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Abstract: The westerlies play an important role in driving climate change in the Tibetan Plateau (TP).
However, little is known about the history of the westerlies in the TP owing to limited observations
and a lack of robust reconstructions. The widely distributed eolian loess in the eastern TP is one
of the ideal materials to retrieve the intensity history for the westerlies. A detailed grain-size and
endmember model analysis (EMMA) on the Ganzi loess sequence located in the eastern TP revealed
that the EMMA decomposed the loess grain-size components into four endmembers: EM1 (modal
size 1.42 µm) is related to pedogenesis, and EM2 (modal size 7.10 µm) is transported by the westerlies.
Silt modes (EM3 and EM4) are transported by the TP winter monsoon or near-surface airflows. The
mass accumulation rate (MAR) of EM2 indicated the westerly variations. Combined with the MAR,
we reconstructed the history of westerly intensity since the last interglacial period from the Ganzi
loess sequence. We found that the intensity of the westerlies showed typical glacial/interglacial
variations since the last interglacial period in the eastern TP. The westerly intensity was strong with
large fluctuations during the glacial period, whereas it was weak and stable during the Holocene and
the last interglacial. The temperature gradient between high and low latitudes caused by changes in
insolation and ice volume in the northern hemisphere were the dominant forcing mechanisms for the
westerly intensity variations.
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1. Introduction

As a major atmospheric circulation system, the mid-latitude westerlies play a signifi-
cant role in climatic and environmental evolution, as well as in the evolution of civiliza-
tion [1,2]. Climate change in the high latitudes of the Northern Hemisphere has a profound
impact on the monsoon climate of East Asia, with the Northern Hemisphere westerlies
linking the North Atlantic climate and the East Asian summer monsoon (EASM) area [3].
Numerous sources of evidence have suggested that changes in the westerlies were globally
synchronous [4], and anthropogenic forcing may cause the poleward migration of the
westerlies [5,6].

The Tibetan Plateau (TP) is the largest and highest plateau in the world. Its climate,
environment, and vegetation are extremely sensitive to global climate change and are
undergoing rapid and pronounced changes [7–11]. The westerlies play an important role
in the climate and dust activities in the TP [9,11,12]; further investigation of the changing
history of the westerlies is therefore helpful to understand the drivers of environmental
change on the TP [13]. Such work is also of great significance to predict future changes in
the TP and to protect the so-called Asian water tower [14].

However, current studies on TP westerly intensity variations are mostly focused on the
period since the Last Glacial Maximum and the Holocene. The sediment grain-size index in
Qinghai Lake shows the westerly variation since 32 ka and suggests that the intensity and
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variability in the glacial period were significantly higher than those in the Holocene [15].
Contributions from both the westerlies and the EASM may control the Holocene evolution
of moisture conditions in the TP [13,16]. Endmember modeling analysis (EMMA) of the
grain size of an eolian sequence in the southern TP suggested that weaker winter westerlies
occurred during the Early to Middle Holocene, and stronger winter westerlies occurred in
the Middle to Late Holocene [17]. The endmember decomposition grain sizes of the eolian
loess–paleosol sections in the Yellow River source area on the northeastern TP indicate
that the westerly winds have been inversely correlated with the East Asian summer winds
since the Late Pleistocene [18]. The hydrogen isotopes in leaf wax from Jiangcuo-area
lake sediments, central TP, indicate that the intensity of the westerlies did not vary much
during the Early–Middle Holocene (12–6 ka), but gradually increased since the Middle
Holocene [19].

Variations in the westerlies during the last glacial cycle are poorly understood owing
to limited observations and a lack of robust reconstructions. It is necessary to investigate
more westerly variations at the orbital scale in a more extensive region. Extensive eolian
loess deposits in the eastern TP are a key archive to trace past atmospheric circulations [20].
This loess is derived from the TP interior [21], with far-source dust transported by the high-
level westerlies and short-distance dust carried by near-surface winds [22,23]. Loess grain
size is a direct index of wind strength [24], which is helpful in reconstructing the eolian
dust process and atmospheric circulations [25]. Variations in the grain-size distribution of
sediments transported by the westerlies can record the evolution of westerly intensity [26],
and the grain size of the fine fraction has been used to estimate westerly intensity with
Chinese loess [27]. EMMA is a robust and valuable tool as well as a classical quantitative
method for grain-size data assessment [28–30], which can identify and quantify processes
of sediment generation, transport, and deposition [31,32], EMMA has been widely used in
reconstructing westerly evolution in central Asia and the TP [17,18,33,34].

