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Abstract: Precipitation plays a dominant role in regulating terrestrial carbon fluxes. In concert with
global warming, aridity has been increasing during recent decades in most parts of the world. How
global terrestrial carbon fluxes respond to this change, however, is still unclear. Using a remote-
sensing-driven, process-based model, the Boreal Ecosystem Productivity Simulator (BEPS), this
study investigated the responses of global terrestrial carbon fluxes to meteorological drought, which
were characterized by the standardized precipitation evapotranspiration index (SPEI). The results
showed that the response of terrestrial carbon fluxes to drought exhibited distinguishable spatial
heterogeneity. In most regions, terrestrial carbon fluxes responded strongly to drought. With an
increase in annual water balance (annual precipitation minus annual potential evapotranspiration),
the response of carbon fluxes to drought became weaker. The lagged time of terrestrial carbon fluxes
responding to drought decreased with the increasing strength of carbon fluxes in response to drought.
The sensitivity of terrestrial carbon fluxes to drought also showed noticeable spatial heterogeneity.
With an increase in annual water balance, the sensitivity first increased and then decreased. Terrestrial
carbon fluxes exhibited the highest sensitivity to drought in semi-arid areas.

Keywords: terrestrial carbon fluxes; response to drought; standardized precipitation evapotranspira-
tion index; sensitivity; Boreal Ecosystem Productivity Simulator (BEPS) model

1. Introduction

Global terrestrial ecosystems play an important role in the carbon cycle and can absorb
25–30% of anthropogenic carbon emitted into the atmosphere [1,2]. Understanding the
trend and variability of the terrestrial carbon fluxes is critical for predicting future climate
change. Terrestrial carbon fluxes are affected by a number of factors, including climate [3–6],
cyclones [7], atmospheric CO2 fertilization [8], nitrogen deposition [9], land cover types,
and land use change [10]. The intensity of terrestrial carbon flux is tightly coupled with the
water cycle at different spatial and temporal scales [11–14]. Recent evidence has suggested
that global semi-arid ecosystems play a significant role in the trend and variability of the
land CO2 sink [15,16]. The capacity of terrestrial ecosystems to sequester carbon is often
dominated by water availability [17–19].

In concert with temperature increases, precipitation regimes have also changed since
1950 over a majority of land areas [20,21]. The impacts of changing precipitation conditions
on plant productivity and terrestrial carbon fluxes have attracted considerable attentions
from recent studies [22–30]. For example, based on field flux observations, remote sensing
data, and model simulations, Ciais et al. [22] declared that the heat and drought observed
in 2003 caused a 30% reduction in the continental-scale gross primary productivity (GPP)
of Europe. This climatic extreme resulted in a strong anomalous net terrestrial carbon
source in the atmosphere, offsetting the accumulation of four years of net ecosystem carbon
sequestration by European terrestrial ecosystems. The GPP reductions in Eastern and
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Western Europe were caused by rainfall deficit and extreme heat, respectively [31]. Based
on the MODIS net primary productivity (NPP) product, Zhao and Running [25] found
that drought caused global terrestrial NPP to decrease by 0.55 Pg C yr−1 over the period
from 2000 to 2009. Chen et al. [27] reported that NPP was positively and significantly
related to water conditions at the global scale. Liu et al. [28] investigated the impact of
drought on carbon sequestration in China’s terrestrial ecosystems from 2000 to 2011 using
the process-based Boreal Ecosystem Productivity Simulator (BEPS) driven by remotely
sensed leaf area index (LAI). They found that national and regional total net ecosystem
productivity (NEP) anomalies were correlated with the severity of drought indicated by
using the mean annual standard precipitation index (SPI), especially in Northwest China,
North China, Central China, and Southwest China. These findings together highlight
the importance of understanding the response of the terrestrial carbon cycles to water
conditions. However, few studies have focused on the relative response level of terrestrial
carbon fluxes to drought.

Drought has both immediate and lagged effects on terrestrial carbon fluxes and
vegetation growth [18,29,32–35]. Under drought conditions, both carbon assimilation and
the amount of carbon released by ecosystem respiration (ER) usually decrease. The direct
response of NEP to drought depends on the sensitivity of GPP and ER to the time of onset,
severity, and duration of drought. During the initial stage of water depletion, vegetation is
able to use deep soil water and maintain GPP at normal levels while ER starts to decrease
as superficial soil layers dry out. NEP decreases marginally or even slightly increases. The
further depletion of deep soil water significantly limits photosynthesis and results in a
larger decrease in GPP than that in ER [31], and therefore in a decrease in NEP [36–38].
Based on long-term global AVHRR NDVI data, Vicente-Serrano et al. [29] reported that
arid and humid biomes responded to drought at shorter time scales, while semi-arid and
sub-humid ones responded to drought at longer time scales. A simulation using the BEPS
model over the period from 2000 to 2011 by Liu et al. [28] showed that drought had short-
term lagged impact on NEP in eastern humid and warm regions of China and a longer
lagged effect on NEP in western cold and arid regions.

A central challenge for assessing the sensitivity of global terrestrial carbon fluxes to
climate variability is that the dominant factors limiting terrestrial carbon sequestration
have significant spatial variations [3,39–42]. Generally, in some humid regions and high
latitudes, terrestrial carbon sequestration is dominantly regulated by solar radiation and
temperature. The increase in precipitation is normally associated with a decrease in solar
radiation [43] and consequently carbon sequestration might decrease [44]. A recent study
suggested that ecosystem sensitivity to drought peaked over semi-arid ecosystems [45].
Meanwhile, Huxman et al. [19] reported that for aboveground net primary production,
the highest sensitivity to interannual variations in rainfall was found at the driest sites,
and that the wettest sites displayed the lowest sensitivity. The sensitivity of productivity
to drought was found to be inversely related to mean annual precipitation [46]. Further
studies are needed for deepening our insight into how global terrestrial carbon fluxes
respond to drought.

Previous research has shown that drought may cause a decline in GPP without a
change in vegetation greenness [47]. The immediate and lagged effects of drought on car-
bon fluxes and their sensitivities in different regions of the globe are still unclear. Therefore,
this study aimed to quantify the response of global terrestrial carbon fluxes to drought
over the time period from 1981 to 2016 by addressing three objectives: (1) to assess the
maximum correlations between global terrestrial carbon fluxes and droughts; (2) to analyze
the lagged effects of drought on global terrestrial carbon fluxes; and (3) to determine the
changes in the sensitivity of carbon fluxes to drought in different regions of the globe. These
objectives were achieved using global terrestrial carbon fluxes simulated using the BEPS
model. Drought was assessed using the standardized precipitation evapotranspiration
index (SPEI) [48]. SPEI is an extension of the widely used standardized precipitation index
(SPI) [49]. It was designed to account for both precipitation and potential evapotranspi-
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ration (PET) in determining drought. Unlike SPI, SPEI includes the effects of increased
temperature on atmospheric water demand.

2. Materials and Methods
2.1. The Model Used to Simulate Global Carbon Fluxes

Global GPP, NPP, ER, and NEP were simulated using the BEPS model [50], which in-
cludes photosynthesis, energy balance, hydrological, and soil biogeochemical modules [51].
This model was initially developed to calculate NPP for the Canadian landmass at daily
time steps. In recent years, it has been improved in many aspects and applied to simulate
regional terrestrial carbon fluxes in China [28,52–54], North America [55–58], Europe [59],
East Asia [60,61], and the globe [62–64]. Details about this model are described in refer-
ences [53,56] and in the supplementary Text S1 in reference [63]. We only highlight the
major methodologies of the model related to the calculation of global terrestrial GPP, NPP,
and NEP here.

Canopy GPP is calculated as:

GPP = GPPsunlitLAIsunlit + GPPshadedLAIshaded (1)

where GPPsunlit and GPPshaded are gross photosynthesis rates of sunlit and shaded leaves,
respectively, and are calculated using the leaf level Farquhar model [65,66]; LAIsunlit and
LAIshaded are the leaf area indexes of sunlit and shaded leaves, respectively.

NPP is calculated as the difference between GPP and autotrophic respiration:

NPP = GPP − Rg − Rm (2)

where Rg and Rm denote growth respiration and maintenance respiration, respectively. The
former is assumed to be 25% of GPP while the latter is calculated as a function of biomass,
temperature, and the reference respiratory rate at a base temperature [56,67]:

Rm =
1

∑
i=1

Rm,i =
1

∑
i=1

Mirm,iQ10
(T−Tb)/10 (3)

where Mi is the size of biomass carbon pool i (i = 1, 2, 3, 4, denoting leaf, stem, coarse root,
and fine root carbon pools, respectively), rm,i is the respiration rate at a base temperature
Tb, Q10 is the temperature sensitivity factor of maintenance respiration, and T is the
temperature.

