
Citation: Hu, A.V.; Kabala, Z.J.

Predicting and Reconstructing

Aerosol–Cloud–Precipitation

Interactions with Physics-Informed

Neural Networks. Atmosphere 2023,

14, 1798. https://doi.org/10.3390/

atmos14121798

Received: 2 October 2023

Revised: 26 November 2023

Accepted: 4 December 2023

Published: 8 December 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

atmosphere

Article

Predicting and Reconstructing Aerosol–Cloud–Precipitation
Interactions with Physics-Informed Neural Networks
Alice V. Hu 1,* and Zbigniew J. Kabala 2

1 Pioneer Academics, 101 Greenwood Ave, Ste 170, Jenkintown, PA 19046, USA
2 Department of Civil & Environmental Engineering, Duke University, Durham, NC 27708, USA;

zbigniew.kabala@duke.edu
* Correspondence: aliceh622cg@gmail.com

Abstract: Interactions between clouds, aerosol, and precipitation are crucial aspects of weather and
climate. The simple Koren–Feingold conceptual model is important for providing deeper insight
into the complex aerosol–cloud–precipitation system. Recently, artificial neural networks (ANNs)
and physics-informed neural networks (PINNs) have been used to study multiple dynamic systems.
However, the Koren–Feingold model for aerosol–cloud–precipitation interactions has not yet been
studied with either ANNs or PINNs. It is challenging for pure data-driven models, such as ANNs, to
accurately predict and reconstruct time series in a small data regime. The pure data-driven approach
results in the ANN becoming a “black box” that limits physical interpretability. We demonstrate
how these challenges can be overcome by combining a simple ANN with physical laws into a PINN
model (not purely data-driven, good for the small data regime, and interpretable). This paper is
the first to use PINNs to learn about the original and modified Koren–Feingold models in a small
data regime, including external forcings such as wildfire-induced aerosols or the diurnal cycle of
clouds. By adding external forcing, we investigate the effects of environmental phenomena on the
aerosol–cloud–precipitation system. In addition to predicting the system’s future, we also use PINN
to reconstruct the system’s past: a nontrivial task because of time delay. So far, most research has
focused on using PINNs to predict the future of dynamic systems. We demonstrate the PINN’s ability
to reconstruct the past with limited data for a dynamic system with nonlinear delayed differential
equations, such as the Koren–Feingold model, which remains underexplored in the literature. The
main reason that this is possible is that the model is non-diffusive. We also demonstrate for the first
time that PINNs have significant advantages over traditional ANNs in predicting the future and
reconstructing the past of the original and modified Koren–Feingold models containing external
forcings in the small data regime. We also show that the accuracy of the PINN is not sensitive to the
value of the regularization factor (λ), a key parameter for the PINN that controls the weight for the
physics loss relative to the data loss, for a broad range (from λ = 1× 103 to λ = 1× 105).

Keywords: Koren–Feingold model; aerosol–cloud–precipitation interactions; physics-informed neural
networks; artificial neural networks; prediction; reconstruction

1. Introduction
1.1. Aerosol–Cloud–Precipitation System

Aerosol–cloud interactions have important influences on weather, climate, and their
predictability [1]. Clouds serve as a source of precipitation and storms. Rain can form
when cloud water is converted to rainwater. Factors such as aerosol particle concentration,
warm cloud depth, and cloud droplet concentration affect the rate of conversion of cloud
water to rainwater [2]. Additionally, clouds reflect radiation from the sun, regulating the
solar radiation absorbed by the earth. Therefore, it is crucial to predict and understand
aerosol–cloud interactions. However, this task is challenging because clouds are nonlinear
dynamic systems with many degrees of freedom [3]. It is also understood that aerosol affects
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cloud depth, though it is not easy to quantify the effects [4]. Water droplet condensation on
aerosol nuclei leads to cloud formation. Usually, higher aerosol concentrations result in
higher cloud droplet concentrations [5], increasing the optical thickness and reflective ability
of clouds and creating a stronger cooling effect by reflecting more solar radiation [6,7].

Complex and detailed models, such as large eddy simulations, are used to make
predictions from an aerosol–cloud–precipitation system [8]. However, these models are
computationally expensive, so the aerosol–cloud–precipitation system has been simplified
with the Koren–Feingold conceptual model to improve our understanding of the major
features of the system’s underlying physical mechanisms, particularly for shallow clouds [1].
This idealized model treats the aerosol–cloud–precipitation system as a predator–prey
problem, with rain as the predator and clouds as the prey, modulated by aerosol or the
related cloud droplet concentration. According to the delayed differential equations in
the Koren–Feingold model, cloud depth, cloud droplet concentration, and rainfall exhibit
oscillations. The use of simpler models to represent aerosol–cloud–precipitation interactions
produces a better grasp of the underlying physics of these interactions and highlights
predictable elements of a more complex system.

Wildfires are a major source of aerosols and can thus affect the cloud–precipitation
system [9]. Aerosols from wildfire smoke have been a significant source of uncertainty
for climate prediction [10]. Wildfires release biomass-burning aerosols that act as cloud
condensation nuclei and affect cloud formation and precipitation [11]. It is important to
understand how the aerosol pollution induced by environmental phenomena, such as wild-
fires, affects the aerosol–cloud–precipitation system. Recent studies have focused on using
observational data to study the impacts of aerosol pollution on the cloud–precipitation sys-
tem [12–15], but it could also be fruitful to study these impacts through the Koren–Feingold
conceptual model.

Another external forcing that can be studied with the Koren–Feingold model is a diur-
nal radiative forcing on cloud depth. This diurnal cycle has been observed and examined in
several studies [16–20]. This cycle occurs because surface temperatures vary as the earth is
warmed during the daytime and cooled during the nighttime [21,22]. These changes in sur-
face temperature affect the convection that forms clouds and result in cloud depths varying
cyclically over the course of a day, with more low clouds appearing in the afternoon [20].
The diurnal cycle of low-level clouds is related to their ability to reflect radiation [16].
Accounting for external phenomena, such as the diurnal radiative forcing cycle, in the
simple Koren–Feingold conceptual model offers an insightful and useful way to deepen our
understanding of the effect of such phenomena on the aerosol–cloud–precipitation system.