In this study, we conducted a detailed grain-size analysis on the Ganzi loess sequence
with good age control and identified a westerlies’ component using EMMA. In combination
with the dust accumulation rates, the intensity history of the westerlies in the eastern TP
has been reconstructed since the last interglacial period, and the possible mechanisms
have also been discussed. This result will provide new evidence for further understand-
ing the evolutionary history and proposed mechanism of the westerly variation in the
Tibetan Plateau.

2. Materials and Methods
2.1. Study Area and Sampling

Ganzi County is located on the western Sichuan Plateau in the eastern TP where it is
affected by the westerlies, the Indian summer monsoon, and the Tibetan Plateau monsoon
(Figure 1) [23,35]. The average annual temperature is approximately 6.1 ◦C, and the annual
precipitation is approximately 660 mm, which is concentrated in summer. There are widely
distributed eolian loess deposits, especially in the Yalong River terraces. Previous studies
have shown that the loess deposits accumulated since approximately 1.13 Ma [36]. The
studied XS section (31.37◦ N, 99.59◦ E, 3400 m above sea level) is in northeastern Ganzi
County, situated on the third terrace at the north bank of the Yalong River. The outcrop
is 10 m thick and consists of the last interglacial paleosol (S1), the Holocene paleosol (S0),
and a layer of weakly developed paleosol (L1S1). A detailed stratigraphic division and
description are given by Yang et al. (2022) [35]. A total of 400 bulk samples were taken at
2.5 cm intervals for grain-size analysis.
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Figure 1. (a) The XS section is mainly affected by the westerlies, Indian summer monsoon (ISM), 
and Tibetan Plateau (TP) monsoon. The red dot is the location of the study site. Wind circulations 
at the 400 hPa levels in (b) spring, (c) summer, (d) autumn, and (e) winter during 1992–2021. The 
data used here were acquired from https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-
era5-pressure-levels-monthly-means?tab=form (accessed on 1 October 2022). 

2.2. Methods 
2.2.1. Grain-Size Measurements 

Grain-size analyses of bulk loess samples were performed at the Key Laboratory of 
Western China’s Environmental Systems (Ministry of Education), Lanzhou University. 
The grain size measurements used the methods given by Lu and An [37]. All samples 
were pretreated with 10% H2O2 and HCl to remove organic matter and carbonate, respec-
tively. A 5% dispersing agent of (NaPO3)6 was added to ultrasonicate for 5 min before 
measurement. The grain-size distribution was analyzed with a Malvern Mastersizer 2000 
laser-diffraction particle-size analyzer, with a measurement range of 0.02–2000 μm, and 
the measurement error was less than 1%. Finally, the grain-size measurement results of 
each sample were obtained, and the grain-size distributions are shown in Figure 2a. 

Figure 1. (a) The XS section is mainly affected by the westerlies, Indian summer monsoon (ISM),
and Tibetan Plateau (TP) monsoon. The red dot is the location of the study site. Wind circulations at
the 400 hPa levels in (b) spring, (c) summer, (d) autumn, and (e) winter during 1992–2021. The data
used here were acquired from https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5
-pressure-levels-monthly-means?tab=form (accessed on 1 October 2022).

2.2. Methods
2.2.1. Grain-Size Measurements

Grain-size analyses of bulk loess samples were performed at the Key Laboratory of
Western China’s Environmental Systems (Ministry of Education), Lanzhou University. The
grain size measurements used the methods given by Lu and An [37]. All samples were
pretreated with 10% H2O2 and HCl to remove organic matter and carbonate, respectively. A
5% dispersing agent of (NaPO3)6 was added to ultrasonicate for 5 min before measurement.
The grain-size distribution was analyzed with a Malvern Mastersizer 2000 laser-diffraction
particle-size analyzer, with a measurement range of 0.02–2000 µm, and the measurement
error was less than 1%. Finally, the grain-size measurement results of each sample were
obtained, and the grain-size distributions are shown in Figure 2a.