NEP is calculated as:
NEP = NPP − Rh (4)

where Rh is the heterotrophic respiration occurring in nine litter and soil carbon pools (i.e.,
surface structural litter, surface metabolic litter, soil structural litter, soil metabolic litter,
coarse woody litter, and surface microbial, soil microbial, slow, and passive carbon pools).
Rh is calculated using algorithms adopted from the CENTURY model [68].

Rh =
9

∑
j=1

τjk jCj (5)

where τj is the respiration coefficient of pool j, k j is the decomposition rate of pool j, and Cj
is the size of pool j.

In the BEPS model, soil water conditions affect photosynthesis by regulating stomatal
conductance and heterotrophic respiration by modifying the decomposition rate k j. When
soil water content is above field capacity, stomatal conductance and photosynthesis will not
be limited. With the decrease in soil water content to wilting point, stomatal conductance
will decrease to the minimum that limits photosynthesis. With the departure of soil water
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content from the optima (at approximately 60% of saturation), the decomposition rates of
soil carbon and litter pools will decrease.

2.2. Data Used to Drive the BEPS Model

The BEPS model was driven using a variety of input data, including spatially and
temporally variable LAI, nitrogen deposition, standard meteorological data, spatially
variable land cover data, and temporally variable CO2 concentration data, as described
below. The model was run for the period from 1901 to 2016. Only the simulated GPP, NPP,
ER, and NEP over the period from 1981 to 2016 were used for analysis in this study since
remotely sensed LAI only starts to become available in 1981.

2.2.1. Time Series of LAI during 1981–2016

LAI is an input to the BEPS model and critical for the simulation of carbon fluxes. The
time series of LAI over the period from 1981 to 2016 was generated through fusion of LAI
inverted from MODIS reflectance data and AVHRR GIMMS NDVI data [69]. LAI from 2000
to 2016 was first inverted from the MOD09A1 land surface reflectance and the associated
illumination and view angles based on the GLOBCARBON LAI algorithm, which was
developed using the four-scale geometric optical model. This algorithm explicitly consid-
ers the bidirectional reflectance distribution function (BRDF) effects on observed canopy
reflectance. For the fusion of MODIS and AVHRR remote sensing data, the relationships
between GIMMS NDVI and MODIS LAI were established pixel by pixel for their concurrent
period (2000–2006) [69]. Then AVHRR LAI from 1981 to 2000 was generated using the same
relationships. The spatial resolution of the LAI series is 0.072727◦ × 0.072727◦ and temporal
resolution varies from 16 days (1981 to 1999) to 8 days (2000 to 2016). In the simulation,
these 16- and 8-days LAI values were interpolated to daily values. The BEPS model was
driven using a climatological average LAI (1981–1989 data) for the period prior to satellite
availability of LAI (1901 to 1980) and then the temporally variable LAI for the period from
1981 to 2016.

2.2.2. Global Nitrogen Deposition Data

Monthly global nitrogen deposition data at a 0.5◦ × 0.5◦ resolution over the period
from 1960 to 2009 were estimated using tropospheric NO2 column density retrieved from
the Global Ozone Monitoring Experiment (GOME) and from Scanning Imaging Absorption
Spectrometer for Atmospheric Cartography (SCIAMACHY) sensors, meteorological data,
and NOx emission inventory data [70]. For the years 2010 to 2016, nitrogen data were
extrapolated using estimated nitrogen data for the period from 2000 to 2009. For the period
from 1901 to 1959, nitrogen data were extrapolated based on the rates of change of nitrogen
deposition over the period from 1960 to 1969. The 0.5◦ × 0.5◦ nitrogen deposition data were
interpolated to 0.072727◦ × 0.072727◦ resolution using a bilinear interpolation method [64].

2.2.3. Global Meteorological Data

The daily near-surface meteorological data, including daily maximum and minimum
temperatures, relative humidity, solar radiation, and precipitation, were retrieved from
the CRUNCEP V8.0 dataset, which extends the temporal coverage from 1901 to 2016
with a resolution of 0.5◦ × 0.5◦. Relative humidity is required to force the BEPS model
and was calculated from temperature, specific humidity, and pressure. The 0.5◦ × 0.5◦

meteorological data were interpolated to 0.072727◦ × 0.072727◦ resolution using a bilinear
interpolation method.

2.2.4. Soil Data

Fractions of clay, silt, and sand were retrieved from the harmonized global soil database
(http://www.fao.org/nr/lman/abst/lman_080701_en.htm, accessed on 18 June 2022) and
used to determine model parameters, including the field capacity, porosity, wilting point,
hydrological conductivity, etc.

http://www.fao.org/nr/lman/abst/lman_080701_en.htm
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2.3. Drought Assessment

Daily temperature and precipitation were used to calculate monthly SPEI values
following Vicente-Serrano et al. [48]. Monthly potential evapotranspiration (PET) was
computed using the Hargreaves–Sanani formula [71]. The monthly climatic water balance
at different time scales was calculated as the difference between precipitation and PET and
fitted with a three-parameter log-logistic probability distribution function used to calculate
the standardized precipitation index (SPI) [49].

The cumulative probability distribution F(x) of a water balance time series is given as:

F(x) =

[
1 +

(
α

x − γ

)β
]−1

(6)

where ∝, β, and γ are scale, shape, and origin parameters, respectively.
Using the approximation of Abramowitz and Stegun [72], SPEI is calculated as:

SPEI = −
(

W − C0 + C1W + C2W2

1 + d1W + d2W2 + d3W3

)
, for 0 < F(x) ≤ 0.5 (7)

SPEI = +

(
W − C0 + C1W + C2W2

1 + d1W + d2W2 + d3W3

)
, for 0.5 < F(x) < 1 (8)

where C0 = 2.515517, C1 = 0.802853, C2 = 0.010328, d1 = 1.432788, d2 = 0.189269, and
d3 = 0.001308; W is determined as:

W =
√
−2 ln(F(x)) for 0 < F(x) ≤ 0.5 (9)

W =
√
−2 ln(1 − F(x)) for 0.5 < F(x) < 1 (10)

In this study, SPEI was computed for each pixel at time scales from 1 to 24 months to
capture the accumulated effects of water balance anomalies on terrestrial carbon fluxes. Positive
SPEI values denote wet conditions while negative values indicate drought conditions.

2.4. Eddy Covariance Data

Eddy covariance data downloaded directly from the FLUXNET 2015 database (http:
//fluxnet.fluxdata.org/data/fluxnet2015-dataset/, accessed date: 15 August 2022) were
used to validate the BEPS model. Sites with percentages of measured and good-quality
gap-filled data more than 90% during the whole year were first selected. Then the sites with
land cover types indicated by the site description in the FUUXNET database different from
global land cover types adopted in the BEPS model were excluded from this validation.
This resulted in a final 110 site-years used for validation of simulated monthly terrestrial
carbon fluxes (Table 1).

2.5. Assessing Response of Terrestrial Carbon Fluxes to Drought

The response of terrestrial carbon fluxes to drought was assessed using Pearson’s
correlation coefficients of monthly GPP, NPP, ER, and NEP with SPEI. Terrestrial carbon
fluxes might be enhanced by CO2 fertilization and nitrogen deposition. To isolate these
effects, monthly GPP, NPP, ER, and NEP were linearly detrended prior to the correlation
analysis. The linear detrending was conducted by subtracting the linear trend from the
original time series using the least squares method. For monthly analysis, individual 1-
to 24-month-timescale SPEI series were correlated to monthly detrended GPP, NPP, ER,
and NEP. For each month, 24 correlation coefficients were calculated for each carbon flux
component. For each grid cell and each carbon flux, 288 (= 24 × 12) correlation coefficients
were calculated.

http://fluxnet.fluxdata.org/data/fluxnet2015-dataset/
http://fluxnet.fluxdata.org/data/fluxnet2015-dataset/
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Table 1. Site ID, latitude, longitude, vegetation types, and years of available data for the 22 FLUXNET
sites used for validating BEPS model.

