goodness of fit (GOF) criteria for discrete extreme indices.

Indices Function Parameter Chi2 AIC

CWD

Poisson µ = 4.30 37.31 377.09
Negative Binomial type I µ = 4.30; σ = −5.34 32.56 376.62
Poisson inverse Gaussian µ = 4.30; σ = −5.36 32.66 376.66
Negative Binomial type II µ = 4.30; σ = −1.03 32.56 376.62

Discrete Burr XII µ = 4.67; σ = 2.16; ν = 2.71 38.2 378.62
Geometric µ = 4.30 38.95 533.20

CDD

Poisson µ = 5.67 34.94 394.32
Negative Binomial type I µ = 5.67; σ = −36.09 34.94 396.32
Poisson inverse Gaussian µ = 5.67; σ = −30.6 32.09 394.64
Negative Binomial type II µ = 5.85; σ = −32.16 N/A 397.43

Discrete Burr XII µ = 6.05; σ = 2.82; ν = 6.23 N/A 407.47
Geometric µ = 5.67 1640.61 669.51

D90

Poisson µ = 1.99 9.73 231.78
Negative Binomial type I µ = 1.99; σ = −33.57 9.73 233.78
Poisson inverse Gaussian N/A N/A N/A
Negative Binomial type II µ = 1.87; σ = −34.05 N/A 233.78

Discrete Burr XII µ = 2.36; σ = 1.45; ν = 1.09 253.79 234.61
Geometric µ = 1.99 76.77 308.36

D10

Poisson µ = 5.69 46.26 390.84
Negative Binomial type I µ = 5.69; σ = −36.09 46.26 392.84
Poisson inverse Gaussian µ = 5.69; σ = −36.19 38.73 356.83
Negative Binomial type II µ = 5.69; σ = −20.59 46.26 392.84

Discrete Burr XII µ = 6.01; σ = 2.99; N/A 392.53
Geometric ν = 6.24; µ = 5.69 N/A 671.99

Bold number: It indicate the best fitting distribution at the significance level of 95%.

Table 7. Estimated parameters and goodness of fit test (GOF) criteria for continuous extreme indices.

Indices Function Parameter K-S AIC

P90

Lognormal µ = 5.83; σ = 0.41 0.10 642.50
Weibull λ = 2.55; k = 419.20 0.10 645.70
Gamma α =6.07; β = 0.01 0.08 641.81
Normal µ = 371.87; σ = 153.04 0.12 648.96
Logistic µ = 360.09; s = 83.23 0.09 646.63

Exponential µ = 0.002 0.32 693.85

P10

Lognormal µ = 2.68; σ = 0.23 0.07 271.53
Weibull λ = 4.17; k = 16.55 0.13 280.11
Gamma α = 17.51; β = 1.15 0.09 272.31
Normal µ = 15.10; σ = 3.69 0.12 276.58
Logistic µ = 14.83; s = 2.08 0.09 276.44

Exponential µ = 0.06 0.47 373.51

Bold number: It indicate the best fitting distribution at the significance level of 95%. Note: Chi2: chi-square or χ2

test; AIC: Akaike information criterion.

Atmosphere 2023, 14, x FOR PEER REVIEW 12 of 23 
 

 

Poisson inverse Gaussian N/A N/A N/A 

Negative Binomial type II μ = 1.87; σ = −34.05 N/A 233.78 

Discrete Burr XII μ = 2.36; σ = 1.45;ν = 1.09 253.79 234.61 

Geometric μ = 1.99 76.77 308.36 

D10 

Poisson μ = 5.69 46.26 390.84 

Negative Binomial type I μ = 5.69; σ = −36.09 46.26 392.84 

Poisson inverse Gaussian μ = 5.69; σ = −36.19 38.73 356.83 

Negative Binomial type II μ = 5.69; σ = −20.59 46.26 392.84 

Discrete Burr XII μ = 6.01; σ = 2.99; N/A 392.53 

Geometric ν = 6.24; μ = 5.69 N/A 671.99 

Bold number: It indicate the best fitting distribution at the significance level of 95%. 

Table 7. Estimated parameters and goodness of fit test (GOF) criteria for continuous extreme 

indices. 