1.2. Artificial Neural Network and Physics-Informed Neural Networks

Although artificial neural networks (ANNs) have already been used to analyze a
wide range of dynamic systems, e.g., [23–26], they have not been used to study the
Koren–Feingold conceptual system for aerosol–cloud–precipitation interactions. ANNs are
able to learn complex, nonlinear relationships and perform particularly well with large
datasets. However, this pure data-driven approach results in the ANN becoming a “black
box” that limits physical interpretability. Furthermore, the lack of data in certain fields
limits the applicability of ANNs in those fields in the small data regime, as large datasets
are difficult and expensive to obtain.

Other advanced hybrid models recently used for time series modelling similarly
rely on large datasets to be more successful [27–34]. For example, the advanced hy-
brid deep learning model combining a long short-term memory neural network with
an ant–lion optimizer model (LSTM-ALO) can successfully predict monthly river runoff
using 336 months of training data [27]. In this case, the total time interval covering the
training data (336 months) is significantly longer than the prediction time interval (1 month),
and there is a 336:1 ratio between them. Another advanced hybrid deep learning model
combining the random vector functional link with a water cycle optimization algorithm and
a moth–flame optimization algorithm (RVFL-WCAMFO) trained on 18 years of monthly
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data successfully predicted monthly air temperature [33]. The periodicity (seasonal cycle)
revealed by the training dataset can also significantly improve the accuracy of the predic-
tions [33]. Once again, the total time interval spanning the training data (216 months) is
much longer than the prediction time interval (1 month), i.e., there is a 216:1 ratio between
them. The training data are long enough for the model to learn the periodicity. Similarly,
an advanced hybrid deep learning model combining a single vector machine and firefly
algorithm–particle swarm optimization (SVM-FFAPSO) with a training dataset of 3727 daily
data successfully predicted daily dissolved oxygen levels [31]. The ratio of the total time
interval of the training data and the prediction time interval is 3727:1. The above-mentioned
pure data-driven models depend on large training datasets and are commonly used for
large data problems.

Our study focuses on a small data regime with limited training data, where the ratio
between the total time interval of the training data and the prediction/reconstruction
time interval is close to 1:1. In this small data regime, there are insufficient data to train
advanced hybrid deep learning models for prediction and reconstruction. Therefore, the
problem addressed in this study differs fundamentally from those addressed in the above
studies using advanced hybrid deep learning models and large training datasets. Our
study requires a different approach that focuses on the role of physical laws in aiding
future predictions and past reconstructions in small data regimes. Physics-informed neural
networks (PINNs) allow for prior knowledge (such as differential equations that govern
a system) to be combined with data, which is especially helpful in small data regimes
where data are limited but the system is regulated by physical laws [35]. The advantages of
the PINN are its ability to learn from small, limited training data and its interpretability,
because it is informed by physical laws and is not purely data-driven [35]. PINNs can
generalize well and find patterns even with limited data [36–38]. A deep learning model
that combines physical laws and data performs better than some conventional numerical
models using data assimilation [39]. PINNs have already been used in fields such as
biochemistry [40], hydrogeology [41], and astronomy [42]. They are also frequently used
to solve ordinary and partial differential equations [43,44]. However, PINNs have not
yet been applied to the conceptual Koren–Feingold model, which consists of nonlinear
delayed differential equations. Also underexplored is the PINN’s ability to reconstruct the
past in a small data regime with delayed differential equations. Most research focuses on
using PINNs to predict the future or to estimate the features of a system based on small
datasets [35,45,46].

Additionally, our study also explores the impact of time-varying external forcings
on the conceptual Koren–Feingold model. These time-varying external forcings over the
prediction and reconstruction time domains cannot be successfully learned by pure data-
driven models over the small time interval of the training time domain. The PINN is able to
incorporate the knowledge of the time-varying external forcings. Thus, it has an important
advantage over pure data-driven models when predicting and reconstructing aerosol–
cloud–precipitation interactions from the Koren–Feingold model with added time-varying
external forcings.

1.3. Goals

In this study, we investigate whether PINNs can successfully learn the conceptual
Koren–Feingold model and improve upon ANN performance in a small data regime where
the ratio between the total time interval of the training data and the prediction/reconstruction
time interval is close to 1:1. The main purpose of our paper is to investigate whether the
combination of a simple ANN and a physical model will produce a PINN model that is
much more accurate in predictive and reconstructive modes in a small data regime. Hence,
we use a pure data-driven ANN (without a physical model) as the benchmark for our
PINN. In particular, we explore the novel question of whether PINNs are able to reconstruct
the Koren–Feingold model’s past as well as make predictions about the future in a small
data regime. Using traditional methods, it is nontrivial to reconstruct the past of a system
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regulated by differential equations with a time delay, so advancements could be made
in this area by using PINNs. Additionally, we modify the Koren–Feingold conceptual
model to include time-varying external forcings such as wildfire-induced aerosols or
the diurnal cycle of cloud depth. We explore the respective impacts of externally forced
aerosols and the diurnal cycle of cloud depth on the aerosol–cloud–precipitation system and
whether PINNs are able to perform well when external forcing is added to the conceptual
Koren–Feingold model.

