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Abstract: The rescaling of rainfall requires measurements of rainfall rates over many dimensions. 
This paper develops one approach using 10 m vertical spatial observations of the Doppler spectra 
of falling rain every 10 s over intervals varying from 15 up to 41 min in two different locations and 
in two different years using two different micro-rain radars (MRR). The transformation of the tem-
poral domain into spatial observations uses the Taylor “frozen” turbulence hypothesis to estimate 
an average advection speed over an entire observation interval. Thus, when no other advection es-
timates are possible, this paper offers a new approach for estimating the appropriate frozen turbu-
lence advection speed by minimizing power spectral differences between the ensemble of purely 
spatial radial power spectra observed at all times in the vertical and those using the ensemble of 
temporal spectra at all heights to yield statistically reliable scaling relations. Thus, it is likely that 
MRR and other vertically pointing Doppler radars may often help to obviate the need for expensive 
and immobile large networks of instruments in order to determine such scaling relations but not the 
need of those radars for surveillance. 

Keywords: time–height rainfall rate profiles from MRR radars; advection correction for conversion 
to height–distance profiles; computing radial power spectra using height–distance profiles; using 
derived radial power spectra for downscaling and upscaling 
 

1. Introduction 
Scaling is an essential feature of many phenomena ranging from those of cosmology 

to those of quantum physics [1]. Many human activities, from the stock market [2] to ecol-
ogy [3] and many more, are also impacted by scaling. The science of scaling “ helps reveal 
what factors determine … the …level of impact in a different place, in a different situation, 
and with a different population. How big is it? How long does it last? These are [some of] 
the most basic questions a scientist can ask.”([4], p. 107). 

With respect to direct physical impacts on mankind, this is especially true for rainfall. 
Moreover, it has been shown [5] that the temporal and spatial structures of rain are not 
equivalent because they are orthogonal dimensions but also in part because the unknown 
advection of the rain affects the temporal observations. Furthermore, until recently [6], 
studies of spatial scaling have all been confined to the surface. However, the vertical di-
mension retains particular relevance not only with respect to the evolution of rain but also 
because observations at the surface are only an ambiguous expression of what is happen-
ing aloft. That is, the structure and statistical characteristic above the ground will not nec-
essarily be unambiguously reflected on the surface because of storm motion and bound-
ary layer surface winds. Furthermore, rain evolves as it descends, altering what is seen 
aloft from what may appear at the ground. Thus, in general, the physical/statistical 
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structure and scales at the surface will likely be somewhat different from those observed 
in the vertical [6]. Thus, combining observations in both dimensions may yield more gen-
erally applicable results. 

However, whether in the vertical or horizontal, the different scales of rainfall are ob-
vious even to the most casual observer. Specifically, proceeding from the smallest scales 
we have, soil erosion (e.g., [7]) and agricultural run-off and pollution, up to larger scales 
which influence flash flooding and urban water management (e.g., [8]), and finally up to 
the largest scales(e.g., [9]) which play a major role in the world climate. Consequently, 
downscaling—going from the large dimensions of, for example, a numerical model, a 
measurement using a spaceborne instrument [10], or even a coarse resolution radar meas-
urement down to smaller scales [11]—and upscaling—going from essentially point meas-
urements, such as using a rain gauge or disdrometer up to the larger scales just mentioned 
[12,13]—are both equally important depending upon the situation. 

In the literature, there is an assortment of techniques for downscaling, such as the so-
called multiplicative cascading method [14–16] with improvements proposed by Seed et 
al. [17]. An alternative approach that reproduces the observed power spectrum uses the 
observed correlation functions (when valid) or the power spectrum [12,13,18] to 
downscale observations to smaller domains while maintaining the physical and statistical 
character of the observed rain. This will be illustrated in Appendix A. 