Indices Function Parameter K-S AIC 

P90 

Lognormal μ = 5.83; σ = 0.41 0.10 642.50 

Weibull λ = 2.55; k = 419.20 0.10 645.70 

Gamma α =6.07; β = 0.01 0.08 641.81 

Normal 
μ = 371.87; σ = 

153.04 
0.12 648.96 

Logistic μ = 360.09; ѕ = 83.23 0.09 646.63 

Exponential μ = 0.002 0.32 693.85 

P10 

Lognormal μ = 2.68; σ = 0.23 0.07 271.53 

Weibull λ = 4.17; k = 16.55 0.13 280.11 

Gamma α = 17.51; β = 1.15 0.09 272.31 

Normal μ = 15.10; σ = 3.69 0.12 276.58 

Logistic μ = 14.83; ѕ = 2.08 0.09 276.44 

Exponential μ = 0.06 0.47 373.51 

Bold number: It indicate the best fitting distribution at the significance level of 95%. Note: Chi2: chi-

square or χ2 test; AIC: Akaike information criterion. 

P10 P90 

  

Figure 5. Cont.



Atmosphere 2023, 14, 275 12 of 21
Atmosphere 2023, 14, x FOR PEER REVIEW 13 of 23 
 

 

  

Figure 5. The probability–probability (P-P), quantile–quantile (Q-Q), probability 

distribution function (PDF), and cumulative distribution (CDF) plots of fitted marginal 

probability distributions for P10 and P90 at the Babolsar station. 

3.4. Dependency Structure between Extreme Indices and Fitting Copula Functions 

The joint dependency between indices was assessed using Spearman, Kendall, and 

Pearson correlation coefficients. Figure 5 displays the PDF, CDF, and alignment lines 

between the theoretical and empirical copulas at the Bobolsar station. The results showed 

that the t-copula performed better at the majority of stations. The spatial distribution of 

these indices is illustrated in Figure 6a–d on the basis of Kendall’s tau. This figure shows 

a significant correlation between variables. After selecting the best marginal distributions 

and correlations, five copula functions belonging to the Archimedean and Elliptical 

families were used to construct the joint distribution of variables. The best copulas were 

determined, based on the Sn criterion, and the parameters of the copula function were 

estimated using the tau method. Table 8 shows the fitted copulas and goodness-of-fit test 

for the studied variables at the Babolsar station. 

  

(a) (b) 

Figure 5. The probability–probability (P-P), quantile–quantile (Q-Q), probability distribution function
(PDF), and cumulative distribution (CDF) plots of fitted marginal probability distributions for P10
and P90 at the Babolsar station.

Atmosphere 2023, 14, x FOR PEER REVIEW 13 of 23 
 

 

  

Figure 5. The probability–probability (P-P), quantile–quantile (Q-Q), probability 

distribution function (PDF), and cumulative distribution (CDF) plots of fitted marginal 

probability distributions for P10 and P90 at the Babolsar station. 

3.4. Dependency Structure between Extreme Indices and Fitting Copula Functions 

The joint dependency between indices was assessed using Spearman, Kendall, and 

Pearson correlation coefficients. Figure 5 displays the PDF, CDF, and alignment lines 

between the theoretical and empirical copulas at the Bobolsar station. The results showed 

that the t-copula performed better at the majority of stations. The spatial distribution of 

these indices is illustrated in Figure 6a–d on the basis of Kendall’s tau. This figure shows 

a significant correlation between variables. After selecting the best marginal distributions 

and correlations, five copula functions belonging to the Archimedean and Elliptical 

families were used to construct the joint distribution of variables. The best copulas were 

determined, based on the Sn criterion, and the parameters of the copula function were 

estimated using the tau method. Table 8 shows the fitted copulas and goodness-of-fit test 

for the studied variables at the Babolsar station. 

  

(a) (b) 

Atmosphere 2023, 14, x FOR PEER REVIEW 14 of 23 
 

 

  

Figure 6. Spatial distribution of correlation between variables in the studied regions, (a): CWD, 

CDD; (b): D90, D10; (c): P10, D10; (d): P90, P90. 

Table 8. Results of the optimal copulas and parameters at the Babolsar station. 