2. Materials and Methods
2.1. The Simple Conceptual Model for the Aerosol–Cloud–Precipitation System

The Koren–Feingold conceptual model of delayed differential equations is described
as follows [1]:

H′(t) =
Hmax − H(t)

τ1
− R(t)

c1H(t− T)
=

Hmax − H(t)
τ1

− α

c1

H2(t− T)
N(t− T)

(1)

N′(t) =
Nmax − N(t)

τ2
− c2N(t− T)R(t) =

Nmax − N(t)
τ2

− αc2H3(t− T) (2)

R(t) =
αH3(t− T)

N(t− T)
(3)

In this system, H(t) is cloud depth in meters, N(t) is cloud droplet concentration in
cm−3, and R(t) is precipitation in mm/day. The system has a time delay of T minutes,
representing the delay of R(t) relative to cloud depth and cloud droplet concentration
caused by the time taken to form precipitation. According to the Koren–Feingold model,
precipitation increases nonlinearly with cloud depth and decreases with cloud droplet
concentration with the time delay T, which has been confirmed through observation as
well as theory [47,48]. Since R(t) also causes H(t) and N(t) to decrease, the time delay T
appears in the equations of H′(t) and N′(t). Hmax is the maximum potential for cloud depth
and Nmax is the maximum achievable cloud droplet concentration, that is, the background
aerosol concentration. Here, τ1 and τ2 are characteristic time constants measured in minutes
that regulate the exponential approach of H(t) to Hmax and N(t) to Nmax, respectively, and
c1, c2, and α are coefficients for the aerosol–cloud–precipitation interactions. Similar to
the values used in the paper by Koren and Feingold [1], this study utilizes Hmax = 530 m,
Nmax = 180 cm−3 without the diurnal cycle of cloud depth and Nmax = 250 cm−3 with the
diurnal cycle of cloud depth, T = 24 min, τ1 = 60 min, τ2 = 60 min, α = 2 mm m−6day−1,
c1 = 2× 10−6 mm m−2, and c2 = 3× 104 m−1. The initial cloud depth is H0 = 200 m and
the initial cloud droplet concentration is N0 = 50 cm−3 for 0 ≤ t ≤ T.

In this study, we use Mathematica NDSolve [49] to numerically solve the nonlinear
delayed differential equations of the Koren–Feingold model [50] and to provide a truth
to evaluate the performance of ANNs and PINNs when learning the conceptual model.
Mathematica is a widely used mathematical computation software and has been applied
successfully to aerosol-related research, e.g., [51–54].

2.2. Adding External Forcing to the Koren–Feingold Model

Additionally, we modify the Koren–Feingold model to study the effects of external
forcing on the aerosol–cloud–precipitation system. We evaluate ANN and PINN perfor-
mance when the aerosol–cloud–precipitation system experiences external forcing such as
wildfire-induced aerosols or the diurnal cycle of clouds. The study represents the rapid
increase in wildfire-induced aerosols as:

Nwild f ire(t) = 100
(

1− cos
( π

750
t
))

for t ≤ 1500 min (4)

This equation idealizes the increase in background aerosol concentration that peaks at
t = 750 min and returns to the original Nmax value after 1500 min, in a similar manner to a
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pulse of anomalous external aerosol induced by wildfire smoke. The modified differential
equation for cloud droplet concentration including the increase in the background cloud
droplet concentration caused by wildfire induced aerosols becomes:

H′(t) =
Nmax + Nwild f ire(t)− N(t)

τ2
− ac2H(t− T)3 (5)

Another idealization can be written to represent the diurnal cycle’s effects on the
maximum potential for cloud depth in the environment:

Hdiurnal(t) = 50 sin
( π

720
t
)

(6)

Here the sine function is chosen to represent the periodic nature of the diurnal cycle,
with a period of 1440 min, or 24 h, as the diurnal cycle repeats every 24 h. The closeness
of periods of 1500 min in Equation (4) and 1440 min in Equation (6) is serendipitous. The
modified differential equation for the cloud depth with the diurnal cycle becomes the
following equation:

H′(t) =
Hmax + Hdiurnal(t)− H(t)

τ1
− α

c1

H
(
t− T)2

N(t− T)
(7)

2.3. Artificial Neural Networks (ANNs) and Mean Squared Error (MSE) Loss

ANNs are made of input layers, output layers, and multiple intermediary hidden
layers of data-processing neurons regulated by weights and biases [23,55]. In between
the neuron layers are activation functions that decide the outputs of the neurons and help
the neural network perform tasks more complicated than linear regression. The ANN is
evaluated through a loss function, and it attempts to optimize weights and biases to result
in the lowest loss. The loss function we use in this study is the mean squared error (MSE)
loss function, which measures the average squared difference between the dataset and the
neural network’s outputs using the following formula:

MSEdata =
1

ndata

ndata

∑
i=1

(H(ti)− Ĥ(ti))
2 +

1
ndata

ndata

∑
i=1

(N(ti)− N̂(ti))
2 (8)

where H(t i) is the cloud depth predicted by the ANN at time ti in the data time domain,
Ĥ(t i

)
is the true cloud depth at time ti in the data time domain, N(t i) is the cloud droplet

concentration predicted by the ANN at time ti in the data time domain, N̂(t i
)

is the true
cloud droplet concentration at time ti in the data time domain, and ndata is the number of
available data samples.

2.4. Physics-Informed Neural Networks (PINNs) and Physics Loss

PINNs were first introduced by Raissi et al. [35]. In addition to calculating loss based
on data, PINNs also calculate loss based on physics principles and equations. The total loss
that the PINN attempts to minimize is the sum of the data loss and the physics loss:

MSEtotal = MSEdata + λ MSEphysics (9)

where MSEdata is the loss associated with the dataset and MSEphysics is the loss associated
with the differential equations of the Koren–Feingold model. Here, λ is a regularization
factor that scales the physics loss. In this study, we used λ = 1× 104 because the order of
magnitude of the physics loss is much smaller than that of the data loss (see Section 3.4).
This value is chosen because it makes data and physics losses comparable in magnitude.
With comparable data and physics losses, the PINN will attempt to minimize both while
training without one loss dominating the other, as we show later in Section 3.5. If the
regularization factor is too low, the PINN will not sufficiently minimize the physics loss,
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and if the regularization factor is too high, the PINN will not sufficiently fit to the training
data and minimize the data loss (shown in Section 3.5).