Methods for upscaling, however, are more limited, although a few exist. Some in-
volve smoothing [19] or Kriging of the observations [19,20]. The primary limitation of such 
techniques is that they are filters of the power spectra [21] leading to a reduction of infor-
mation as discussed in [22]. A different approach uses the Bayesian components of the 
rainfall and the observed power spectrum (or correlation function for statistically homo-
geneous rain) to generate rain over many different scales with the appropriate statistical 
properties consistent with the observations [12]. This will be briefly mentioned in Appen-
dix A as well with appropriate references for the interested reader to pursue. 

Regardless of methodology, however, the statistical properties of the rain must be 
properly characterized and preserved. In the next sections, we report on improved re-
analyses of time–height observations presented in [6] to produce radial power functions 
for scaling, which more accurately represent the data. In this work, results are presented 
using micro-rain radar (MRR) vertical-pointing Doppler radar observations in four cases 
in two different locations using two different radars—three from observations at the 
NASA Wallop’s Island Virginia facility and the other from measurements collected using 
the College of Charleston’s MRR radar near Charleston, South Carolina. An example of 
downscaling using a similar but not identical power law fit is given in an appendix with 
references to view for upscaling examples. 

Time–height data are challenging since in the spatial dimension, power spectra yield 
the number of waves per unit length, while in the temporal dimension, the power spectra 
yield the frequency. In order to determine the spatial radial power spectra used to perform 
the rainfall rescaling. (the power spectrum as a function of distance along any radial) for 
all directions, the two must be combined [21]. The radial power spectrum is calculated by 
first computing the 2D horizontal–vertical coordinate system of the original 2D power 
spectrum using the fft2 routine in Matlab® and then multiplying by its complex conjugate. 
This 2D power spectrum of values in (Δz, Δh) coordinates is then converted into 2D polar 
coordinate system of (Δr, Δθ) values of the power spectrum. Finally, the radial power 
spectra can then be computed by integrating over all the angles Δθ for each Δr. The first-
order standard approach for transforming time to space is to use an average advection 
velocity for the storm combined with Taylor’s frozen turbulence hypothesis. The frozen 
turbulence advection velocity is that velocity that transform the turbulence spectra in time 
to that in space. In one horizontal dimension, the velocity becomes a speed. In past work, 
this was performed arbitrarily so that the quality of the results was uncertain even if it 
was “reasonable”. As we show below, there is a much better, more objective approach for 
better estimating an advection speed consistent with frozen turbulence that involves 
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comparing the independent spatial and advection transformed temporal spectra. This 
likely differs from an estimate of a storm’s advection velocity based upon the movement 
of storm features undergoing constant changes since frozen turbulence is not identical to 
frozen structures. Importantly, under conditions with a proper advection speed, time–
height profiles using one radar can offer observations over a large spatial domain when 
more expensive networks of instruments are not available. This is further developed in 
the next section. 

2. Background 
2.1. Basic Considerations 

In order to be able to fully scale the rain rate, R, in any spatial direction, it is most 
useful to have access to the radial power spectra that, in the case of statistically homoge-
neous rain, can also be transformed into the radial correlation function. (e.g., for a discus-
sion, see [23]. Accomplishing estimates of the rainfall rates at high resolution is a challeng-
ing task that is perhaps best addressed using vertical-pointing Doppler radar data in rain. 
Thus, one of the most potentially useful radars for collecting such observations in a num-
ber of different locations and meteorological settings is the micro-rain radar (MRR) de-
scribed in [24]. This is a lightweight, highly transportable, low-power, vertical-pointing 
continuous wave radar operating at a frequency of 24.23 GHz. 

There are challenges, however. The rainfall rate is calculated from the drop sizes de-
duced from the Doppler spectra using well-established relations between the fall speed of 
a drop and its size [25] with the drop concentration determined from the radar backscatter 
cross-section in relation to drop size for the particular wavelength being used. Both of 
these quantities (the apparent fall speed and observed radar backscattered power), how-
ever, require adjustments. In particular, the observed Doppler velocity is the sum of the 
true fall speed of the drop and the vertical air motion, which must be removed in order to 
estimate the correct drop fall speed and size. Similarly, at the wavelength of the MRR 
instrument, attenuation by the rain can become significant at times depending upon the 
rain intensity and distance of the sampling bin (range) from the radar. Both of these con-
cerns have been addressed in [6], so an interested reader can refer to that paper for elabo-
ration. Here, we take the deduced rainfall rates from that work for the data mentioned 
above and use them for further analyses. 