Site-ID Vegetation
Type Latitude Longitude Years

AU-Cpr SAV −34.0021 140.5891 2011–2013
AU-Rob EBF −17.1175 145.6301 2014
AU-Wac EBF −37.4259 145.1878 2008
BR-Sa1 EBF −2.8567 −54.9589 2002–2003
BR-Sa3 EBF −3.018 −54.9714 2001,2003

CN-Cha MF 42.4025 128.0958 2003
CN-Dan GRA 30.4978 91.0664 2004–2005
CN-HaM GRA 37.37 101.18 2003–2004
DE-Geb CRO 51.1001 10.9143 2002–2014
DE-Kli CRO 50.8929 13.5225 2006–2007,2010–2012,2014

FI-Hyy ENF 61.8475 24.295 1997–1999,2001–2004,
2006–2009,2011–2014

GF-Guy EBF 5.2788 −52.9249 2004–2014
IT-CA2 CRO 42.3772 12.026 2012–2013

MY-PSO EBF 2.973 102.3062 2003,2007–2008
US-Blo ENF 38.8953 −120.6328 2000

US-CRT CRO 41.6285 −83.3471 2011–2013

US-MMS DBF 39.3232 −86.4131 2002–2006,2008–2009,
2012–2014

US-Me2 ENF 44.4523 −121.5574 2005,2009
US-Me5 ENF 44.4372 −121.5668 2001
US-NR1 ENF 40.0329 −105.5464 2000–2014
US-Ne3 CRO 41.1797 −96.4397 2002–2012
US-SRC OSH 31.9083 −110.8395 2009–2011

For each carbon flux, we then calculated a response measure defined as the maximum
value from the 288 correlation coefficients. We also calculated a sensitivity measure defined
as the change in monthly carbon flux per unit change in monthly SPEI for each pixel, where
monthly carbon flux and monthly SPEI time scale were corresponded to the month and
time scale when the maximum correlation coefficient was identified. The sensitivity of
carbon flux to drought was quantified as the slope of the linear regression between carbon
flux and SPEI. Before computing the sensitivity, monthly carbon fluxes were also linearly
detrended to avoid spurious correlations.

3. Results
3.1. Validation of Simulated Monthly Terrestrial Carbon Fluxes

The simulated monthly GPP, ER, and NEP were compared with eddy covariance tower
data from the FLUXNET 2015 database across different ecosystem types (Figure 1). The
model captured 71%, 73%, and 23% of variation in monthly GPP, ER, and NEP for 1320 site-
months measurements at eddy covariance sites, respectively, indicating the applicability
of the BEPS model in estimating carbon fluxes for different ecosystems across the globe,
although in some cases the model underestimated or overestimated the measured values.

To verify whether the performance of the BEPS model differs in months with and
without drought, all site-months were classified into two groups according to values of SPEI.
The coefficient of determinations, R2 of simulated GPP, ER, and NEP against tower-based
values were 0.70, 0.74, and 0.21 for 687 site-months with drought conditions (SPEI < 0) (red
squares in Figure 1), respectively. As to the 633 site-months without drought (SPEI > 0)
(blue circles in Figure 1), the R2 values of simulated GPP, ER, and NEP against tower-based
values were 0.73, 0.73, and 0.26, respectively. Therefore, whether in drought or non-drought
conditions, the BEPS model could simulate the terrestrial carbon fluxes with good accuracy,
and more importantly, the simulation ability was similar.
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Figure 1. Comparison of simulated monthly GPP (a), ER (b) and NEP (c) with data compiled from
FLUXNET2015 database. The black solid line is the regression line for all data while the dash line is
the 1:1 line. The red dotted line is the regression line for data in drought months (monthly SPEI-1 < 0),
and the blue dotted line is the regression line for data in wet months (monthly SPEI-1 > 0).

3.2. Spatial Variations of the Response of Terrestrial Carbon Fluxes to Drought

Global maps with maximum correlation coefficients between the monthly terrestrial
carbon fluxes and the SPEI were generated to assess the spatial patterns of carbon fluxes’
responses to drought (Figure 2). The significant positive correlations of carbon fluxes
with SPEI (red colored areas) mainly occurred in the southern hemisphere and at low to
middle latitudes of the northern hemisphere. This indicated that carbon fluxes decreased
significantly in drought months in these areas. At high latitudes of the northern hemisphere,
correlations of carbon fluxes with SPEI were positive, but weaker. In abnormal wet months,
terrestrial carbon fluxes might decrease correspondingly in these regions. These findings
revealed differential responses of terrestrial carbon fluxes to drought in different regions.
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The maximum correlation coefficients analysis in this study showed that terrestrial
GPP, NPP, and ER showed similar correlograms with drought throughout many regions
across the globe, with the exception of the high latitudes of the northern hemisphere, where
ER had a different spatial pattern compared to GPP and NPP (Figure 2a–c). The areas with
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low values for the maximum correlation coefficients of monthly GPP, NPP and ER with
SPEI were mainly located in northern North America, northern Eurasia, the Qinghai–Tibet
Plateau, the Amazon Basin, and Southeast Asia. As for the other regions of the globe, the
maximum correlation coefficients were generally above 0.75, indicating that the higher
the degree of wetness, the stronger the terrestrial photosynthesis and respiration; and, in
contrast, the higher the degree of drought, the lower the terrestrial photosynthesis and
respiration of terrestrial ecosystems.

Compared to those for GPP, NPP, and ER, the maximum correlation coefficients be-
tween NEP and SPEI were generally lower and had higher degrees of spatial heterogeneity.
NEP was jointly controlled by GPP and ER, which could decrease concurrently in drought
conditions with similar magnitude. However, the relatively higher reductions in ER or GPP
would indicate a weaker or stronger response of NEP to drought.

3.3. Characteristics of Lagged Response of the Terrestrial Carbon Fluxes to Drought

The responses of terrestrial carbon fluxes to drought were lagged at different temporal
scales in different regions (Figure 3). In cold regions, such as northern Canada, central and
eastern Eurasia, and the Qinghai–Tibet Plateau, the response of terrestrial carbon fluxes to
drought lagged for a relatively longer period, mostly above 10 months. In humid regions,
such as the eastern United States, western Europe, the Amazon basin, central and western
Africa, and southeastern China, the response of terrestrial carbon fluxes to drought lagged
for a relatively shorter period, generally less than 4 months. In arid and semi-arid regions,
such as the western United States, southern South America, southern Europe, northeastern
China, northern Africa, and western Australia, the lagged time for terrestrial carbon fluxes
in response to drought ranged from 6 to 10 months. Overall, the lagged time of terrestrial
carbon fluxes responding to drought was longer in areas with weaker responses of carbon
fluxes to drought than in areas with stronger responses of carbon fluxes to drought.
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GPP, NPP and NEP had similar spatial distributions of lagged time in response to
drought, while the lagged time of ER in response to drought differed from GPP, NPP, and
NEP (Figure 3). This difference was partly reflected in the increased area of regions with
longer lagged months to drought, and partly in the higher spatial heterogeneity of ER
in response to drought. In arid and semi-arid regions such as the western United States,
southern South America, western India, southern Africa, and western Australia, the lagged
months of ER in response to drought were significantly longer than those of GPP, NPP,
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and NEP. In cold regions, such as northern Eurasia, northern North America, and the
Qinghai–Tibet Plateau, the lagged months of ER in response to drought were also longer.

Globally, the lag effects of drought on GPP, NPP, ER, and NEP were almost identical
with longer time scales in semi-arid and semi-humid regions and shorter time scales in arid
and humid areas (Figures 3 and 4). In areas with a negative annual water balance averaged
over the period from 1981 to 2016, the lagged time of terrestrial carbon fluxes in response
to drought increased with increasing annual water balance. In contrast, in areas with a
positive annual water balance, the lagged time of terrestrial carbon fluxes in response to
drought decreased with the increasing annual water balance.
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3.4. Spatial Patterns of Sensitivity of the Terrestrial Carbon Fluxes to Drought

Based on the identified lagged time scales of SPEI, the sensitivity of carbon fluxes to
drought was calculated for each grid cell for the month in which the carbon fluxes and
the SPEI were found to have the highest correlation coefficients (Figure 5). The sensitivity
of terrestrial carbon fluxes to drought was high in the eastern United States, most of
Europe, East Asia, and eastern South America, and was low in the high latitudes of the
Northern Hemisphere, the western United States, northern and southern Africa, Central
Asia, and western Australia. This could be attributed to differences in the size of terrestrial
carbon fluxes themselves and differences in the responses of carbon fluxes to drought in
different regions.