The physics losses are calculated using the following equations:

MSEphysics = MSEH
physics + MSEN

physics (10)

MSEH
physics =

1
nphysics

∑
nphysics
j=1

(
H′
(
tj
)
−

Hmax − H
(
tj
)

τ1
+

a
c1

H
(
tj − T)2

N
(
tj − T

) )2

(11)

MSEN
physics =

1
nphysics

nphysics

∑
j=1

(
N′
(
tj
)
−

Nmax − N
(
tj
)

τ2
+ ac2H

(
tj − T

)3
)2

(12)

H
(
tj
)

is the cloud depth predicted by the PINN at time tj in the physics time domain, N
(
tj
)

is the cloud droplet concentration predicted by the PINN at time tj in the physics time do-
main, and nphysics is the number of points in the physics time domain. It is unnecessary for
the PINN to include initial conditions H0 and N0 because of the presence of the truth data.

With the addition of external forcing to represent the increase in maximum achievable
cloud droplet concentration due to wildfire-induced aerosols, N′(t) is adjusted according
to Equation (5) and the physics loss for the cloud droplet concentration becomes:

MSEN
physics =

1
nphysics

nphysics

∑
j=1

(
N′
(
tj
)
−

Nmax + Nwild f ire
(
tj
)
− N

(
tj
)

τ2
+ ac2H

(
tj − T

)3
)2

(13)

where

Nwild f ire(t) = 100
(

1− cos
( π

750
t
))

for t ≤ 1500 min (14)

With the addition of a diurnal radiative forcing cycle of clouds affecting cloud depth,
H′(t) is adjusted according to Equation (7) and the physics loss for cloud depth becomes:

MSEH
physics =

1
nphysics

nphysics

∑
j=1

(
H′
(
tj
)
−

Hmax + Hdiurnal
(
tj
)
− H

(
tj
)

τ1
+

a
c1

H
(
tj − T)2

N
(
tj − T

) )2

(15)

where
Hdiurnal(t) = 50 sin

( π

720
t
)

(16)

2.5. Description of Neural Network Structure and Training

In this study, we used Mathematica to create and train the ANN and PINN. The
hidden layers of the ANN are composed of a 150-neuron linear layer activated by the
logistic sigmoid activation function. The first layer is connected to a second 150 neuron
linear layer activated by the hyperbolic tangent activation function, connected to a 2-neuron
linear layer (Figure 1). The ANN trains only on data without physics for 4× 105 rounds.
However, it is important to note that after the ANN is trained for about 1× 105 rounds,
its data loss is no longer sensitive to the round number, and further training only results
in a slight decrease in the ANN’s data loss. Training beyond 4× 105 rounds does not
significantly improve ANN performance.
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Figure 1. ANN and PINN architecture. Here, the output H represents cloud depth, and the output N
represents cloud droplet concentration.

The PINN is trained to minimize total loss, which is the sum of the data loss and the
physics loss (Figure 1 and Equation (9)). The weights and biases of each linear layer are
shared while the PINN is training. The initial weights and biases of each linear layer of
the PINN are taken from the trained ANN. Finally, the trained neural network is extracted
for the prediction and reconstruction task. In this study, the PINN is also trained for
4× 105 rounds. With Mathematica, we used finite differentiation over a very small time
interval of 0.1 min in the PINN for calculating the derivative terms of the physics loss. We
also used the ADAM optimizer to minimize the training loss of both the ANN and PINN.

Both the ANN and PINN were trained on cloud depth and cloud droplet concentration
truth data. The truth data were normalized by a factor of two to accelerate the ANN training
process. For the future prediction, the truth dataset used for training was taken every
4.8 min between T and Tmax/2 (Tmax = 600 min) for a total of 58 datapoints. The models
then predicted cloud depth and cloud droplet concentration from Tmax/2 to Tmax. The
PINN was simultaneously trained to minimize the physics loss measured on the physics
domain, which was every 10 min for the entire time range, from T to Tmax, for a total of
58 datapoints for the prediction.

For the past reconstruction, the truth dataset used for training was taken every 5 min
between Tmax − 300 and Tmax (Tmax = 750 min), for a total of 61 datapoints. The models
then reconstructed the cloud depth and cloud droplet concentration from Tmax − 600 to
Tmax − 300. The PINN was simultaneously trained to minimize the physics loss measured
in the physics domain, which was every 10 min for the entire time range, from Tmax − 600
to Tmax, for a total of 61 datapoints for the reconstruction. Here, the time interval of the
training datasets is comparable to the prediction/reconstruction time intervals (~300 min),
and thus their ratio is close to 1:1.

2.6. Evaluation of Predictions and Reconstructions

MSE is widely used in other PINN studies, e.g., [35,36,41]. To be consistent with
these previous studies and to allow for comparisons, we employed MSE (rather than
other indices) in this study as the performance/loss index as well as the definition of the
physics loss.
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The predictions and reconstructions of the ANN and the PINN were evaluated with
MSE loss for predicted/reconstructed cloud depth and cloud droplet concentration via the
following equations:

MSEH
testdata =

1
ntestdata

ntestdata

∑
i=1

(H(ti)− Ĥ(ti))
2 (17)

MSEN
testdata =

1
ntestdata

ntestdata

∑
i=1

(N(ti)− N̂(ti))
2 (18)

where H(t i) is the cloud depth predicted by the ANN/PINN at time ti, Ĥ(t i
)

is the
true cloud depth at time ti, N(t i) is the cloud droplet concentration predicted by the
ANN/PINN at time ti, N̂(t i

)
is the true cloud droplet concentration at time ti. Here,

ntestdata is the number of test data points over the prediction/reconstruction time domain
taken every 10 min, which is 31 points for the future prediction and past reconstruction.

The PINN’s physics loss for the predicted/reconstructed cloud depth and cloud
droplet concentration were also calculated, respectively, using Equations (11)–(16), but
only for the physics domain over the prediction/reconstruction time periods, which in-
cludes 30 physics domain points for future predictions and 31 physics domain points for
past reconstructions.