https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-pressure-levels-monthly-means?tab=form
https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-pressure-levels-monthly-means?tab=form
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Figure 2. (a) Grain-size distribution (GSD) diagrams of all samples, (b) linear correlations, (c) angu-
lar deviations, and (d) endmember distributions. 
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size distribution function of the dust transported by a certain power is specified. That is, 
given the type of function for each vector in matrix B, the parameters and proportions of 
the function equation (M) are obtained by inversion. The product of M and B is X’, and 
there is an error E between X’ and the grain-size matrix X. 

In this work, we performed endmember decomposition on grain-size data by the 
Gen. Weibull function from the AnalySize v.1.2.1 package 
(https://www.github.com/greigpaterson/AnalySize (accessed on 1 October 2022)) based 
on MATLAB software [38]. The Gen. Weibull function is one of the most commonly used 
parametric decomposition functions and an improvement of the Weibull function because 
it considers the geological background of sediments. The grain-size distribution generally 
followed the Weibull function, and the Weibull function has a better fit than the log-nor-
mal function. 

2.2.3. Age Model 
Five optically simulated luminescence (OSL) ages obtained from a previous study 

proved that the bottom age of the XS loess section is 127 ± 6 ka [39]. To reduce the uncer-
tainties in the age constraints, stratigraphic boundary ages were identified for S1, L1L2, 
L1S1, L1L1, and S0 by correlating the magnetic susceptibility to the corresponding marine 
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Figure 2. (a) Grain-size distribution (GSD) diagrams of all samples, (b) linear correlations, (c) angular
deviations, and (d) endmember distributions.

2.2.2. End-Member Analysis

Mathematically, grain-size data EMMA can be understood as follows: The grain-size
data of a given sample is regarded as a vector and the grain-size data of a series of samples is
a matrix (X), which is composed of multiple vectors. EMMA decomposes X into the product
of two matrices, M and B. B is a matrix composed of endmember grain-size distributions,
and M is composed of the corresponding proportions of the individual endmembers of
each sample. The parametric decomposition method means that the grain-size distribution
function of the dust transported by a certain power is specified. That is, given the type
of function for each vector in matrix B, the parameters and proportions of the function
equation (M) are obtained by inversion. The product of M and B is X’, and there is an error
E between X’ and the grain-size matrix X.

In this work, we performed endmember decomposition on grain-size data by the
Gen. Weibull function from the AnalySize v.1.2.1 package (https://www.github.com/
greigpaterson/AnalySize (accessed on 1 October 2022)) based on MATLAB software [38].
The Gen. Weibull function is one of the most commonly used parametric decomposition
functions and an improvement of the Weibull function because it considers the geological
background of sediments. The grain-size distribution generally followed the Weibull
function, and the Weibull function has a better fit than the log-normal function.

2.2.3. Age Model

Five optically simulated luminescence (OSL) ages obtained from a previous study
proved that the bottom age of the XS loess section is 127 ± 6 ka [39]. To reduce the
uncertainties in the age constraints, stratigraphic boundary ages were identified for S1, L1L2,
L1S1, L1L1, and S0 by correlating the magnetic susceptibility to the corresponding marine
isotope stages (MISs) 5 (71–130 ka), MIS 4 (57–71 ka), MIS 3 (29–57 ka), MIS 2 (14–29 ka),
and MIS 1 (0–14 ka), respectively [39]. The Bacon age–depth model of the XS section was
constructed using R software [40], using the five published OSL ages and four stratigraphic
boundary ages (Figure S1).

https://www.github.com/greigpaterson/AnalySize
https://www.github.com/greigpaterson/AnalySize
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3. Results
3.1. Grain-Size Results