 Function Sn Parameter p-Value 

P10, D10 

Frank NAN NAN NAN 

Joe 0.01 1 0.80 

Clayton 0.02 −0.029 0.82 

Normal 0.02 −0.023 0.79 

T 0.02 −0.023 0.91 

Amh 0.02 −0.068 0.8 

CDD, CWD 

Frank 0.01 −296.85 0.26 

Joe 1.16 1 0.0004 

Clayton 0.01 −0.99 0.71 

Normal 0.01 −0.99 0.34 

T 0.01 −0.99 0.27 

Amh 0.72 −1 0.0004 

D10, D90 

Frank 0.03 −2.086 0.68 

Joe 0.03 1 0.27 

Clayton 0.03 −0.363 0.56 

Normal 0.03 −0.342 0.66 

T 0.28 −0.342 0.73 

Amh 0.02 −1 0.67 

P10, P90 

Frank NAN NAN NAN 

Joe 0.01 1 0.81 

Clayton 0.02 0.029 0.81 

Normal 0.02 −0.023 0.80 

T 0.02 −0.023 0.89 

Amh 0.02 −0.068 0.78 

Sn: Cramér–von Mises criterion; values in bold indicate the best fitting distribution at the 

significance level of 95%. 

Figure 7a–c shows goodness of fit graph for P10, P90; D10, D90 and CDD, CWD. We 

used from, contour plot, PDF and CDF of bivariate analysis. Based on Results, t-copula is 

best copula for all variables. 

(c) 
(d) 

Figure 6. Spatial distribution of correlation between variables in the studied regions, (a): CWD, CDD;
(b): D90, D10; (c): P10, D10; (d): P90, P90.



Atmosphere 2023, 14, 275 13 of 21

Table 8. Results of the optimal copulas and parameters at the Babolsar station.

Function Sn Parameter p-Value

P10, D10

Frank NAN NAN NAN
Joe 0.01 1 0.80

Clayton 0.02 −0.029 0.82
Normal 0.02 −0.023 0.79

T 0.02 −0.023 0.91
Amh 0.02 −0.068 0.8

CDD, CWD

Frank 0.01 −296.85 0.26
Joe 1.16 1 0.0004

Clayton 0.01 −0.99 0.71
Normal 0.01 −0.99 0.34

T 0.01 −0.99 0.27
Amh 0.72 −1 0.0004

D10, D90

Frank 0.03 −2.086 0.68
Joe 0.03 1 0.27

Clayton 0.03 −0.363 0.56
Normal 0.03 −0.342 0.66

T 0.28 −0.342 0.73
Amh 0.02 −1 0.67

P10, P90

Frank NAN NAN NAN
Joe 0.01 1 0.81

Clayton 0.02 0.029 0.81
Normal 0.02 −0.023 0.80

T 0.02 −0.023 0.89
Amh 0.02 −0.068 0.78

Sn: Cramér–von Mises criterion; values in bold indicate the best fitting distribution at the significance level of 95%.

Figure 7a–c shows goodness of fit graph for P10, P90; D10, D90 and CDD, CWD. We
used from, contour plot, PDF and CDF of bivariate analysis. Based on Results, t-copula is
best copula for all variables.
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3.5. Spatial Analysis of Return Period and Risk of Univariate Extreme Indices

On the basis of the marginal distributions introduced in Table 5, ten-year return periods
and spatial risk analysis were estimated for all parts of the country, as represented in Figures 8
and 9. For the CDD variable, the number of dry days with a 10 year return period increased
from the northwest to the southeast of Iran (Figure 8a), whereas the number of wet days
increased from the southeast to the northwest of the country (Figure 8a,b). This means that,
on average, the southeast part of Iran faced 342 to 365 dry days and 18 to 44 wet days every
ten years, while this was 278 to 299 dry days and 92 to 122 wet days for the northwest
regions. Analysis of the two abovementioned indices (Figure 9a,b) revealed that the south
and southwest regions of Iran (central plateau and Hamoon basins) had a higher risk for the
number of dry days, and the north and west regions (Mazandaran, Urumia and Karkheh
basins) had the highest risk for the number of wet days.
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Figure 8c indicates that most parts of Iran were faced with a significant increase in D90
(Figure 8c). In other words, D10 increased sharply from northwest to southeast, while D90
increased slightly from south to north (Figure 8d). Therefore, low rainfall in the middle
and southern parts of Iran (high risk Figure 9c) and heavy rainfall (Figure 9d) in a limited
part in the north of country were expected. In this regard, a large part of Iran was expected
to face a continuation of the drought period, and a small part would see a continuation of
the wet period. Furthermore, the highest risk of D10 was expected to occur in Mazandaran,
Urumia, and the Karkhe basin, with the highest risk of D90 in the central plateau of Iran,
Hamoon, Persian Gulf, and Oman Sea.