In order to remove the influence of the state of terrestrial carbon fluxes in different
regions, the sensitivity was further calculated based on the detrended and normalized
terrestrial carbon fluxes (Fnormalized = (F − Fmean)/Fstd; Fnormalized and F are the normalized
and detrended monthly carbon fluxes; Fmean and Fstd are the mean and standard deviation
of F over the study period) (Figure 6). As a result, the sensitivity of terrestrial carbon
fluxes to drought showed an alternative spatial pattern. In general, the sensitivity was
higher at low and middle latitudes in the Northern Hemisphere and in the Southern
Hemisphere, while the sensitivity values were relatively lower at high latitudes in the
Northern Hemisphere.
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3.5. Changes in the Sensitivity of Terrestrial Carbon Fluxes to Drought with Wetness Conditions

To further explore the dependency of the sensitivity of terrestrial carbon fluxes to
drought on the degree of water condition, the change in the sensitivity of regional monthly
carbon fluxes to drought with regional mean annual water balance averaged over the
period from 1981 to 2016 was analyzed (Figure 7). The sensitivity of terrestrial carbon fluxes
to drought was low in arid and humid areas, while in semi-arid and semi-humid areas the
sensitivity of terrestrial carbon fluxes to drought was high. In areas with negative annual
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water balance, the sensitivity of terrestrial carbon fluxes to drought increased significantly
with increasing annual water balance. In contrast, in areas with positive annual water
balance, the sensitivity of terrestrial carbon fluxes to drought decreased with increasing
annual water balance, except for ER. Overall, with the increase in annual water balance,
the sensitivity first increased and then decreased. Terrestrial carbon fluxes exhibited the
highest sensitivity to drought in semi-arid areas.
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4. Discussion
4.1. Uncertainties of Simulated Terrestrial Carbon Fluxes and Drought Assessment

In this study, the BEPS model was driven using remotely sensed LAI to simulate
carbon fluxes at daily time steps. Owing to drawbacks in model structure, parameteriza-
tion, and inputs, there were definitely some uncertainties in the simulated carbon fluxes.
For example, by not accounting for the horizontal movement of soil water, the model
might overestimate/underestimate the drought-induced decrease in carbon fluxes in low-
lands/uplands. NEP is affected by a number of factors including climate change, land
use change, and disturbances [4,28]. Land cover and land use changes could significantly
influence terrestrial carbon fluxes [24,73]. In this study, a static land cover map was used
to drive the BEPS model. The impacts of land cover and land use changes as well as
disturbances on carbon fluxes were only partially captured through remotely sensed LAI.
This simplification was another source of uncertainty in the simulated carbon fluxes.

LAI is an important input into the BEPS model and an important determinant for
the temporal trends of simulated carbon fluxes [64]. The LAI during 1981–2016 used here
was generated through fusing AVHRR NDVI and MODIS data inverted pixel by pixel [69].
Overall, these two datasets are consistent. However, their consistency was poor for some
regions, which might cause uncertainties in the temporal trends of simulated carbon fluxes
and their responses to drought.

Moreover, we should keep in mind that the drought identified by SPEI represented
a change in water balance over the year relative to the multi-year mean over the study
period. The SPEI is a standardized variate over the conditions that are normal at a given
site, which can be quantitatively compared across sites with very different climatology;
that is, a drought of SPEI equal to −1 in a tropical forest region will be very different from a
drought of SPEI equal to −1 in the Sahel region, but both situations are comparable because
they represent the same degree of deviation from the normal conditions at each site [74].
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Therefore, a year with low SPEI in a wet area may not necessarily cause vegetation water
stress and may still be wetter than a year with high SPEI in a dry region [63]. In this case,
SPEI is unable to capture ecological drought which affects vegetation productivity [75,76].

4.2. Spatial Patterns of Impacts of Drought on Carbon Fluxes

Previous studies have indicated that GPP responds to changes in temperature, precip-
itation, and/or radiation. The relative importance of these meteorological factors varies
with regions [3,77]. In this study, interannual variations of simulated annual GPP were
generally positively correlated with SPEI, especially in regions south of 45◦N. Vicente-
Serrano et al. [29] reported that vegetation activity and growth were significantly positively
correlated with SPEI over 72% of global vegetated land areas. Based on flux observations
in China, Yu et al. [78] found that tower-based GPP increased with annual precipitation
and mean annual temperature at low latitudes. In the BEPS model, NPP is calculated as
the difference between GPP and autotrophic respiration, which comprises growth and
maintenance respiration. The former was calculated as a proportion of GPP and the latter
was calculated as a function of biomass, temperature, and reference respiratory rate. Con-
sequently, GPP is the dominant determinant of NPP. Therefore, simulated GPP and NPP
showed similar spatial patterns in response to drought.

NEP is the balance between GPP and ER. In most regions of the globe, soil water
content is seldom above field capacity and drought might cause both GPP and ER to
decrease. As a consequence, GPP and NEP show similar sensitivity to drought, as has been
reported by Guo-Dong [79] and Xu et al. [80]. At middle and high latitudes of the northern
hemisphere, such as the Eurasia region, simulated NEP was less susceptible to drought
than GPP and NPP (Figure 2). In this region, soil organic matter is rich and soil water
content is often between field capacity and wilting point. Mild or moderate drought might
significantly enhance heterotrophic respiration and limit GPP to a lesser extent. Therefore,
NEP is less sensitive to drought in comparison with GPP and NPP in these regions.

At high latitudes of the northern hemisphere, temperature and radiation play more
important roles in regulating GPP and NPP [3]. The increase in precipitation is normally
accompanied by decreases in temperature and radiation, and consequently causes GPP
and NPP to decrease. The lower correlations between SPEI and simulated carbon fluxes in
this study further confirm that abnormal wetness may induce the terrestrial carbon fluxes
to decrease in this region.

4.3. Lagged Effects of Precipitation Anomalies on Carbon Fluxes

Understanding the direct and lagged responses of terrestrial productivity to drought
is crucial for assessing the effects of climate change on terrestrial ecosystems. The remotely
sensed NDVI has been used as an indicator of terrestrial ecosystem productivity [81,82], for
investigating both direct and lagged effects of climatic change on vegetation activity and
growth. Ji and Peters [83] found that the NDVI had the best correlation with the 3-month
SPI, and the best NDVI-SPI relationship occurred in regions with low soil water-holding
capacity. Using the NDVI and SPEI data, Vicente-Serrano et al. [29] reported responses of
global biomes to drought. They concluded that both arid and humid biomes responded to
drought at short time scales and semi-arid and sub-humid biomes responded to drought at
long time scales. The overall picture of our simulated lagged time scales was remarkably
similar to this previous analysis.

The lagged months at which terrestrial carbon fluxes respond to drought was also
found to vary in different regions in this study. From the point of the world’s climate type,
the lagged time scales of drought impacting carbon fluxes are relatively short in tropical
climate areas and long in cold climate regions. Similar findings have been reported in
a study that used vegetation indices, tree-ring growth data, and GPP [29,33]. Based on
eddy covariance flux data, Zhang et al. [84] recently reported that temperate grassland
ecosystems responded to climatic factors (i.e., net radiation, precipitation, and soil water
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content) at longer time scales while alpine ecosystems showed a less obvious time-lagged
response to these factors.

4.4. Dependence of the Sensitivity of Terrestrial Carbon Fluxes to Drought on Climate Conditions

An additional finding of this study was that sensitivity of the terrestrial carbon fluxes
to drought was the highest in semi-arid areas. This is consistent with the peaked hy-
droclimatic sensitivity over semi-arid regions found by Ma et al. [45] using an enhanced
vegetation index and SPEI. However, by quantifying reductions in above-ground net pri-
mary production, Knapp et al. [46] reported that drought sensitivity generally decreased
with increasing mean annual precipitation. Our results partly agreed with the above study,
since in areas with negative annual water balance, the sensitivity of terrestrial carbon
fluxes to drought increased significantly with increasing annual water balance, but in areas
with positive annual water balance, the sensitivity of terrestrial carbon fluxes to drought
decreased with increasing annual water balance, except for ER.

Although sensitivity of the terrestrial carbon fluxes generally increased with increasing
annual water balance, and then decreased with increasing annual water balance, there was
large heterogeneity in different climate conditions, especially in humid regions (indicated
by the error bars in Figure 7). This may be attributed to the different climatic constraints in
these areas. For instance, in the temperate humid regions of Asia, radiation played a more
important role in explaining productivity variability [3], while in the temperate humid
regions of Oceania, water was the most important limiting factor [3]. It is important to note
that different terrestrial ecosystem growth controlled by different climatic constraints may
respond differently during wet or drought conditions.