The grain-size distribution of the XS loess sequence shows a typical log-normal func-
tion distribution, with the grain-size distribution concentrated between 2 µm and 70.96 µm
and dominated by silt components with less clay and fine sand contents. The mean grain
size of loess samples in the XS section is 16.70 µm, whereas the mean grain size of paleosol
samples is 14.04 µm. The grain size fluctuates significantly along the depth and is generally
fine in the paleosol while coarse in the loess. There are three distinct peaks in the size
distribution diagram (Figure 2a) for all XS samples, corresponding roughly to 1 µm, 7 µm,
and 50 µm. As shown in Figure 3, clay accounts for a relatively high proportion in the
paleosol layers, with the upper and lower quartiles of the proportion accounting for 18.68%
and 22.14%, respectively. The proportion is low in the loess layers, with the upper and
lower quartiles of the proportion accounting for 15.02% and 19.29%, respectively. There
was no significant difference in silt content between the paleosol layers and loess layers,
with the upper and lower quartiles of silt content in the paleosol layers accounting for
67.33% to 71.59%, respectively. The sand content is low, with an average proportion of
12.26%. High sand-size fractions occurred in the loess layers with 11.59% to 15.84% in the
upper and lower quartiles, while the sand fraction is low in the paleosol layers with 6.88%
to 11.98% in the upper and lower quartiles.
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Along the depth of the XS section, the grain-size records show various degrees of
fluctuation in the loess and paleosol layers due to the glacial–interglacial cycles (Figure 3).
There were decreasing trends in clay and silt contents (average clay content decreased
from 21.72% in S1 to 17.72% in S0; average silt content decreased from 70.61% in S1 to
62.70% in S0) and increasing trends in sand contents (average sand content increased
from 7.68% in S1 to 19.58% in S0). The variations in median and mode grain sizes are
synchronous, with both showing high values during glacial periods and lower values
during the interglacial periods. The variation range of median grain size (31.51 µm) is
larger than that of mode grain size (3.54 µm), which means that median grain size is more
sensitive to climate conditions.

3.2. EMMA Results

EMMA of XS loess grain-size data was carried out using AnalySize v.1.2.1, and the
grain-size matrix was fitted by the Gen. Weibull parametric decomposition function. The
linear correlations (R2), angular deviations (θ), and endmember correlations corresponding
to 1–10 endmembers were obtained, which were used to determine the optimal number of
endmembers. When the number of endmembers is 4, the linear correlation is 0.99, with
an angular deviation of 2.41, and an endmember correlation of 0.41. Based on these three
parameters, four endmembers are determined (Figure 2d).
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The statistical parameters of the end-member distribution characteristics and the
variations in the proportions of the four endmembers (labeled as EM1, EM2, EM3, and
EM4) along the depth are shown in Table 1 and Figure 2. EM1 is concentrated between
0.97 µm and 3.63 µm, with a mode size of 1.42 µm, and the proportion is roughly in the
range of 10–20%, with moderate fluctuations. The EM2 is between 4.55 µm and 12.19 µm,
with a mode size of 7.10 µm, and the proportion is generally lower in glacial periods and
higher in interglacial periods. The EM3 varies between 21.60 µm and 47.76 µm, with a
mode size of 39.91 µm; EM4 varies between 36.42 µm and 76.27 µm, with a mode size
of 56.37 µm. Generally, the proportion of EM3 decreases during the paleosol, while the
proportion of EM4 increases. The scatter plot between EM3% and EM4% of all samples
showed that there was a significant negative correlation between them (Figure 4e).

Table 1. Statistical parameters of each end member.

Mode (µm) Median (µm) Mean (µm) Sigma (µm) Skewness Kurtosis

EM 1 1.41 1.78 1.92 2.59 0.15 0.96
EM 2 7.10 7.35 7.50 2.03 0.06 0.96
EM 3 39.91 32.96 31.73 1.80 −0.126 1.01
EM 4 56.37 53.32 52.40 1.71 −0.06 0.98
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4. Discussion
4.1. Paleoclimatic Implications of Endmembers

An area is often affected by winds from multiple systems, each of which contributes
dust with different grain-size distribution characteristics [41,42]. Because polymodal sedi-
ments are composed of several sedimentary components, the grain-size distribution curve
of a single sample consists of a series of overlapping curves corresponding to the various
components [43]. EMMA is a method for identifying and quantifying processes of sediment
generation, transport, and deposition from the mixed polymodal grain-size distributions of
sediments [31]. Since Weltje [29] proposed this method, it has been continuously developed
as a robust and reliable tool for grain-size data assessment [28].