Figure 8e,f indicate that P10 and P90 had little variation. They reached their maximum
in a small area in the north. Generally, in most regions of Iran the probability of low rainfall
events increased (increased drought) and decreasing heavy rainfall was experienced. The
P10 risk analysis map displayed in Figure 9e shows that a large part of Iran had a high
drought risk and only a small region in the north experienced low drought risk. In this
regard, the P90 risk analysis map shown in Figure 9f indicates that most regions of the
country experienced a low and medium risk of flooding from heavy rainfall.

3.6. Spatial Analysis of Copula Based Extreme Indices

The spatial pattern of the bivariate return period and risk analysis obtained for the ex-
treme precipitation indices is displayed in Figure 10. Figure 10a represents the spatial distribu-
tion of the bivariate return period that was obtained from Tr = {CWD > cwd, CDD > cdd},
with a higher return period corresponding to a lower probability of occurrence. Thus, as
Figure 10a shows, the simultaneous probability of CWD and CDD, and then the risk of occur-
rence, was very high (Figure 10b). In addition, in parts of the northwest and the central desert
and coastal desert in southwest of Iran, the return period was low (with high probability and
high risk). Therefore, there was a possibility of extreme precipitation occurrences, such as
heavy rainfall or long drought durations. Furthermore, in more than 50 percent of the region,
the return period was less than 27.5 years, and hence the simultaneous probability of these
two events was less than for 27.5.

Figure 10c displays the spatial distribution of the joint return period for
Tr = {D90 > d90, D10 > d10}. As Figure 10d shows, the joint probability of two events
was high in the southeast, coastal, middle, and west parts of the Caspian Sea, with a return
period of less than 116 years. In addition, the risk analysis of these variables indicated that
a large part of Iran had a low or medium risk. In this regard, the Mazandaran basin in the
north, Karkheh basin in the west, and Hamoon basin in the southeast of the country had a
very high risk, in terms of heavy rainfall frequency and long drought duration.

Figure 10e,f show the possibility of the simultaneous assessment of heavy and weak
rainfall events based on the joint risk and return period obtained from
Tr = {P90 > p90, P10 > p10}.

These events were likely to occur within 24 to 64 years in the middle part of the
Caspian Sea, and in coastal parts of the Persian Gulf and Oman Sea, while there was a high
risk in the eastern part of Mazandaran and Karkheh basins.

The spatial distribution of Tr = {D10 > d10, P10 > p10} represented in Figure 10g
indicates that there was a high possibility of a long drought duration with low rainfall
occurrence. This figure also shows that the joint probability of P10 and D10 was high
in the west and southwest regions, medium in the middle and east regions, and low in
the southeast coastal region in Chabahar and some parts of Fars province. In this regard,
Figure 10h represents a high risk in some parts of Kerman in the Lut desert (central basin)
and some parts of Karkheh basin and its inlet in the western province of Iran.
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4. Discussion

The current research aimed to perform univariate and bivariate analyses of extreme
precipitation indices in Iran. Iran is a vast country with a diverse climate, where frequent
floods/droughts affect various sectors, such as agriculture, the environment, roads, ur-
banization and construction, reservoirs, and natural resources. The results of the analyses
showed that the probability of CDD occurrence in Iran tended to increase and CWD tended
to decrease. For more than 70% of the area, in western, eastern, and southern parts, the
annual number of days with precipitation less than 1 mm was more than 322 days per year.

Alexander et al. [39] showed that the CDD was relatively decreasing at most stations
in the continental part of the Earth during 1951–2003, which can be interpreted as similar to
the prediction of the Intergovernmental Panel on Climate Change (IPCC). In most parts of
Iran, the possibility of occurrence of CDD is increasing, which has been reported by Alijani
et al. [40], Razie et al. [41], and Asgari et al. [42]. In this sense, Iran will be subjected to
increasing risks of drought hazard.

The trend of CDD is increasing in more than 92% of Iran, as confirmed by Soltani
et al. [43] Asgari et al. [42]; Tabari et al. [9]; and Balling et al. [10]. In this regard, there was
no significant trend in the south and southwest of the country. Precipitation in these regions
was under the effect of separate synoptic systems, including the monsoon low-pressure
system, Persian Gulf, Oman Sea, and Red Sea [44].