3. Results
3.1. Experiments without External Forcing
3.1.1. Predicting the Future

For the experiment without external forcing, both the cloud depth and cloud droplet
concentration exhibited weakly dampened oscillations. Both the ANN and PINN were
able to fit to the training data. However, the ANN was unable to successfully learn the
Koren–Feingold model to make predictions of the future, given the training data. It predicts
that the cloud depth and cloud droplet concentration would quickly reach a steady state
instead of continuing to oscillate beyond the time domain of the training data (Figure 2a,b).
In contrast, the PINN was able to very accurately predict the future of the aerosol–cloud–
precipitation system, even in the time domain without the training data (Figure 2c,d).
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The dampened oscillations of cloud depth, cloud droplet concentration, and pre-
cipitation in the truth and PINN predictions can be visualized through parametric plots
(Figure 3b,c,e,f). Similar to Figure 2a,b, Figure 3a,d shows that the ANN predicts nearly
constant values for the cloud depth, cloud droplet concentration, and precipitation after a
certain time, so the parametric plots of future predictions (Figure 3a,d) do not evolve much
over time. Thus, the ANN does not learn the damped oscillation aspect of the aerosol–
cloud–precipitation system. Conversely, the PINN predictions (Figure 3b,e) are visually
very close to the plots generated with the truth (Figure 3c,f): over time, both plots show
that cloud depth and cloud droplet concentration continue to oscillate with decreasing
amplitudes. Because our main purpose is to predict and/or reconstruct the time evolution
of the Koren–Feingold model’s solutions in a small data regime, we chose to visualize our
results through these time series and parametric plots.
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3.1.2. Reconstructing the Past

The time delay in the differential equations of the Koren–Feingold model makes the
past reconstruction of cloud depth and cloud droplet concentration nontrivial. Similar to the
experiment for future prediction without external forcing, the ANN is only able to fit to the
training data and cannot reconstruct the past oscillations of cloud depth and cloud droplet
concentration of the aerosol–cloud–precipitation system (Figures 4a,b and 5a,d). However,
even though the time delay makes the reconstruction of cloud depth and cloud droplet
concentration challenging, the PINN is able to perform well in both future prediction and
past reconstruction (Figures 2c,d and 4c,d). It is able to reconstruct cloud depth and cloud
droplet concentration for a past time domain equal in length to the time domain of the
training data (Figure 4c,d).
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In the parametric plots of the truth (Figure 5c,f), it is also evident that the oscillations
of cloud depth and cloud droplet concentration decay in amplitude over time, so that
the past has a larger amplitude than that of the training data given to the models. The
reconstructions of the PINN also display the strengthened oscillations of the cloud depth
and cloud droplet concentration in the reconstructed past, compared to the training data,
and accurately reconstruct the aerosol–cloud–precipitation system’s past (Figure 5b,e).
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We note that the main reason why it is possible to accurately reconstruct the past based
on the Koren–Feingold model is that its equations do not have any diffusive/dissipative
terms, and thus both the forward and the back-in-time models are well posed. In the
presence of diffusion, however, reconstructing the past is notoriously ill-posed and only
approximate (non-unique) solutions are possible [56–60]. Perhaps in a more general model
than that of the Koren–Feingold, diffusive/dissipative processes may need to be accounted
for; if so, recovering the past would not be as accurate and as easy as we demonstrate it to
be for the Koren–Feingold model.

3.2. External Forcing Representing Increase in Aerosol Due to Wildfire
3.2.1. Predicting the Future

Compared to those without external forcing, adding external forcing to represent the
sudden increase in aerosols due to wildfires (Equation (4)) results in significantly decayed
oscillations for both cloud depth and cloud droplet concentration (Figures 2 and 6). Due to
the increase in the background aerosols, cloud droplet concentration eventually increases.
Both cloud depth and cloud droplet concentration fluctuate very little as the oscillations
become limited in amplitude over time (Figures 6 and 7c,f). Similar to the experiments
without external forcing, ANN predictions of cloud depth and cloud droplet concentration
quickly reach a steady state after a certain time (Figures 2a,b, 6a,b and 7a,d). However, the
PINN is able to further minimize its loss, successfully learn the Koren–Feingold model,
and make predictions for cloud depth and cloud droplet concentration that are accurate
to the truth (Figures 6c,d and 7b,e). To learn the Koren–Feingold conceptual model with
external forcing, such as an increase in environmental aerosols, the addition of physics loss
to the total loss in the training process is crucial.
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aerosol external forcing: (a) ANN predictions for cloud depth; (b) ANN predictions for cloud
droplet concentration; (c) PINN predictions for cloud depth; and (d) PINN predictions for cloud
droplet concentration.
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Figure 7. Rain rate vs. cloud depth vs. cloud droplet concentration (3D) and cloud droplet concentra-
tion vs. cloud depth (2D) parametric plots for ANN, PINN, and truth for training domain (blue) and
future prediction (red) with simulated wildfire-induced aerosols: (a) ANN 3D plot, (b) PINN 3D plot;
(c) truth 3D plot; (d) ANN 2D plot; (e) PINN 2D plot; and (f) truth 2D plot.

The introduction of external forcing representing the increase in wildfire-induced
aerosols reduces precipitation compared to that produced by the unmodified Koren–
Feingold model, as shown in the truth (Figures 5c and 7c). The reduction in precipitation
is consistent with the increase in cloud droplet concentration (Equation (3)). The PINN’s
ability to replicate the impact of wildfire aerosols on precipitation (Figure 7b) proves that it
is a viable way to study simple models of an aerosol–cloud–precipitation system.

3.2.2. Reconstructing the Past

In addition to the time delay, the large difference in amplitude of the oscillations of
cloud depth and cloud droplet concentration between the training time domain and the
reconstructed time domain makes past reconstruction difficult (Figure 8). The data we
used to train the models contain oscillations that are significantly weaker than the truth
over the reconstruction time domain (Figure 9c,f), making reconstruction using the ANN
(Figures 8a,b and 9a,d) a challenging task without the addition of physics.