The challenge explored in this work is how best to address the fact that space and 
time are orthogonal dimensions such that a method must be identified in order to combine 
measurements in each. That is, radar time–height observations are the sequential temporal 
measurements of the rainfall rate, R, at each sampling bin spatially sequentially in the 
vertical. For the data used here, data were collected over 10 m depths from about 30 m 
above the ground up to a height of 1280 m. At each location the Doppler spectra and radar 
backscattered powers were measured over sequential 10 s sampling periods for each de-
termination of R at each height and time. Over an interval of observations, these data can 
then be considered in two ways, namely as a sequential ensemble of vertical spatial pro-
files or, alternatively, as the ensemble of times series of observations at each height. Using 
the Fourier transform for each of these, one can compute both the ensemble of vertical 
spatial power spectra and, simultaneously, a different ensemble of the temporal power 
spectra at each height. As we shall see, this allows for a better estimation of the frozen 
turbulence advection speed. 

2.2. An Example 
To make this all more concrete, we initially consider the opening 950 s of observations 

for a line of intense convective rainstorms that passed over the NASA Wallop’s Island 
Flight Facility on 3 June 2019, as illustrated in Figure 1.  
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Figure 1. Time–height profile of the logarithm of the rainfall rate as derived in [6] for the so-called 
early period of 03 June 2019 data. 

Hence, over these 900 s of observations collected every 10 s, we obtained 90–128 rain-
fall rate estimates in height from the Doppler measurements. Therefore, for each of these 
10 s periods, we could compute the power of the rainfall rate spectrum as a function of 
height. Furthermore, corresponding to each height, there would be 90 temporal observa-
tions of the rainfall rates. Thus, we could compute the power of the rainfall rate spectrum 
in time at each height. That is, these data allowed for the generation of 90 power–rainfall 
rate–distance spectra corresponding to the 90 10 s intervals and 128 power–rainfall rate 
spectra in time corresponding to each 10 m separation in height. However, since we are 
most interested in the average properties of all these data, all the power spectra were av-
eraged in their own dimensions to yield the mean power–rainfall rate–height and tem-
poral spectra, as illustrated in Figure 2.  
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Figure 2. The averaged power spectra as functions of the wavenumber k in space and the frequency 
ω in time for the rainfall rates in Figure 1 in both the purely vertical spatial dimension (black) and 
in the purely temporal domain (red), showing the time and space differences in the spectra. 

The two spectra are clearly different. This is, of course, not surprising since one is 
necessarily expressed as a temporal frequency, while the other is written in terms of the 
wave number. If one desires to have a radial power spectrum for spatial scaling, is there 
a way to combine these two observations taken along two different orthogonal axes? To 
express it slightly differently, can the frequency ω be transformed into reasonable esti-
mates of k? The assumption when trying to make this transformation is that the temporal 
observations are considering approximately the same phenomenon but along a different 
axis, i.e., ω = Va × k where Va is defined to be the mean advection speed, providing that it 
can be determined. 

While the motion of the rain is undoubtedly complicated, moving at different speeds 
at different locations and times, the simplest first approximation is to use the Taylor hy-
pothesis that the rain is moving as a whole at Va so that the observed frequencies are truly 
the consequence of the mean motion of the spatial structures. Can Va be determined? 