In west and north of Iran, CWD is increasing, showing a higher risk of heavy rains and
a higher risk of floods There was no significant trend in the CWD (consecutive wet day)
index in large parts of Iran, including arid and semi-arid regions. According to Heydari and
Khoshakhlagh [45], the increasing atmospheric pressure and temperature in Mediterranean
Sea over last 60 years are the causes of a comprehensive drought in the western half of Iran.
Based on climate change models, this situation will continue for the next half century.

Alexander et al. [39] showed that few stations on Earth recorded increasing CWD.
In Iran, a small number of stations, such as at Bandanzali, Rasht and Khoi, showed the
possibility of an increasing CWD. The results of Asghari et al. [42] and Alavinia and
Zarei [25] also showed similar results.

The spatial distribution of joint probability of P90 and D10 represents that there was a
high possibility for longer drought durations with low rainfall occurrence in the west and
southwest of Iran and heavy rainfall in the Mazandaran basin in the north, Karkheh basin
in the west, and Hamoon basin in the southeast of Iran. Reports from the IranWRM [45,46]
confirmed the above analysis, such that severe flooding caused huge damage in Karkheh
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basin during the years 2013, 2015, 2018, and 2019; in Mazandaran basin during 2015, 2017,
2018, and 2019; and in Hamoon basin during 2017, 2019, and 2020.

5. Conclusions

This study performed a spatial and temporal analysis of extreme drought indices in
Iran using the MKT test and copula functions. The results of the study are as follows:

Low rainfall duration and consecutive dry days (CDD) were increasing from northwest
to the southeast of Iran, while consecutive wet days (CWD) were decreasing, such that
the severity of this trend was very high in the southeast and northern parts of the country
(Mazandaran, Urumie, and Karkheh sub basins). The P10 and D10 indices were decreasing
in the southern and northern coastal regions and increasing in the northwest and southeast
of Iran. However, heavy rainfall (P90 and D90) did not follow a regular pattern. In
summary, it can be concluded that the wet and Mediterranean regions in the north, west,
and northwest of the country were tending to severely dry out, whereas the arid and
semiarid regions of Iran tended to dry out moderately.

More than 50 percent of Iran experienced low risks with a return period of extreme
indices (CWD, CDD) of more than 27.5 years. In this regard, the joint return periods of
(D10, D90), (P10, P90), and (D10, P10) pairs were less than 100 years in most regions of the
country.

Furthermore, the return period in the western, northern, and northwest parts was
very low, so the risk was very high. These regions included the Mazandaran basin in the
north and Karkheh basin in the west and northwest of Iran.

The joint probability of dry and wet events is an efficient tool for warning of drought/flood
conditions, because extreme precipitation events have negative impacts on water resources, soil
moisture, and water quality. Finally, due to the variability of extreme precipitation events in
recent years, the findings of this study are useful for reducing the impacts of drought/flooding
and the changing environment.

Author Contributions: Data collection, methodology: Z.P.; Data analysis, conceptualization, supervi-
sion, writing, review, and editing: O.B., H.Z., M.S. and V.P.S. All authors have read and agreed to the
published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Groisman, P.Y.; Karl, T.R.; Easterling, D.R.; Knight, R.W.; Jamason, P.F.; Hennessy, K.J.; Razuvaev, V.N. Changes in the probability

of heavy precipitation: Important indicators of climatic change. In Weather and Climate Extremes; Springer: Dordrecht, The
Netherlands, 1999; pp. 243–283.

2. Zhang, Q.; Li, J.; Singh, V.P.; Xu, C.Y. Copula-based spatio-temporal patterns of precipitation extremes in China. Int. J. Climatol.
2013, 33, 1140–1152. [CrossRef]

3. Dastagir, M.R. Modeling recent climate change induced extreme events in Bangladesh: A review. Weather Clim. Extrem. 2015,
7, 49–60. [CrossRef]

4. Jiang, N.; Griffiths, G.; Dirks, K.N. Linking synoptic weather types to daily rainfall in Auckland. Weather Clim. 2011, 31, 50–66.
[CrossRef]

5. Zolina, O.; Simmer, C.; Gulev, S.K.; Kollet, S. Changing structure of European precipitation: Longer wet periods leading to more
abundant rainfalls. Geophys. Res. Lett. 2010, 37, 1–5. [CrossRef]

6. Manton, M.J.; Della-Marta, P.M.; Haylock, M.R.; Hennessy, K.J.; Nicholls, N.; Chambers, L.E.; Inape, K. Trends in extreme daily
rainfall and temperature in Southeast Asia and the South Pacific: 1961–1998. Int. J. Climatol. 2001, 21, 269–284. [CrossRef]