5. Conclusions

With the remote-sensing-driven BEPS model, this study investigated the responses
of global carbon fluxes to drought, which were indicated by the maximum correlation
coefficients between terrestrial carbon fluxes and SPEI, and by the sensitivity of terrestrial
carbon fluxes to drought. The main findings were:

(1) The maximum correlation coefficients between terrestrial carbon fluxes and SPEI
varied spatially. In southern North America, central Eurasia, East Asia, most of South
America, most of Africa, and Australia, terrestrial carbon fluxes responded strongly
to drought. In northern North America, northeastern Eurasia, the Tibetan Plateau, the
Amazon Basin, and the tropical rainforest regions of Southeast Asia, the response of
carbon fluxes to drought was weaker, and in abnormal wet years, carbon fluxes might
decrease. Overall, with the increase in positive annual water balance, the response of
carbon fluxes to drought became weaker.

(2) The time scales at which the strongest responses of carbon fluxes to drought were
discovered were various in the different regions. Drought had short-term lagged
effects on carbon fluxes in arid and humid climate areas. In contrast, carbon fluxes in
semi-arid and semi-humid areas responded to drought at relatively longer time scales.

(3) The sensitivity of monthly carbon fluxes to drought differed spatially. In areas with a
negative annual water balance, the sensitivity of terrestrial carbon fluxes in response
to drought increased with increasing annual water balance. In areas with a posi-
tive annual water balance, there was a slight decrease trend with increasing annual
water balance.

Author Contributions: All of the authors contributed significantly to this manuscript. Conceptual-
ization, W.J.; data curation, Q.H. and W.J.; methodology, Q.H. and W.J.; writing—original draft, Q.H.,
W.J., and X.L. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the National Natural Science Foundation of China (42141005,
41801075) and the Jiangsu University Philosophy and Social Science Research Fund (2018SJA1611).

Institutional Review Board Statement: Not applicable.



Atmosphere 2023, 14, 229 14 of 17

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: This work used eddy covariance data acquired and shared by the FLUXNET
community, including these networks: AmeriFlux, AfriFlux, AsiaFlux, CarboAfrica, CarboEuropeIP,
CarboItaly, CarboMont, ChinaFlux, Fluxnet-Canada, GreenGrass, ICOS, KoFlux, LBA, NECC, OzFlux-
TERN, TCOS-Siberia, and USCCC. The ERA-Interim reanalysis data were provided by ECMWF and
processed by LSCE. The FLUXNET eddy covariance data processing and harmonization was carried
out by the European Fluxes Database Cluster, the AmeriFlux Management Project, and the Fluxdata
project of FLUXNET, with the support of the CDIAC, the ICOS Ecosystem Thematic Centre, and the
OzFlux, ChinaFlux, and AsiaFlux offices.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Ciais, P.; Sabine, C.; Bala, G.; Bopp, L.; Brovkin, V.; Canadell, J.; Chhabra, A.; DeFries, R.; Galloway, J.; Heimann, M.; et al. Carbon

and Other Biogeochemical Cycles. In Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth
Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY,
USA, 2013; pp. 465–570.

2. Le Quéré, C.; Raupach, M.R.; Canadell, J.G.; Marland, G.; Bopp, L.; Ciais, P.; Conway, T.J.; Doney, S.C.; Feely, R.A.; Foster, P.; et al.
Trends in the sources and sinks of carbon dioxide. Nat. Geosci. 2009, 2, 831–836. [CrossRef]

3. Nemani, R.R.; Keeling, C.D.; Hashimoto, H.; Jolly, W.M.; Piper, S.C.; Tucker, C.J.; Myneni, R.B.; Running, S.W. Climate-Driven
Increases in Global Terrestrial Net Primary Production from 1982 to 1999. Science 2003, 300, 1560–1563. [CrossRef] [PubMed]

4. Heimann, M.; Reichstein, M. Terrestrial ecosystem carbon dynamics and climate feedbacks. Nature 2008, 451, 289–292. [CrossRef]
[PubMed]

5. Piao, S.; Sitch, S.; Ciais, P.; Friedlingstein, P.; Peylin, P.; Wang, X.; Ahlström, A.; Anav, A.; Canadell, J.G.; Cong, N.; et al. Evaluation
of terrestrial carbon cycle models for their response to climate variability and to CO2 trends. Glob. Chang. Biol. 2013, 19, 2117–2132.
[CrossRef] [PubMed]

6. Ukkola, A.M.; De Kauwe, M.G.; Roderick, M.L.; Burrell, A.; Lehmann, P.; Pitman, A.J. Annual precipitation explains variability in
dryland vegetation greenness globally but not locally. Glob. Chang. Biol. 2021, 27, 4367–4380. [CrossRef]

7. Hutley, L.; Beringer, J. Disturbance and Climatic Drivers of Carbon Dynamics of a North Australian Tropical Savanna. In Ecosystem
Function in Savannas: Measurement and Modeling at Landscape to Global Scales; CRC Press: Boca Raton, FL, USA, 2010; pp. 57–75.
[CrossRef]

8. Wang, S.; Zhang, Y.; Ju, W.; Chen, J.M.; Ciais, P.; Cescatti, A.; Sardans, J.; Janssens, I.A.; Wu, M.; Berry, J.A.; et al. Recent global
decline of CO2 fertilization effects on vegetation photosynthesis. Science 2020, 370, 1295–1300. [CrossRef]

9. Albani, M.; Medvigy, D.; Hurtt, G.C.; Moorcroft, P.R. The contributions of land-use change, CO2 fertilization, and climate
variability to the Eastern US carbon sink. Glob. Chang. Biol. 2006, 12, 2370–2390. [CrossRef]

10. Houghton, R.A.; Hackler, J.L. Changes in terrestrial carbon storage in the United States. 1: The roles of agriculture and forestry.
Glob. Ecol. Biogeogr. 2000, 9, 125–144. [CrossRef]

11. Beringer, J.; Hacker, J.; Hutley, L.B.; Leuning, R.; Arndt, S.K.; Amiri, R.; Bannehr, L.; Cernusak, L.A.; Grover, S.; Hensley, C.; et al.
SPECIAL—Savanna Patterns of Energy and Carbon Integrated across the Landscape. Bull. Am. Meteorol. Soc. 2011, 92, 1467–1485.
[CrossRef]

12. Li, W.; Migliavacca, M.; Forkel, M.; Walther, S.; Reichstein, M.; Orth, R. Revisiting Global Vegetation Controls Using Multi-Layer
Soil Moisture. Geophys. Res. Lett. 2021, 48, e92856. [CrossRef]

13. Marcolla, B.; Migliavacca, M.; Rödenbeck, C.; Cescatti, A. Patterns and trends of the dominant environmental controls of net
biome productivity. Biogeosciences 2020, 17, 2365–2379. [CrossRef]

14. Wang, M.; Wang, S.; Zhao, J.; Ju, W.; Hao, Z. Global positive gross primary productivity extremes and climate contributions
during 1982–2016. Sci. Total Environ. 2021, 774, 145703. [CrossRef]

15. Ahlström, A.; Raupach, M.R.; Schurgers, G.; Smith, B.; Arneth, A.; Jung, M.; Reichstein, M.; Canadell, J.G.; Friedlingstein, P.; Jain,
A.K.; et al. The dominant role of semi-arid ecosystems in the trend and variability of the land CO2 sink. Science 2015, 348, 895–899.
[CrossRef] [PubMed]

16. Poulter, B.; Frank, D.; Ciais, P.; Myneni, R.B.; Andela, N.; Bi, J.; Broquet, G.; Canadell, J.G.; Chevallier, F.; Liu, Y.Y.; et al.
Contribution of semi-arid ecosystems to interannual variability of the global carbon cycle. Nature 2014, 509, 600–603. [CrossRef]

17. Reichstein, M.; Papale, D.; Valentini, R.; Aubinet, M.; Bernhofer, C.; Knohl, A.; Laurila, T.; Lindroth, A.; Moors, E.; Pilegaard, K.;
et al. Determinants of terrestrial ecosystem carbon balance inferred from European eddy covariance flux sites. Geophys. Res. Lett.
2007, 34, L01402. [CrossRef]