The answer is yes if a speed can be found that transforms most of the temporal power 
spectra into something that more closely approximates the observed spatial power spec-
tra. To see how this may work, the temporal power spectra in Figure 2 were transformed 
from ω to k using a range of possible advection velocities. That is, for a particular spatial 
wavelength, in the temporal domain, the velocity can be viewed as a stretching of the 
wavelength. Consequently, the transformed wave number will be smaller than in the spa-
tial domain. Another way to consider this is that if the characteristic spatial domain size 
is L while the total temporal interval of observations is T, then the equivalent spatial do-
main size corresponding to T would be L = Va × T, where Va is a characteristic advection 
speed. For a fixed spatial wavelength, λ, then there would be k = L/λ number of wave-
lengths in the spatial domain, but there would be kω = L/λ such wavelengths in the velocity 
transformed from the temporal to spatial domain. Hence, the kω associated with that λ 
would be much larger than k, i.e., kω = (L/L) × k. Thus, in order to match the two wave-
numbers so that they correspond to the same λ, kω must be multiplied by L/L, as illustrated 
in Figure 3a for this example. 
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Figure 3. (a) The temporal spectral powers converted to spatial spectra for the different indicated 
assumed advection speeds, Va. (b) The total differences between the transformed temporal spectra 
for the different Va and the observed vertical spatial spectra (black line) in (a) showing the well-
defined minimum difference at Va = 3.3 ms−1 as indicated by the x. 

Other examples will be shown below as well, but this velocity also allows us to re-
scale all the spatial data in Figure 1, as shown in Figure 4, thereby reducing the overly 
exaggerated appearance of the vertical structures. 
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Figure 4. Spatially scaled rainfall rate data in both the vertical and horizontal directions where the 
distance is the translation distance from the observation location implied by the frozen turbulence 
advection speed in Figure 3. 

3. Further Data Analyses 

3.1. Three More Cases 
Before computing the associated radial power spectrum for these specific data, how-

ever, we next consider the other three sets of measurements used in this study. This will 
then allow direct comparisons between all of the radial power spectra that could be used 
for upscaling or downscaling of these observations as illustrated in the appendix. To that 
end, for convenience, we begin in Figure 5 by first simply displaying the additional data 
to be processed using illustrations in a previous paper [6]. The first two are a continuation 
of the data presented above, but for a middle period (Figure 5a), a later period (Figure 5b), 
and finally for a different set of measurements using a different MRR at the College of 
Charleston (CoC data) gathered in a storm in August, 2021 (Figure 5c). 
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Figure 5. Replot of the rainfall rate time–height profiles for 03 June 2019 for (a) the middle period, 
(b), the later period, and finally (c) the Charleston College MRR data as deduced in [6] and discussed 
in the text. 



Atmosphere 2023, 14, 252 9 of 18 
 

 

Beginning with the middle period data, the power spectra are plotted in Figure 6a 
with the determination of the optimum Va shown in Figure 6b. For these data, the opti-
mum advection speed of 2.6 ms−1 is about 0.7 ms−1 less than that for the line of storms 
moving over the radar in the previous early data set. 

 
Figure 6. (a) The temporal spectral powers converted to spatial spectra for the different indicated 
assumed advection speeds, Va. (b) The total differences between the transformed temporal spectra 
for the different Va and the observed vertical spatial spectra (black line) in (a) showing the well-
defined minimum difference at Va = 2.6 ms−1 as indicated by the x. 

For the later period, a similar plot is shown in Figure 7. At this later time, the optimal 
advection speed is even slightly smaller at 2.1 ms−1, thus showing a persistent decrease in 
time over the 40 min period of these observations. 
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Figure 7. (a) and (b) are as in Figure 6 except for the later period of the 3 June 2019 data. This time, 
the optimum Va = 2.1 ms−1. 

Lastly are the College of Charleston (CoC) data through an ordinary but significant 
South Carolina summer thunderstorm, with results illustrated in Figure 8. Once again, the 
advection speed is reasonable at about 2.4 ms−1. 
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Figure 8. (a) and (b) are as in Figure 7 except for the CoC data. This time, the optimum Va = 2.4 
ms−1. 