In this experiment, the PINN demonstrates its ability to accurately reconstruct a more
complicated past while only training on limited data that were significantly dampened by
the influx of wildfire aerosols (Figures 8c,d and 9b,e).

Again, as we noted earlier, the main reason why it is possible to accurately recon-
struct the past based on the Koren–Feingold model is that its equations do not have any
diffusive/dissipative terms, and thus both the forward and the back-in-time models are
well posed.
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3.3. External Forcing Representing the Diurnal Cycle in Cloud Depth

For the experiment with external forcing representing the diurnal cycle in cloud
depth, Nmax is increased from 180 cm−3 to 250 cm−3 to prevent cloud depth and cloud
droplet concentration from becoming unstable when the background cloud depth Hmax
becomes larger, as discussed by Koren and Feingold [1]. Since increasing background
aerosol concentration serves to dampen the oscillations of cloud depth and cloud droplet
concentration, the system rapidly reaches a steady state without adding the diurnal cycle
of cloud depth. However, with the diurnal cycle of cloud depth (Equation (6)), the initial
increase in the background cloud depth Hmax excites dampened oscillations in the aerosol–
cloud–precipitation system at a shorter period than the diurnal cycle (Figure 10). Over a
much longer time, however, the damped oscillations of the unmodified Koren–Feingold
system decay. Thus, with the external forcing, the aerosol–cloud–precipitation system
eventually becomes dominated by the oscillations of the diurnal cycle, and the system
oscillates at a diurnal period.
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3.3.1. Predicting the Future

The initial oscillations of cloud depth and cloud droplet concentration are much less
uniform due to the diurnal cycle of clouds (Figure 11c,f). The PINN is able to accurately
predict future cloud depth and cloud droplet concentration beyond the time domain of
the training data (Figures 10c,d and 11b,e), while the ANN is only able to learn the Koren–
Feingold model during the time domain of the training data (Figures 10a,b and 11a,d).

3.3.2. Reconstructing the Past

The past reconstructions of the ANN for cloud depth and cloud droplet concentration
quickly reach a steady state (Figures 12a,b and 13a,d). The PINN successfully recon-
structs the past of an aerosol–cloud–precipitation system, including the diurnal cycle of
clouds (Figures 12c,d and 13b,e) with similar accuracy to future predictions for this system
(Figures 10c,d and 11b,e). Compared to the experiments for external forcing that increased
the background aerosol concentration (Figure 9c,f), the difference between the amplitudes
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of oscillations of the training time domain and the reconstruction time domain for a system
that includes the diurnal cycle of clouds is less dramatic (Figure 13c,f).
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droplet concentration.
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Again, it is possible to accurately reconstruct the past based on the Koren–Feingold
model because its equations do not have any diffusive/dissipative terms, and thus both
the forward and the back-in-time models are well posed.

3.4. Mean Squared Error Loss and Physics Mean Squared Error Loss for All Predictions
and Reconstructions

Table 1 lists the mean squared error (MSE) loss for ANN and PINN for the prediction
and reconstruction time domains, respectively, with the truth serving as the ‘test’ set (see
Methods Section 2.6). The mean squared error losses of the predictions and reconstructions
of the ANN are much larger than those of the predictions and reconstructions of the PINN
(Table 1), highlighting the great improvement that the addition of physics makes to the
accuracy of prediction and reconstruction of the aerosol–cloud–precipitation system and
the learning of the Koren–Feingold model.

Table 1. Mean squared error (MSE) of ANN and PINN over the prediction/reconstruction time
domain for cloud depth and cloud droplet concentration for all experiments.

Experiment Name
Artificial Neural Network Physics-Informed Neural Network

MSE for Cloud Depth (m2) MSE for Cloud Droplet
Concentration (cm−6) MSE for Cloud Depth (m2) MSE for Cloud Droplet

Concentration (cm−6)

Prediction 4904.94 2674.28 0.18 0.025

Reconstruction 4269.27 1434.39 19.35 2.92

Prediction with wildfire 151.49 219.40 0.00062 0.0014

Reconstruction with wildfire 2106.81 719.56 1.22 0.58

Prediction with the
diurnal cycle 2176.28 1520.33 0.075 0.026

Reconstruction with the
diurnal cycle 2631.32 1235.47 0.57 0.18
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Table 2 lists the PINN’s physics mean squared error loss for the prediction and recon-
struction time domains, respectively (see Methods Section 2.6). The physics mean squared
error losses for both future prediction and past reconstruction are very small (Table 2),
justifying the use of the regularization factor λ = 104 in the training process. The very
small physics MSE losses are consistent with the fact that the PINN is able to accurately pre-
dict the future and reconstruct the past of the aerosol–cloud–precipitation system, despite
challenges such as the time delay in the differential equations and the decay of oscillations
of cloud depth and cloud droplet concentration.

Table 2. Physics mean squared error (MSE) loss of PINN over the prediction/reconstruction time
period (on the predicted and reconstructed physics time domain) for cloud depth and cloud droplet
concentration for all experiments.