Loess grain size is a good indicator for reconstructing dust activity and atmospheric
circulation patterns [25,34]. Generally, coarser particles of loess are near-source materials
transported by low-level airflow, while fine particles are far-source materials transported
by high-level airflow. The dust transport and deposition model proposed by Tsoar and
Pye [44] suggested that the coarse dust particles were transported in short-term suspension
by lower surface winds, whereas fine particles were transported in long-term suspension
over a larger range. Studies on the Loess Plateau showed that the loess median grain size
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decreased rapidly from 52 µm to 14 µm within 400 km of the source area, then decreased
slowly from 14 µm to 3–6 µm between 400 km and 1000–2000 km, while for 2000–5000 km
distances, the median grain size concentrated within 1–3 µm [45].

Current TP dust activities mainly occur in the winter and spring when the westerlies
jet shifts to the south of the TP [2,12]. During glaciation, the westerlies shifted southward,
which may increase the dust accumulation rate [46]. Thus, the TP loess can well-record the
westerlies history. Our EMMA results show that EM1 is mainly clay fraction with grain
sizes of 0.97–3.63 µm and median grain size of 1.78 µm. Clay components below 2 µm in
size can reflect the strength of pedogenesis [47] and are associated with weathering [48].
The significant positive correlation between EM1 and the clay fraction indicated that EM1
is related to pedogenesis (Figure 4b). The frequency-dependent susceptibility (χfd%) is a
reliable index of pedogenesis and precipitation [20,49] that shows similar variations with
EM1—higher in the paleosol layers and lower in the loess layers (Figure 3a). However, the
correlation coefficient between EM1% and χfd% is weak (R = 0.37) (Figure 4a), which may
be affected by some long-transported fine particles carried by high-altitude airflow [45].

EM2 is the fine silt fraction ranging from 4.55–12.19 µm, with mode and median grain
sizes of 7.10 µm and 7.35 µm, respectively. EM2 is highly correlated with the 2–10 µm%
(Figure 4d), and the low kurtosis and large sorting coefficient indicate that it is distant-
source material transported by high-altitude winds (Table 1). The particles of 2–10 µm can
be transported over long distances by high-level westerlies to any area downwind [50], and
the proportion of this component over the section can indicate variations in the strength of
the high-level westerlies [25,27]. The low negative correlation between EM2% and EM4%
demonstrated that few fine particles were carried in low-level airflow by attaching to large
particles or aggregates [27,48] (Figure 4c). In addition, the 30-year ERA5 meteorological
data from 1992 to 2021 in the TP demonstrated that the modern wind field in the eastern TP
at the 400-hPa level is affected by the westerlies throughout the year with seasonal shifts,
especially in winter and spring (Figure 1b–e).

The average content of EM3 (21.60–47.76 µm) is 32% and of EM4 (36.42–76.27 µm)
is 23%, with low contents in the paleosols and high contents in the loess. Usually, the
coarse fraction is contributed by dust storms generated by low-level airflow [51]. The
distribution of modern dust grain size on the Loess Plateau has similar characteristics to
EM4 or EM3, mainly near-source material transported by dust storms during spring and
summer [52]. Accordingly, we infer that silt mode (EM4 and EM3) was mainly transported
by local winds and the TP winter monsoon [12,21,23]. The significant negative correlation
between the trends of EM3% and EM4% indicates that they were controlled by an identical
mechanism (Figure 4e) [1]. The grain size distribution curves show three distinct peaks
(Figure 2): the first two corresponded to the modal size of EM1 and EM2, while the third
peak fluctuated to some extent, especially during the glacial period (Figure 3). Therefore,
two endmembers (EM3 and EM4) are needed to explain the fluctuation of this maximum
peak along the depth. A considerable degree of overlap exists between EM3 and EM4,
which may lead to a negative correlation between them. Because the significant fluctuations
of the grain size occurred mainly during MIS2 and MIS4 with cold climate conditions, the
increased proportions of EM3 and EM4 during these two periods may result in a negative
correlation in the MARs. Despite reports on long-transported giant mineral dust particles
(>75 µm) [53], it seems that the giant particles have little effect on the Ganzi loess grain size
distribution, which is mainly composed of silt and clay. The difference in mode grain size
between EM4 and EM3 may be due to transport distance and source region differences.
The similar variations and significant correlations of the EM4 and EM3 with median grain
size indicate that the EM4 and EM3 were related to the intensity of the TP winter monsoon
(Figures 3i–k and 4f) [54].