With these advection speeds and for completeness, we can then replot the time-
height profiles as height distance profiles for these data (as was done in Figure 4), as illus-
trated in Figure 9. These most likely represent the actual spatial structures that we can 
now analyze to derive the spatial radial power spectra for rainfall scaling for each set of 
data separately. 
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Figure 9. The horizontal height profiles on 3 June 2019 for (a) the middle period data, (b) the later 
period data, and (c) the CoC data. These spatial data then make it possible to derive radial spectral 
functions, which can be used for scaling of the rainfall rates to different dimensions of interest. 
Again, the distance from the measurement origin is calculated using the frozen turbulence speed 
over the time interval. 
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3.2. The Radial Power Spectra for Use in Rescaling 
With these estimates of advection velocities, there are then only spatial variables in 

both the vertical (z) and horizontal (h) directions, so the one-dimensional radial power 
spectra can be computed for all of these data sets for subsequent use in rescaling out to 

the maximum range 2 2
maxRng z h= + . As explained in [26] but repeated here for read-

ability, this is accomplished by first computing the 2D horizontal–vertical coordinate sys-
tem of the original 2D power spectrum using the fft2 routine in Matlabâ and then multi-
plying by its complex conjugate. This 2D power spectrum of values in (Δz, Δh) coordinates 
is then converted into a 2D polar coordinate system of (Δr, Δθ) values of the power spec-
trum. Finally, the radial spectra can then be computed by integrating over all the angles 
Δθ for each Δr. 

Before displaying the results, it is important to recognize the value of using the best 
estimate of the advection velocities as indicated for the CoC data in Figure 10. This is likely 
important for the other data in this study as well. Thus, in the previous work, (Figure 9 of 
[26]) which calculated erroneously by assuming the incorrect Va = 1 ms−1, the values of the 
slopes only ranged from −2.47 to −2.74, while those below in Figure 11—calculated using 
the best estimates of Va—fall over a greater range of slopes between −2.71 and −3.51. 

 
Figure 10. A plot illustrating the effect of increasing advection speed on the slope of a power fit to 
the radial spectral power function for the CoC data illustrating the importance of using an estimate 
of an optimal advection speed rather than an arbitrary assumption as was made in [26]. 
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Figure 11. The spatial radial power spectra as functions of the spatial wave number deduced using 
the data in Figures 4 and 9 after accounting for the advection speed for each data set separately. 

However, while the maximum differences in slopes in Figure 11 is about 0.8, this 
decreases to about 0.27 after first noting that these relations can all be scaled to the volume 
(Figure 12). Here, the volume is calculated from the expression: 

( ) ( ) ( )3 3k maxLog V Log Rng Log k= −  (1) 

where Vk is the volume associated with wave number k arising for each length scale de-
fined by a L = Rngmax/k and Vk = L3 and a maximum length of Rngmax defined above. In this 
transform, the slopes now vary over a much narrower range of values from −0.9 to −1.17, 
while the minima in spectral powers at (k = 1) are indicative of the overall mean rainfall 
intensity (29.7, 25.6, 21.5, 1.65 mm h−1 for the CoC, early, later, and middle data sets, re-
spectively). Interestingly, under conditions with a proper advection speed, time–height 
profiles using one radar offer the potential for observations over large spatial domains 
when more expensive networks of many instruments are not available. 
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Figure 12. The spatial radial power spectra now scaled to the volume. The variability of the power 
fit slopes is now reduced to about 0.27, as compared to the range of values in Figure 11. 