Experiment Name MSEH
physics for Cloud Depth (m2/min2)

MSEN
physics for Cloud Droplet

Concentration (cm−6/min2)

Prediction 0.049× 10−4 0.074× 10−4

Reconstruction 0.22× 10−4 0.37× 10−4

Prediction with wildfire 0.016× 10−4 0.019× 10−4

Reconstruction with wildfire 0.0090× 10−4 0.016× 10−4

Prediction with the diurnal cycle 0.27× 10−4 0.16× 10−4

Reconstruction with the diurnal cycle 0.075× 10−4 0.064× 10−4

3.5. Sensitivity of PINN to the Regularization Factor of Physics Loss

The sensitivity of the PINN to the regularization factor λ of physics loss was tested
for different values of λ. Figure 14 shows that, for the past reconstruction without external
forcing, values of λ that are too small or too large prevent the PINN from accurately
reconstructing the past. If λ is too small (λ = 1× 102), the data loss dominates and the
PINN does not fit well to the physical equations (Figure 14a,f). If λ is too large (λ = 1× 106),
the physics loss dominates and the PINN does not fit well to the training data (Figure 14e,j).
For the intermediate values of λ = 1× 103, λ = 1× 104, and λ = 1× 105, the PINN’s
accuracy is not very sensitive to the value of λ, and there is very little difference between
the past reconstructions (Figure 14b–d,g–i). Thus, the choice of λ = 1× 104 that we use
in this paper is reasonable. These results demonstrate that it is important for the PINN
to include both data and physics. Without one or the other, the PINN does not perform
as well.

3.6. Sensitivity of ANN and PINN to Random Noise Added to the Training Data

To test how the ANNs and PINNs perform when trained on data biased by mea-
surement errors, we added random Gaussian noise to the training data. Two additional
experiments were conducted with noisy training data for future prediction and past recon-
struction without external forcing. Random Gaussian noises with standard deviations of
8 m for cloud depth and 4 cm−3 for cloud droplet concentration were, respectively, added
to the training data. The standard deviations of these noises were about 11% (for cloud
depth) and 13% (for cloud droplet concentration) of the standard deviations of the original,
noiseless training data for the future prediction, and about 14% (for cloud depth) and
16% (for cloud droplet concentration) of the standard deviations of the original, noiseless
training data for the past reconstruction. For these experiments, the ANN was trained
simultaneously with both a training dataset and a validation dataset to avoid overfitting
to the noise in the training data. The validation dataset was separately created by adding
random Gaussian noise with the same standard deviations as listed above to the same
original, noiseless training data.
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In both experiments with noisy training data, the PINN still outperformed the ANN in
the future prediction and the past reconstruction of aerosol–cloud–precipitation interactions,
and it was able to learn the Koren–Feingold conceptual model despite the noise included
in the training data (Figures 15 and 16). On the other hand, the ANN was still unable to
extrapolate over the prediction/reconstruction domains (Figures 15 and 16).
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Figure 16. Models’ past reconstructions compared to truth for each output without external forcing
with random Gaussian noise added to the training data: (a) ANN reconstructions for cloud depth;
(b) ANN reconstructions for cloud droplet concentration; (c) PINN reconstructions for cloud depth;
and (d) PINN reconstructions for cloud droplet concentration.

4. Discussion

With the addition of external forcing in the form of wildfire-induced aerosols to the
maximum cloud droplet concentration as a function of time, the predictions and reconstruc-
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tions of the physics-informed neural network (PINN) show that rainfall is suppressed as
aerosol increases. This creates a positive feedback loop, as minimal precipitation creates a
drier environment conducive to wildfires. As wildfires continue to release smoke aerosols
into the atmosphere, precipitation that could help stop the wildfire and its release of smoke
aerosols into the atmosphere is further suppressed. Thus, an increase in wildfire-induced
aerosols is likely to result in further wildfires [61]. We find that adding a sudden increase
in wildfire-induced aerosols, and thereby increasing the background cloud droplet concen-
tration, heavily dampens the normal oscillatory behavior of the system that occurs without
any external forcing. We also find that the initial increase in the background cloud depth
can excite damped oscillation in the aerosol–cloud–precipitation system at a shorter period
than that of the diurnal cycle.

The PINN successfully predicts and reconstructs the aerosol–cloud–precipitation
interactions of the original Koren–Feingold model. PINNs are also able to predict and
reconstruct aerosol–cloud–precipitation interactions with the effects of external forcing
such as wildfires or the diurnal cycle of clouds on the aerosol–cloud–precipitation system.
As shown in Section 3.5, the accuracy of the PINN is not sensitive to the value of the
regularization factor (λ), a key parameter for the PINN that controls the weight for the
physics loss relative to the data loss, for a broad range (from λ = 1× 103 to λ = 1× 105).
Thus, our choice of λ = 1× 104 used in this paper is reasonable.

Our study shows that PINNs significantly outperform ANNs in both future predictions
and past reconstructions. The main reason for ANN’s poor performance with small (narrow)
training datasets is the fact that, as opposed to PINNs, they are not informed by the laws of
physics. As discussed in the Introduction section, many pure data-driven machine learning
techniques have been successful in predictions because of the large ratio between the total
time interval of the training data and the prediction time interval, often on the order of more
than 100:1 [27,31,33]. On the other hand, our study focuses on a small data regime with
limited training data, where the ratio between the total time interval of the training data
and the prediction/reconstruction time interval is close to 1:1. ANN’s poor performance is
also related to its inability to extrapolate outside of the given training data.

We conducted an additional future prediction simulation using the ANN by expanding
the training data from an original time interval of 276 min to 561 min and reducing the
prediction time interval from 300 min to 15 min. Thus, the ratio between the total time
interval of the training data and the prediction time interval increases from about 0.9:1 to
about 37:1. In this new simulation, the ANN performs well in both the expanded training
data interpolation domain and the reduced prediction extrapolation domain. For the new
prediction domain, the MSE loss (evaluated every minute) is 20.45 for cloud depth (m2)
and 11.38 for cloud droplet concentration (cm−6), respectively, much smaller than that
for the original prediction domain (evaluated every 10 min) using the ANN: 4904.94 for
cloud depth (m2) and 2674.28 for cloud droplet concentration (cm−6), respectively. We
also conducted an additional past reconstruction simulation using the ANN by expanding
the training data from an original time interval of 300 min to 585 min and reducing the
reconstruction time interval from 300 min to 15 min. Thus, the ratio between the total
time interval of the training data and the reconstruction time interval increased from
about 1:1 to about 39:1. In this new simulation, the ANN performed well in both the
expanded training data interpolation domain and the reduced reconstruction extrapolation
domain. For the new reconstruction domain, the MSE loss (evaluated every minute) was
0.031 for cloud depth (m2) and 7.76 for cloud droplet concentration (cm−6), respectively,
much smaller than that for the original reconstruction domain (evaluated every 10 min)
using the ANN: 4296.29 for cloud depth (m2) and 1434.39 for cloud droplet concentration
(cm−6), respectively. These new simulations support our explanation that the ANN’s poor
performance is partially due to the small ratio between the total time interval of the training
data and the prediction/reconstruction time interval; ANNs thus act as smart interpolators
within the range of the training dataset, but they cannot extrapolate far outside this range,
a typical characteristic of interpolation functions. It is unsurprising that the ANN performs
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well in both the expanded training data interpolation domain and the reduced prediction
extrapolation domain that is close to the interpolation domain.