7. Sheikh, M.M.; Manzoor, N.; Ashraf, J.; Adnan, M.; Collins, D.; Hameed, S.; Shrestha, M.L. Trends in extreme daily rainfall and
temperature indices over South Asia. Int. J. Climatol. 2015, 35, 1625–1637. [CrossRef]

8. Modarres, R.; Sarhadi, A. Rainfall trends analysis of Iran in the last half of the twentieth century. J. Geophys. Res. Atmos. 2009, 114.
[CrossRef]

9. Tabari, H.; AghaKouchak, A.; Willems, P. A perturbation approach for assessing trends in precipitation extremes across Iran. J.
Hydrol. 2014, 519, 1420–1427. [CrossRef]

http://doi.org/10.1002/joc.3499
http://doi.org/10.1016/j.wace.2014.10.003
http://doi.org/10.2307/26169717
http://doi.org/10.1029/2010GL042468
http://doi.org/10.1002/joc.610
http://doi.org/10.1002/joc.4081
http://doi.org/10.1029/2008JD010707
http://doi.org/10.1016/j.jhydrol.2014.09.019


Atmosphere 2023, 14, 275 20 of 21

10. Balling, R.C.; Kiany, K.; Sadegh, M.; Sen Roy, S.; Khoshhal, J. Trends in extreme precipitation indices in Iran: 1951–2007. Adv.
Meteorol. 2016, 2016, 2456809. [CrossRef]

11. Azhdari, Z.; Bazrafshan, O.; Shekari, M.; Zamani, H. Three-dimensional risk analysis of hydro-meteorological drought using
multivariate nonlinear index. Theor. Appl. Climatol. 2020, 142, 1311–1327. [CrossRef]

12. Bazrafshan, O.; Zamani, H.; Shekari, M. A copula-based index for drought analysis in arid and semi-arid regions of Iran. Nat.
Resour. Model. 2019, 33, e12237. [CrossRef]

13. Kao, S.C.; Govindaraju, R.S. Trivariate statistical analysis of extreme rainfall events via the Plackett family of copulas. Water
Resour. Res. 2008, 44. [CrossRef]

14. Zhang, L.; Singh, V.P. Bivariate rainfall frequency distributions using Archimedean copulas. J. Hydrol. 2007, 332, 93–109.
[CrossRef]

15. Zhang, L.; Singh, V.P. Bivariate rainfall and runoff analysis using entropy and copula theories. Entropy 2012, 14, 1784–1812.
[CrossRef]

16. Jun, C.; Qin, X.; Gan, T.Y.; Tung, Y.K.; De Michele, C. Bivariate frequency analysis of rainfall intensity and duration for urban
stormwater infrastructure design. J. Hydrol. 2017, 553, 374–383. [CrossRef]

17. Kao, S.C.; Govindaraju, R.S. A copula based joint deficit index for droughts. J. Hydrol. 2010, 380, 121–134. [CrossRef]
18. Chen, L.; Singh, V.P.; Guo, S.; Mishra, A.; Guo, J. Drought Analysis Using Copulas. J. Hydrol. Eng. 2012, 18, 797–808. [CrossRef]
19. Wong, G.; Van Lanen, H.A.J.; Torfs, P.J.J.F. Probabilistic analysis of hydrological drought characteristics using meteorological

drought. Hydrol. Sci. J. 2013, 58, 253–270. [CrossRef]
20. Mirabbasi, R.; Anagnostou, E.N.; Fakheri-Fard, A.; Dinpashoh, Y.; Eslamian, S. Analysis of Meteorological Drought in Northwest

Iran using the Joint Deficit Index. J. Hydrol. 2013, 492, 35–48. [CrossRef]
21. Bazrafshan, O.; Zamani, H.; Shekari, M.; Singh, V.P. Regional risk analysis and derivation of copula-based drought for severity-

duration curve in arid and semi-arid regions. Theor. Appl. Climatol. 2020, 141, 889–905. [CrossRef]
22. Azhdari, Z.; Bazrafshan, O.; Zamani, H.; Shekari, M.; Singh, V.P. Hydro-meteorological drought risk assessment using linear and

nonlinear multivariate methods. Phys. Chem. Earth Parts A/B/C 2021, 123, 103046. [CrossRef]
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