18. van der Molen, M.; Dolman, A.; Ciais, P.; Eglin, T.; Gobron, N.; Law, B.; Meir, P.; Peters, W.; Phillips, O.; Reichstein, M.; et al.
Drought and ecosystem carbon cycling. Agric. For. Meteorol. 2011, 151, 765–773. [CrossRef]

http://doi.org/10.1038/ngeo689
http://doi.org/10.1126/science.1082750
http://www.ncbi.nlm.nih.gov/pubmed/12791990
http://doi.org/10.1038/nature06591
http://www.ncbi.nlm.nih.gov/pubmed/18202646
http://doi.org/10.1111/gcb.12187
http://www.ncbi.nlm.nih.gov/pubmed/23504870
http://doi.org/10.1111/gcb.15729
http://doi.org/10.1201/b10275-6
http://doi.org/10.1126/science.abb7772
http://doi.org/10.1111/j.1365-2486.2006.01254.x
http://doi.org/10.1046/j.1365-2699.2000.00166.x
http://doi.org/10.1175/2011BAMS2948.1
http://doi.org/10.1029/2021GL092856
http://doi.org/10.5194/bg-17-2365-2020
http://doi.org/10.1016/j.scitotenv.2021.145703
http://doi.org/10.1126/science.aaa1668
http://www.ncbi.nlm.nih.gov/pubmed/25999504
http://doi.org/10.1038/nature13376
http://doi.org/10.1029/2006GL027880
http://doi.org/10.1016/j.agrformet.2011.01.018


Atmosphere 2023, 14, 229 15 of 17

19. Huxman, T.E.; Smith, M.D.; Fay, P.A.; Knapp, A.K.; Shaw, M.R.; Loik, M.E.; Smith, S.D.; Tissue, D.T.; Zak, J.C.; Weltzin, J.F.; et al.
Convergence across biomes to a common rain-use efficiency. Nature 2004, 429, 651–654. [CrossRef]

20. Dai, A. Increasing drought under global warming in observations and models. Nat. Clim. Chang. 2013, 3, 52–58. [CrossRef]
21. Fu, Q.; Feng, S. Responses of terrestrial aridity to global warming. J. Geophys. Res. Atmos. 2014, 119, 7863–7875. [CrossRef]
22. Ciais, P.; Reichstein, M.; Viovy, N.; Granier, A.; Ogée, J.; Allard, V.; Aubinet, M.; Buchmann, N.; Bernhofer, C.; Carrara, A.; et al.

Europe-wide reduction in primary productivity caused by the heat and drought in 2003. Nature 2005, 437, 529–533. [CrossRef]
23. Zeng, N.; Qian, H.; Roedenbeck, C.; Heimann, M. Impact of 1998–2002 midlatitude drought and warming on terrestrial ecosystem

and the global carbon cycle. Geophys. Res. Lett. 2005, 32, L22709. [CrossRef]
24. Xiao, J.; Zhuang, Q.; Liang, E.; Shao, X.; McGuire, A.D.; Moody, A.; Kicklighter, D.W.; Melillo, J.M. Twentieth-Century Droughts

and Their Impacts on Terrestrial Carbon Cycling in China. Earth Interact. 2009, 13, 1–31. [CrossRef]
25. Zhao, M.; Running, S.W. Drought-Induced Reduction in Global Terrestrial Net Primary Production from 2000 through 2009.

Science 2010, 329, 940–943. [CrossRef]
26. Ma, Z.; Peng, C.; Zhu, Q.; Chen, H.; Yu, G.; Li, W.; Zhou, X.; Wang, W.; Zhang, W. Regional drought-induced reduction in the

biomass carbon sink of Canada’s boreal forests. Proc. Natl. Acad. Sci. USA 2012, 109, 2423–2427. [CrossRef]
27. Chen, T.; Werf, G.R.; Jeu, R.A.M.; Wang, G.; Dolman, A.J. A global analysis of the impact of drought on net primary productivity.

Hydrol. Earth Syst. Sci. 2013, 17, 3885–3894. [CrossRef]
28. Liu, Y.; Zhou, Y.; Ju, W.; Wang, S.; Wu, X.; He, M.; Zhu, G. Impacts of droughts on carbon sequestration by China’s terrestrial

ecosystems from 2000 to 2011. Biogeosciences 2014, 11, 2583–2599. [CrossRef]
29. Vicente-Serrano, S.M.; Gouveia, C.; Camarero, J.J.; Beguería, S.; Trigo, R.; López-Moreno, J.I.; Azorín-Molina, C.; Pasho, E.;

Lorenzo-Lacruz, J.; Revuelto, J.; et al. Response of vegetation to drought time-scales across global land biomes. Proc. Natl. Acad.
Sci. USA 2013, 110, 52–57. [CrossRef] [PubMed]

30. He, W.; Ju, W.; Schwalm, C.R.; Sippel, S.; Wu, X.; He, Q.; Song, L.; Zhang, C.; Li, J.; Sitch, S.; et al. Large-Scale Droughts
Responsible for Dramatic Reductions of Terrestrial Net Carbon Uptake Over North America in 2011 and 2012. J. Geophys. Res.
Biogeosci. 2018, 123, 2053–2071. [CrossRef]

31. Granier, A.; Reichstein, M.; Bréda, N.; Janssens, I.; Falge, E.; Ciais, P.; Grünwald, T.; Aubinet, M.; Berbigier, P.; Bernhofer, C.; et al.
Evidence for soil water control on carbon and water dynamics in European forests during the extremely dry year: 2003. Agric.
For. Meteorol. 2007, 143, 123–145. [CrossRef]

32. Wei, X.; He, W.; Zhou, Y.; Ju, W.; Xiao, J.; Li, X.; Liu, Y.; Xu, S.; Bi, W.; Zhang, X.; et al. Global assessment of lagged and cumulative
effects of drought on grassland gross primary production. Ecol. Indic. 2022, 136, 108646. [CrossRef]

33. Zhang, Z.; Ju, W.; Zhou, Y.; Li, X. Revisiting the cumulative effects of drought on global gross primary productivity based on new
long-term series data (1982–2018). Glob. Chang. Biol. 2022, 28, 3620–3635. [CrossRef] [PubMed]

34. Na, L.; Na, R.; Bao, Y.; Zhang, J. Time-Lagged Correlation between Soil Moisture and Intra-Annual Dynamics of Vegetation on the
Mongolian Plateau. Remote Sens. 2021, 13, 1527. [CrossRef]

35. Ye, C.; Sun, J.; Liu, M.; Xiong, J.; Zong, N.; Hu, J.; Huang, Y.; Duan, X.; Tsunekawa, A. Concurrent and Lagged Effects of Extreme
Drought Induce Net Reduction in Vegetation Carbon Uptake on Tibetan Plateau. Remote Sens. 2020, 12, 2347. [CrossRef]

36. Barr, A.G.; Black, T.; Hogg, E.; Kljun, N.; Morgenstern, K.; Nesic, Z. Inter-annual variability in the leaf area index of a boreal
aspen-hazelnut forest in relation to net ecosystem production. Agric. For. Meteorol. 2004, 126, 237–255. [CrossRef]

37. Krishnan, P.; Black, T.A.; Grant, N.J.; Barr, A.G.; Hogg, E.H.; Jassal, R.S.; Morgenstern, K. Impact of changing soil moisture
distribution on net ecosystem productivity of a boreal aspen forest during and following drought. Agric. For. Meteorol. 2006, 139,
208–223. [CrossRef]

38. Mitchell, P.J.; O’Grady, A.P.; Pinkard, E.A.; Brodribb, T.J.; Arndt, S.K.; Blackman, C.J.; Duursma, R.A.; Fensham, R.J.; Hilbert, D.W.;
Nitschke, C.R.; et al. An ecoclimatic framework for evaluating the resilience of vegetation to water deficit. Glob. Chang. Biol. 2016,
22, 1677–1689. [CrossRef]

39. Yi, C.; Ricciuto, D.; Li, R.; Wolbeck, J.; Xu, X.; Nilsson, M.; Aires, L.M.I.; Albertson, J.D.; Ammann, C.; Arain, M.A.; et al. Climate
control of terrestrial carbon exchange across biomes and continents. Environ. Res. Lett. 2010, 5, 034007. [CrossRef]

40. Zhang, Y.; Gentine, P.; Luo, X.; Lian, X.; Liu, Y.; Zhou, S.; Michalak, A.M.; Sun, W.; Fisher, J.B.; Piao, S.; et al. Increasing sensitivity
of dryland vegetation greenness to precipitation due to rising atmospheric CO2. Nat. Commun. 2022, 13, 4875. [CrossRef]

41. Wang, Z.; He, Y.; Niu, B.; Wu, J.; Zhang, X.; Zu, J.; Huang, K.; Li, M.; Cao, Y.; Zhang, Y.; et al. Sensitivity of terrestrial carbon cycle
to changes in precipitation regimes. Ecol. Indic. 2020, 113, 106223. [CrossRef]