Our PINNs, on the other hand, being trained on the same small dataset, are addi-
tionally informed by the physics of the Koren–Feingold model. Thus, it is not surprising
that they do well in the predictive mode. Since, as we point out in the paper, the Koren–
Feingold model has no diffusive terms, it is also not surprising that the PINNs do well
in the reconstructive modes. Another reason why the ANNs failed in future predictions
and past reconstructions was the small size of our training dataset. Indeed, previous
studies find the performance of ANNs to be excellent with large training datasets, but
its quality deteriorates with the decreasing size of the training datasets [35]. Finally, the
time-varying external forcings over the prediction and reconstruction time domains cannot
be successfully learned by ANNs over the small time interval of the training time domain.
The PINN is able to incorporate the knowledge of the time-varying external forcings. Thus,
it has an important advantage over ANNs when predicting and reconstructing aerosol–
cloud–precipitation interactions from the Koren–Feingold model with added time-varying
external forcings.

As already mentioned, the main reason why it is possible to accurately reconstruct
the past based on the Koren–Feingold model is that its equations do not have any diffu-
sive/dissipative terms, and thus both the forward and the back-in-time models are well
posed. In the presence of diffusion, however, reconstructing the past is notoriously ill-
posed, and only approximate (non-unique) solutions are possible [56–60]. Perhaps in a
more general model than that of the Koren–Feingold, diffusive/dissipative processes may
need to be accounted for; if so, recovering the past would not be as accurate and as easy as
we demonstrate it to be for the Koren–Feingold model.

5. Conclusions

We studied a Koren–Feingold model of an aerosol–cloud–precipitation system with
neural networks, i.e., the physics-informed neural network (PINN), and investigated
the PINN’s ability to learn the Koren–Feingold model. This study is the first to use
PINNs to predict the Koren–Feingold model and reconstruct the past of an aerosol–cloud–
precipitation system in a small data regime. Another novel aspect is the modification
of the differential equations of the Koren–Feingold model to include external forcings,
such as wildfire-induced aerosols or the diurnal cycle of clouds, investigating for the first
time the respective impacts of including externally forced aerosols or the diurnal cycle
of cloud depth on the conceptual Koren–Feingold model. We show for the first time
that PINNs are able to perform well when external forcings are added to the conceptual
Koren–Feingold model.

Our study demonstrates that PINNs greatly improve upon the traditional ANN’s
ability to learn the Koren–Feingold model, predict the future, and reconstruct the past of
the aerosol–cloud–precipitation system. We show that the combination of a simple ANN
and a physical model produces a PINN model that is much more accurate in predictive
and reconstructive modes, even for a small training dataset. The ANN is able to learn
the conceptual Koren–Feingold model during the training time interval but is unable to
accurately predict cloud depth and cloud droplet concentration over the time domain
once outside the training time interval. The PINN successfully predicts the future and
reconstructs the past through learning the original differential equations of the Koren–
Feingold model, significantly outperforming the ANN. The PINN also learns the modified
Koren–Feingold model that separately introduces wildfire-induced aerosols and the diurnal
cloud cycle. The PINN is able to achieve visually similar results to the truth throughout
both the training domain and the prediction/reconstruction domains in this study, proving
that it successfully learned the Koren–Feingold model.

Many previous studies focused on using PINNs to predict the future of dynamic sys-
tems [35,45,46]. The PINN’s ability to reconstruct the past with limited data for a dynamic
system with nonlinear delayed differential equations such as the Koren–Feingold model
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is underexplored. Here, we show that the PINN performs similarly well for past recon-
struction compared to future prediction, despite the time delay feature of the differential
equations of the Koren–Feingold model, which makes the past reconstruction nontrivial.
When the solution of the Koren–Feingold model exhibits heavily dampened oscillations, the
truth data that are used to train the models contain oscillations that are much weaker than
those in the past time domain, making the past reconstruction a challenging task. The addi-
tion of physics loss to the PINN that differentiates it from the ANN is especially beneficial
for the task of reconstructing the past (as long as there are no diffusive/dissipative terms
in the underlying model). We demonstrate that when informed by the Koren–Feingold
model, PINNs with a small training dataset are able not only to predict the future, as some
researchers have already shown, e.g., [35,45,46], but also reconstruct the past, which we
do here for the first time. We recommend that PINNs be used to predict and reconstruct
solutions of delayed differential equations similar to those of the Koren–Feingold model in
a small data regime.

For the majority of experiments conducted in our study, the training dataset was
generated by solving the delayed differential equations of the Koren–Feingold model of
aerosol–cloud–precipitation interactions (using Mathematica’s NDSolve super-function),
rather than from physical observations. Thus, there is no noise present in the training
dataset that would necessitate the use of decomposition methods to capture this noise.
We also included two additional experiments with random noise added to the original,
noiseless training dataset, and show that the PINN still outperforms the ANN in the future
prediction and the past reconstruction of aerosol–cloud–precipitation interactions, despite
the noise included in the training data.

One way to build on the results of this study would be to solve the differential
equations of the Koren–Feingold model over successive time domains and train the PINN
with its predictions of the system [62]. This strategy would improve PINN accuracy when
studying complex systems and equations.
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