Therefore, we infer that EM1 was produced by pedogenesis, EM2 was transported by
the high-altitude westerlies, and EM3 and EM4 were transported by near-surface winds
and the TP winter monsoon, respectively. The transport dynamics of the four endmembers
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are basically consistent with previous EMMA studies in loess deposits in different regions
(Table S1) [17,18,33].

4.2. The Evolution of the Westerlies over the Tibetan Plateau

EMMA requires that the decomposed endmember ratios ‘sum to one’ [29]. For a given
sample, the variation in the proportion of the primary dynamics in the end member will
affect the proportion of the subsidiary dynamics, resulting in a trade-off between them.
The mass accumulation rate (MAR) is an ideal index to reflect past dust activities and
atmospheric circulation history. Therefore, the dust mass accumulation rate (MAR) of the
end-member components is proposed to reconstruct the history of the Asian winter mon-
soon and westerly wind circulation [33,55,56]. We used the MAR of EM2 to reconstruct the
history of the westerlies of the TP. Based on the Bacon age–depth model results and the ratio
of EM2 of all samples, we can calculate the MAR of the XS section since the last interglacial
(Figure 5b). The MAR was calculated according to the formula: MAR = AR × f × BD [57],
where AR is the accumulation rate, which can be obtained by the Bacon age–depth model
results [40]; for loess, f = 1; and BD is the dry bulk density. Previous studies showed that
the average BD of the XS section is 1.98 g/cm3 [58].
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The loess on the eastern TP was mainly transported by the westerly jet and TP mon-
soon [12,21,23]. The MARs of the four endmembers exhibit an identical trend at the orbital
scale since the last interglacial, with high values during MIS2 and MIS4 and low values in
MIS5, MIS3, and the Holocene, which indicates that dust of different grain sizes increased
and was captured during the glacial period (Figure 5). The similar variations in different
endmembers may indicate that the westerly jet and TP monsoon were enhanced during
cold stages. The MAR of EM2 represents the dust accumulation contributed by the west-
erlies, which show distinctive glacial/interglacial variations (Figure 5). During MIS2 and
MIS4, the MAR of EM2 was evidently higher than that of the Holocene, MIS3, and the last
interglacial. The MAR of EM2 has fluctuated by different degrees in different periods, with
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more frequent and higher amplitudes of westerly intensities during glacial periods and less
frequent and smaller fluctuations during the interglacial periods. The westerly variability
in the Ganzi loess is concordant with previous findings that the westerlies strengthened
during glaciation and weakened during interglacial periods [4,59,60]. In addition, our
results show that the westerly intensity was weaker and more stable during the last inter-
glacial period and the Holocene. The higher frequency of fluctuations during the cold MIS
2 and MIS 4 can be attributed to the high resolution due to the higher accumulation rates
during these periods. The westerly variability during the glacial period is higher than that
during the Holocene and last interglacial, which is consistent with results from the Qinghai
Lake Basin [15]. During MIS 3, the westerlies showed relatively high variability, which
may have been influenced by the rapid millennial-scale climate change [10,61]. High dust
accumulation rates at MIS 3 have been reported in the loess deposits in the northeastern
TP [62,63] and in the eastern TP [64], which may be affected by atmospheric circulation
shifts, wind intensity variations, and dust supply changes [62].

4.3. The Westerly Mechanisms in the Tibetan Plateau

Our records demonstrate that the variability in the westerlies of the TP is consistent
with existing study results at the orbital scale. Both climate simulations [59,65] and grain-
size indexes [24,55,66] show that the mid-latitude westerlies in the Northern Hemisphere
were intensified in the glacial period and shifted southward, whereas they weakened in the
warm interglacial periods and migrated poleward [67,68]. The location and intensity of the
westerlies are mainly affected by the temperature gradient from the equator to the pole and
the extent of the ice sheets [4,10]. The expansion of ice volume in the Northern Hemisphere
caused the westerlies to move southward and transported more water vapor to the south
and east of the TP from the Late Miocene to the Early Pleistocene [26,69]. Furthermore,
the expansion of the Northern Hemisphere ice sheet at the orbital scale not only enhanced
the intensity of the westerlies jet but also increased the aridity of the dust source regions
in Central Asia [70]. In contrast, a relatively warming climate at high latitudes in Eurasia
slows the westerly jet [71].