42. Seddon, A.W.R.; Macias-Fauria, M.; Long, P.R.; Benz, D.; Willis, K.J. Sensitivity of global terrestrial ecosystems to climate
variability. Nature 2016, 531, 229–232. [CrossRef]

43. Kanniah, K.D.; Beringer, J.; North, P.; Hutley, L. Control of atmospheric particles on diffuse radiation and terrestrial plant
productivity A review. Prog. Phys. Geogr. 2012, 36, 209–237. [CrossRef]

44. Moore, C.E.; Beringer, J.; Evans, B.; Hutley, L.B.; McHugh, I.; Tapper, N.J. The contribution of trees and grasses to productivity of
an Australian tropical savanna. Biogeosciences 2016, 13, 2387–2403. [CrossRef]

45. Ma, X.; Huete, A.; Moran, S.; Ponce-Campos, G.; Eamus, D. Abrupt shifts in phenology and vegetation productivity under climate
extremes. J. Geophys. Res. Biogeosci. 2015, 120, 2036–2052. [CrossRef]

46. Knapp, A.K.; Carroll, C.J.W.; Denton, E.M.; La Pierre, K.J.; Collins, S.L.; Smith, M.D. Differential sensitivity to regional-scale
drought in six central US grasslands. Oecologia 2015, 177, 949–957. [CrossRef] [PubMed]

http://doi.org/10.1038/nature02561
http://doi.org/10.1038/nclimate1633
http://doi.org/10.1002/2014JD021608
http://doi.org/10.1038/nature03972
http://doi.org/10.1029/2005GL024607
http://doi.org/10.1175/2009EI275.1
http://doi.org/10.1126/science.1192666
http://doi.org/10.1073/pnas.1111576109
http://doi.org/10.5194/hess-17-3885-2013
http://doi.org/10.5194/bg-11-2583-2014
http://doi.org/10.1073/pnas.1207068110
http://www.ncbi.nlm.nih.gov/pubmed/23248309
http://doi.org/10.1029/2018JG004520
http://doi.org/10.1016/j.agrformet.2006.12.004
http://doi.org/10.1016/j.ecolind.2022.108646
http://doi.org/10.1111/gcb.16178
http://www.ncbi.nlm.nih.gov/pubmed/35343026
http://doi.org/10.3390/rs13081527
http://doi.org/10.3390/rs12152347
http://doi.org/10.1016/j.agrformet.2004.06.011
http://doi.org/10.1016/j.agrformet.2006.07.002
http://doi.org/10.1111/gcb.13177
http://doi.org/10.1088/1748-9326/5/3/034007
http://doi.org/10.1038/s41467-022-32631-3
http://doi.org/10.1016/j.ecolind.2020.106223
http://doi.org/10.1038/nature16986
http://doi.org/10.1177/0309133311434244
http://doi.org/10.5194/bg-13-2387-2016
http://doi.org/10.1002/2015JG003144
http://doi.org/10.1007/s00442-015-3233-6
http://www.ncbi.nlm.nih.gov/pubmed/25651805


Atmosphere 2023, 14, 229 16 of 17

47. Sims, D.A.; Brzostek, E.R.; Rahman, A.F.; Dragoni, D.; Phillips, R.P. An improved approach for remotely sensing water stress
impacts on forest C uptake. Glob. Chang. Biol. 2014, 20, 2856–2866. [CrossRef]

48. Vicente-Serrano, S.M.; Beguería, S.; López-Moreno, J.I. A Multiscalar Drought Index Sensitive to Global Warming: The Standard-
ized Precipitation Evapotranspiration Index. J. Clim. 2010, 23, 1696–1718. [CrossRef]

49. McKee, T.B.; Doesken, N.J.; Kleist, J. The relationship of drought frequency and duration to time scales. In Proceedings of the 8th
Conference on Applied Climatology, Anaheim, CA, USA, 17–22 January 1993; Volume 17, pp. 179–183.

50. Liu, J.; Chen, J.; Cihlar, J.; Park, W. A process-based boreal ecosystem productivity simulator using remote sensing inputs. Remote
Sens. Environ. 1997, 62, 158–175. [CrossRef]

51. Ju, W.; Gao, P.; Zhou, Y.; Chen, J.M.; Chen, S.; Li, X. Prediction of summer grain crop yield with a process-based ecosystem model
and remote sensing data for the northern area of the Jiangsu Province, China. Int. J. Remote Sens. 2010, 31, 1573–1587. [CrossRef]

52. Feng, X.; Liu, G.; Chen, J.; Chen, M.; Liu, J.; Ju, W.; Sun, R.; Zhou, W. Net primary productivity of China’s terrestrial ecosystems
from a process model driven by remote sensing. J. Environ. Manag. 2007, 85, 563–573. [CrossRef]

53. Ju, W.; Gao, P.; Wang, J.; Zhou, Y.; Zhang, X. Combining an ecological model with remote sensing and GIS techniques to monitor
soil water content of croplands with a monsoon climate. Agric. Water Manag. 2010, 97, 1221–1231. [CrossRef]

54. Liu, Y.; Zhou, Y.; Ju, W.; Chen, J.; Wang, S.; He, H.; Wang, H.; Guan, D.; Zhao, F.; Li, Y.; et al. Evapotranspiration and water yield
over China’s landmass from 2000 to 2010. Hydrol. Earth Syst. Sci. 2013, 17, 4957–4980. [CrossRef]

55. Liu, J.; Chen, J.M.; Cihlar, J.; Chen, W. Net primary productivity distribution in the BOREAS region from a process model using
satellite and surface data. J. Geophys. Res. Atmos. 1999, 104, 27735–27754. [CrossRef]

56. Ju, W.; Chen, J.M.; Black, T.A.; Barr, A.G.; Liu, J.; Chen, B. Modelling multi-year coupled carbon and water fluxes in a boreal
aspen forest. Agric. For. Meteorol. 2006, 140, 136–151. [CrossRef]

57. Sprintsin, M.; Chen, J.M.; Desai, A.; Gough, C.M. Evaluation of leaf-to-canopy upscaling methodologies against carbon flux data
in North America. J. Geophys. Res. Biogeosci. 2012, 117, G01023. [CrossRef]

58. Zhang, F.; Chen, J.M.; Chen, J.; Gough, C.M.; Martin, T.A.; Dragoni, D. Evaluating spatial and temporal patterns of MODIS GPP
over the conterminous U.S. against flux measurements and a process model. Remote Sens. Environ. 2012, 124, 717–729. [CrossRef]

59. Wang, Q.; Tenhunen, J.; Falge, E.; Bernhofer, C.; Granier, A.; Vesala, T. Simulation and scaling of temporal variation in gross
primary production for coniferous and deciduous temperate forests. Glob. Chang. Biol. 2003, 10, 37–51. [CrossRef]

60. Matsushita, B.; Tamura, M. Integrating remotely sensed data with an ecosystem model to estimate net primary productivity in
East Asia. Remote Sens. Environ. 2002, 81, 58–66. [CrossRef]

61. Zhang, F.; Ju, W.; Chen, J.; Wang, S.; Yu, G.; Li, Y.; Han, S.; Asanuma, J. Study on evapotranspiration in East Asia using the BEPS
ecological model. J. Nat. Resour. 2010, 25, 1596–1606.

62. Chen, J.M.; Mo, G.; Pisek, J.; Liu, J.; Deng, F.; Ishizawa, M.; Chan, D. Effects of foliage clumping on the estimation of global
terrestrial gross primary productivity. Glob. Biogeochem. Cycles 2012, 26, GB1019. [CrossRef]

63. He, Q.; Ju, W.; Dai, S.; He, W.; Song, L.; Wang, S.; Li, X.; Mao, G. Drought Risk of Global Terrestrial Gross Primary Productivity
Over the Last 40 Years Detected by a Remote Sensing-Driven Process Model. J. Geophys. Res. Biogeosci. 2021, 126, e2020JG005944.
[CrossRef]

64. Chen, J.M.; Ju, W.; Ciais, P.; Viovy, N.; Liu, R.; Liu, Y.; Lu, X. Vegetation structural change since 1981 significantly enhanced the
terrestrial carbon sink. Nat. Commun. 2019, 10, 4259. [CrossRef] [PubMed]

65. Farquhar, G.D.; Von Caemmerer, S.; Berry, J.A. A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species.
Planta 1980, 149, 78–90. [CrossRef] [PubMed]

66. Chen, J.; Liu, J.; Cihlar, J.; Goulden, M. Daily canopy photosynthesis model through temporal and spatial scaling for remote
sensing applications. Ecol. Model. 1999, 124, 99–119. [CrossRef]