4. Summary of Results 
This work explored, in detail, an option for using  time–height Doppler radar spec-

tra for estimating rainfall rate over a large spatial domain in order to compute radial 
power spectra for any subsequent rescaling of new input observations or numerical model 
outputs. Using the rainfall rates determined through an earlier analyses of these data [6], 
a method was found to convert the temporal observations into spatially equivalent meas-
urements using the concept of a mean advection speed so that the temporal frequency 
power fluctuations could be interpreted as the temporal reflection of moving spatial struc-
tures, thus satisfying the meaning of frozen turbulence. Moreover, under the assumption 
of approximate spatial isotropy, an optimal physically based advection speed could be 
estimated by comparing the spatially transformed temporal power spectra to the purely 
spatial power in the vertical. In each set of data, a unique frozen turbulence advection 
speed was found such that the total differences between the spatial power spectra and the 
transformed temporal power spectra were minimized. Using these advection speeds, all 
of the time–height observations were then converted into vertical and horizontal spatial 
data, which were subsequently used to compute the spatial radial power spectra for all 
the different sets of data. In the appendix, an example is provided of how such radial 
spectra can be used to downscale a uniform mean rainfall rate over a one-kilometer area 
into a set of statistically homogeneous “data” with the structures of various dimensions 
consistent with the radial power spectrum. 

A significant advantage illustrated by these results is that such data from a single 
works of instruments in order to determine radial power spectra for rescaling, and it pro-
vides observations in the vertical not otherwise possible to obtain. Thus, it opens up the 
possibility that such measurements may be made in locations where such networks of 
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instrumentation may not even be possible or feasible but also when mobility is important 
for collecting observations in widely varying meteorological situations. 

Funding: This research was funded by the United States National Science Foundation under grant 
AGS2001343. 

Data Availability Statement: The data are available from Jameson, Arthur (2020), “MRR Data for 
Analyses”, Mendeley Data, V1, 4. 

Appendix A 
The spectral power relations can be used for either upscaling or downscaling of the 

rainfall rates. The process of upscaling is discussed in previous work. Here, we will only 
consider downscaling starting with a uniform value such as might come from a numerical 
weather prediction with 1 km grid spacing or from a 1° Gaussian beam radar 60 km away 
(Figure A1a). This uniform value is then downscaled to a spatial resolution of five meters 
as illustrated here in Figure A1b using the indicated spectral power relation that is similar 
to those found for the early and middle period in Figure 11. One advantage of this ap-
proach over some others is that it faithfully reproduces the observed power spectrum. 

This example is not intended to reproduce any of the spatially correlated observa-
tions above, which would require starting with a field of spatially correlated random 
number as has already been done in the literature [13], but is simply to demonstrate the 
high-resolution results that can be generated from a 1 km uniform field. This is achieved 
by generating a square field of spatially uncorrelated uniform random numbers with zero 
mean, and unit variance is generated. Because a radar measurement or a numerical model 
output is usually just a single number, as in Figure A1a, it is reasonable to assume that the 
observed field of rain is statistically homogeneous. Therefore, we can use the Weiner–
Khintchine theorem [27,28] to convert the S(k) above into the corresponding correlation 
function, C(d). While such relations need not always be power fits, for the particular power 
relation above, the Fourier transform of ( ) pS k k −∝ yields another power relation, 

qC( d ) d∝ , where d is the distance between two points in the plane and 1q ( p )= − − .  
The field of random numbers can then be correlated using the root method as illus-

trated in a number of works including, for example, [13,29,30] This usually produces a 
field of approximately normally distributed numbers that, by using the copula technique 
[31], can be transformed back into a field of uniformly distributed but properly correlated 
numbers between 0 and 1 with a mean of 0.5. This, in turn, can then be transformed into 
a field of rainfall rates as in Figure A1b by simply multiplying by the inverse of the mean 
value of the field of numbers that is usually close to 0.5. Consequently, in this example, 
we multiply by 1/0.5106 or 1.9585R, where R is an input value from Figure A1a. The small-
scale patchiness is now clearly evident in Figure A1b. 



Atmosphere 2023, 14, 252 17 of 18 
 

 

 
Figure A1. (a) Illustrates the input uniform value as seen, for example, by a radar with a 1 km beam 
width or as output from a numerical model with a 1 km grid spacing and (b) one realization of the 
resulting downscaling to 5 m resolution using the indicated radial power spectrum as discussed 
further in the text. 
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