The findings in this work differed from variations in the westerly intensity in the
Holocene. Studies indicated that the westerly winds were strongest during the megathermal
event in the Early Holocene of Central Asia and the northeastern TP, showing a good
positive correlation between westerly intensity and temperature [33,72,73]. The Tian Shan
loess record similarly indicates relatively weak westerly intensities during the Younger
Dryas and the Heinrich event H1 cold periods [33], whereas stronger westerly winds
occurred during MIS 3, an interglacial epoch in the last glacial period [72]. These differences
may be related to the southward shift of the westerly jets during the glaciation leading
to the weakening of local westerly wind intensity or the strengthening of the Northern
Hemisphere meridional circulation and related weakening of the latitudinal circulation
during the glacial period [33].

As shown in Figure 6, the history of the westerlies from the Ganzi loess and Central
Asia [66] and the dust mass concentrations in the Greenland ice core [74] have the same
trends at the orbital scale, presenting high values during the last glacial period as well as
large fluctuations in MIS 3. Eolian dust from Central Asia can be transported to Greenland
by high-level westerly winds [75,76], and the dust mass concentrations in Greenland
ice cores are a good indicator of westerly intensity. Source studies on snow dust also
indicate that TP dust makes an important contribution to Greenland ice core dust [77].
The consistency in the history of the westerlies from the Ganzi loess and the GRIP dust
records [74] suggests that the TP is a potential dust source area for the Arctic and that the
westerlies are important transport vectors.
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The TP westerlies indicated by the MAR of EM2 were strong in the glacial period while
weak in the interglacial period, showing a similar trend with the Northern Hemisphere
ice volume [79] (Figure 6b), implying that the variations in the westerlies since the last
interglacial were mainly driven by ice volume. The influencing factors of climate change
at the orbital time scale include solar radiation outside the system as well as ice volume
and greenhouse gases inside the system [82]. The summer solar radiation at 65◦N during
the last glacial period (MIS 2–4) was generally lower than that of the interglacial period,
and the low value leads to accumulating ice and snow at high latitudes, which led to
ice sheet growth (Figure 6). The variation in CO2 concentration strengthened the trend
of decreasing temperature at high latitudes [83], which further increased the meridional
temperature gradient and strengthened the westerly intensity. In addition, the variation of
westerly intensity had an important influence on the long-distance transport of dust on the
TP [12,46].

5. Conclusions

In this study, we conducted detailed grain-size analyses of a well-dated loess sequence
spanning the last interglacial cycle in the eastern TP, to reconstruct the mid-latitude westerly
history using endmember model analysis. The EMMA decomposed the Ganzi loess grain-
size components into four endmembers: EM1 was related to pedogenesis, and EM2 was
transported by the westerlies. Silt modes (EM3 and EM4) were transported by TP winter
monsoon or near-surface airflows. Combined with the MAR, we reconstructed the history
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of westerly intensity since the last interglacial period from the Ganzi loess sequence. Our
results indicate that the westerlies’ intensities showed typical glacial/interglacial variations
since the last interglacial period in the eastern TP. The westerlies strengthened with large
fluctuations during the glacial period, whereas westerly flow was weak and stable during
the Holocene and the last interglacial. The temperature gradient between the high and low
latitudes caused by changes in insolation and ice volume in the Northern Hemisphere was
the dominant influence forcing the variations in the intensity of the westerlies.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/atmos14020238/s1, Figure S1: Lithology and Bacon age–depth
model of the Xinshi (XS) section; Table S1: Comparison of decomposition results in grain-size
endmember analysis of loess sediments in different regions. References [17,18,33,56,72,84–89] are
cited in the Supplementary Materials.
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