67. Mo, X.; Chen, J.M.; Ju, W.; Black, T.A. Optimization of ecosystem model parameters through assimilating eddy covariance flux
data with an ensemble Kalman filter. Ecol. Model. 2008, 217, 157–173. [CrossRef]

68. Parton, W.J.; Scurlock, J.M.O.; Ojima, D.S.; Gilmanov, T.G.; Scholes, R.J.; Schimel, D.S.; Kirchner, T.; Menaut, J.-C.; Seastedt,
T.; Garcia-Moya, E.; et al. Observations and modeling of biomass and soil organic matter dynamics for the grassland biome
worldwide. Glob. Biogeochem. Cycles 1993, 7, 785–809. [CrossRef]

69. Liu, Y.; Liu, R.; Chen, J.M. Retrospective retrieval of long-term consistent global leaf area index (1981–2011) from combined
AVHRR and MODIS data. J. Geophys. Res. Biogeosci. 2012, 117, G04003. [CrossRef]

70. Lu, X.; Jiang, H.; Zhang, X.; Liu, J.; Zhang, Z.; Jin, J.; Wang, Y.; Xu, J.; Cheng, M. Estimated global nitrogen deposition using NO2
column density. Int. J. Remote Sens. 2013, 34, 8893–8906. [CrossRef]

71. George, H.H.; Zohrab, A.S. Reference Crop Evapotranspiration from Temperature. Appl. Eng. Agric. 1985, 1, 96–99. [CrossRef]
72. Abramowitz, M.; Stegun, I.A. Handbook of Mathematical Functions: With Formulas, Graphs, and Mathematical Tables (No. 55); Courier

Dover Publications: Mineola, NY, USA, 1972.
73. Houghton, R. Why are estimates of the terrestrial carbon balance so different? Glob. Chang. Biol. 2003, 9, 500–509. [CrossRef]
74. Beguería, S.; Vicente-Serrano, S.M.; Angulo-Martinez, M. A Multiscalar Global Drought Dataset: The SPEIbase: A New Gridded

Product for the Analysis of Drought Variability and Impacts. Bull. Am. Meteorol. Soc. 2010, 91, 1351–1356. [CrossRef]
75. Zang, C.S.; Buras, A.; Esquivel-Muelbert, A.; Jump, A.S.; Rigling, A.; Rammig, A. Standardized drought indices in ecological

research: Why one size does not fit all. Glob. Chang. Biol. 2019, 26, 322–324. [CrossRef] [PubMed]

http://doi.org/10.1111/gcb.12537
http://doi.org/10.1175/2009JCLI2909.1
http://doi.org/10.1016/S0034-4257(97)00089-8
http://doi.org/10.1080/01431160903475357
http://doi.org/10.1016/j.jenvman.2006.09.021
http://doi.org/10.1016/j.agwat.2009.12.007
http://doi.org/10.5194/hess-17-4957-2013
http://doi.org/10.1029/1999JD900768
http://doi.org/10.1016/j.agrformet.2006.08.008
http://doi.org/10.1029/2010JG001407
http://doi.org/10.1016/j.rse.2012.06.023
http://doi.org/10.1111/j.1365-2486.2003.00716.x
http://doi.org/10.1016/S0034-4257(01)00331-5
http://doi.org/10.1029/2010GB003996
http://doi.org/10.1029/2020JG005944
http://doi.org/10.1038/s41467-019-12257-8
http://www.ncbi.nlm.nih.gov/pubmed/31534135
http://doi.org/10.1007/BF00386231
http://www.ncbi.nlm.nih.gov/pubmed/24306196
http://doi.org/10.1016/S0304-3800(99)00156-8
http://doi.org/10.1016/j.ecolmodel.2008.06.021
http://doi.org/10.1029/93GB02042
http://doi.org/10.1029/2012JG002084
http://doi.org/10.1080/01431161.2013.853894
http://doi.org/10.13031/2013.26773
http://doi.org/10.1046/j.1365-2486.2003.00620.x
http://doi.org/10.1175/2010BAMS2988.1
http://doi.org/10.1111/gcb.14809
http://www.ncbi.nlm.nih.gov/pubmed/31442346


Atmosphere 2023, 14, 229 17 of 17

76. Slette, I.J.; Post, A.K.; Awad, M.; Even, T.; Punzalan, A.; Williams, S.; Smith, M.D.; Knapp, A.K. How ecologists define drought,
and why we should do better. Glob. Chang. Biol. 2019, 25, 3193–3200. [CrossRef] [PubMed]

77. Law, B.; Falge, E.; Gu, L.; Baldocchi, D.; Bakwin, P.; Berbigier, P.; Davis, K.; Dolman, A.; Falk, M.; Fuentes, J.; et al. Environmental
controls over carbon dioxide and water vapor exchange of terrestrial vegetation. Agric. For. Meteorol. 2002, 113, 97–120. [CrossRef]

78. Yu, G.-R.; Zhu, X.-J.; Fu, Y.-L.; He, H.-L.; Wang, Q.-F.; Wen, X.-F.; Li, X.-R.; Zhang, L.-M.; Zhang, L.; Su, W.; et al. Spatial patterns
and climate drivers of carbon fluxes in terrestrial ecosystems of China. Glob. Chang. Biol. 2012, 19, 798–810. [CrossRef]

79. Guo-Dong, S. Sensitivity of the Terrestrial Ecosystem to Precipitation and Temperature Variability over China. Atmos. Ocean. Sci.
Lett. 2014, 7, 382–387. [CrossRef]

80. Xu, L.; Baldocchi, D.D.; Tang, J. How soil moisture, rain pulses, and growth alter the response of ecosystem respiration to
temperature. Glob. Biogeochem. Cycles 2004, 18, GB4002. [CrossRef]

81. Myneni, R.B.; Hall, F.G.; Sellers, P.J.; Marshak, A.L. The interpretation of spectral vegetation indexes. IEEE Trans. Geosci. Remote
Sens. 1995, 33, 481–486. [CrossRef]

82. Tucker, C.J. Red and photographic infrared linear combinations for monitoring vegetation. Remote Sens. Environ. 1979, 8, 127–150.
[CrossRef]

83. Ji, L.; Peters, A.J. Assessing vegetation response to drought in the northern Great Plains using vegetation and drought indices.
Remote Sens. Environ. 2003, 87, 85–98. [CrossRef]

84. Zhang, T.; Xu, M.; Xi, Y.; Zhu, J.; Tian, L.; Zhang, X.; Wang, Y.; Li, Y.; Shi, P.; Yu, G.; et al. Lagged climatic effects on carbon fluxes
over three grassland ecosystems in China. J. Plant Ecol. 2015, 8, 291–302. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1111/gcb.14747
http://www.ncbi.nlm.nih.gov/pubmed/31276260
http://doi.org/10.1016/S0168-1923(02)00104-1
http://doi.org/10.1111/gcb.12079
http://doi.org/10.1080/16742834.2014.11447194
http://doi.org/10.1029/2004GB002281
http://doi.org/10.1109/TGRS.1995.8746029
http://doi.org/10.1016/0034-4257(79)90013-0
http://doi.org/10.1016/S0034-4257(03)00174-3
http://doi.org/10.1093/jpe/rtu026

	Introduction 
	Materials and Methods 
	The Model Used to Simulate Global Carbon Fluxes 
	Data Used to Drive the BEPS Model 
	Time Series of LAI during 1981–2016 
	Global Nitrogen Deposition Data 
	Global Meteorological Data 
	Soil Data 

	Drought Assessment 
	Eddy Covariance Data 
	Assessing Response of Terrestrial Carbon Fluxes to Drought 

	Results 
	Validation of Simulated Monthly Terrestrial Carbon Fluxes 
	Spatial Variations of the Response of Terrestrial Carbon Fluxes to Drought 
	Characteristics of Lagged Response of the Terrestrial Carbon Fluxes to Drought 
	Spatial Patterns of Sensitivity of the Terrestrial Carbon Fluxes to Drought 
	Changes in the Sensitivity of Terrestrial Carbon Fluxes to Drought with Wetness Conditions 

	Discussion 
	Uncertainties of Simulated Terrestrial Carbon Fluxes and Drought Assessment 
	Spatial Patterns of Impacts of Drought on Carbon Fluxes 
	Lagged Effects of Precipitation Anomalies on Carbon Fluxes 
	Dependence of the Sensitivity of Terrestrial Carbon Fluxes to Drought on Climate Conditions 

	Conclusions 
	References

