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Abstract: There have been reports about anomalies in mobile geomagnetic data before earthquakes;
however, whether it can be used as an indicator for identifying potential earthquake areas was
not be explored. In this study, we propose two parameters for earthquake forecasting based on
annual mobile geomagnetic observation data. The spatial horizontal and three components’ changes
are calculated in each year and then used to forecast moderate–large earthquakes (M ≥ 5.0) in
southwest China in the subsequent period. It is found that earthquakes are more likely to occur in
low H- or F-value regions. We statistically assess their forecasting performance by using Molchan’s
error diagram, and the results indicate that there is considerable precursory information in the
spatial H and F values. It is concluded that mobile geomagnetic observations might be useful in
middle-term earthquake forecasts in the study area. We discuss the physical mechanisms of H and
F values to explain their reasonability. The methodology proposed in this study could be helpful
in finding out the optimal solution for annual mobile geomagnetic measurements for middle-term
earthquake forecasting.

Keywords: mobile geomagnetic observation; earthquake forecasting performance; Molchan’s error
diagram; southwest China

1. Introduction

The eastern edge of the Qinghai-Tibet Plateau is one of the most seismically active
regions on the Chinese mainland. According to the recorded earthquake catalog, in the
past decades, it has experienced several strong earthquakes, including the M8.0 Wen-
chuan earthquake in 2008, the M7.0 Lushan earthquake in 2013, and the M7.0 Jiuzhaigou
earthquake in 2017. The analysis of potential earthquake hazard zones is typically based on
seismic activity [1–7]. However, for earthquake forecasting, especially middle- and short-
term forecasting, only using earthquake catalog information is still far from enough, so
scientists will often use other physical parameters, such as deformation, etc. [8–13]. In recent
years, the geomagnetic field changes related to earthquakes, named seismo-geomagnetic
phenomena, have been extensively studied [14–18]. Geomagnetic observations can be used
as an auxiliary method for monitoring earthquake hazard zones, because they can reflect
subsurface structures and abnormal activity [19–22].

Field studies show that various seismo-geomagnetic signals can be generated at
the different stages of earthquake formation and occurrence [18,23–25]. These include
the mid- and long-term resistivity changes before the earthquake [26–28], mid- and
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short-term ultra-low-frequency (ULF) [14,29–33] and very low frequency (VLF) geo-
magnetic field changes [34–37], and changes in the total electron content (TEC) over
a short period of hours/minutes [38–41]. Annual mobile geomagnetic observation is
one of the observed methods for the geomagnetic field, which carries out periodic
and repeated mobile observations on many geomagnetic observation sites in a specific
area. The variation in a local magnetic field in the lithosphere can be obtained via
mobile geomagnetic observation, which may contain the disturbance information of
the underground stress field [42]. However, whether it can be used as an indicator for
identifying forthcoming earthquake areas is debatable, and the forecasting performance
has not been statistically tested yet. Therefore, this paper will utilize annual mobile geo-
magnetic observation data to assess earthquake forecasting performance in southwest
China. The study area covers Yunnan Province, most of Sichuan Province, and part of
southern Gansu Province.

2. Materials and Methods
2.1. Mobile Geomagnetic Data

The period of geomagnetic data in this paper is from 2010 to 2015. Mobile geomag-
netic observations were conducted in the study area from March to June each year. The
number of observation sites was 216 in 2010, 221 in 2011, and 235 from 2012 to 2015. The
average distance between two adjacent observation sites was about 70 km, and the mag-
netic field environment around a single measuring site must be less than 5 nT/m within
a radius of 5 m from the measuring site. The absolute values of total intensity, magnetic
declination, and magnetic inclination were independently measured at each observation
site. The total intensity of the geomagnetic field was measured using a proton precession
magnetometer (GSM-19T) [43,44] with an absolute accuracy of ±0.2 nT and a resolution
of 0.01 nT. A magnetometer (CTM-DI) [45] with an accuracy of 0.20 and a resolution of
0.10 was used to measure the magnetic azimuth and inclination. The GPS instrument was
used to measure the geographical azimuth of the measuring site, as well as the longitude,
latitude, and elevation. The magnetic declination is calculated through the observation of
magnetic azimuth and geographical azimuth. The other three components used, namely,
the east component (Y), north component (X), and vertical component (Z), can be calculated
through the above parameters.

2.2. Data Preprocessing Methods

The lithospheric magnetic field is obtained after eliminating the diurnal variation from
the external field, the main magnetic field, and its long-term variation. Then, the annual
variation in the lithospheric magnetic field is obtained by the difference of the adjacent
two years’ lithospheric magnetic field data. Thus, geomagnetic anomalies associated with
earthquakes are captured during this change. The specific process of calculating the above
data is divided into four steps:

1. First, diurnal correction is performed. This step is to eliminate the external field
effect such as the diurnal variations. The single reference method is adopted, that is,
the daily variation in observation data is corrected by the continuous observation
of the geomagnetic station nearest to the measuring site. The diurnal variation
correction day is selected as the relatively calm day in terms of the magnetic
situation change during the month, and the time is from 0:00 to 3:00 (Beijing time).
Five geomagnetic stations are selected within the study area: Lanzhou, Tianshui,
Chengdu, Xichang, and Tonghai station. After performing the diurnal variation
correction, the mean square error of the total intensity is less than 1.5 nT, and
the mean square error of declination and inclination are less than 0.5 nT for all
observation stations.

2. Second, long-term variation correction is carried out. This step is to eliminate secular
variations from the main magnetic field in mobile geomagnetic observation data.
Based on the 6-order NOC nonlinear model of secular variations for the geomagnetic
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basic field [46–49] in China from 1995 to 2020, we obtain the secular variations for
each observation in every year and correct their variation values.

3. Third, we eliminate the main magnetic field. This step is to eliminate the main mag-
netic field in the secular variation data using IGRF-12 as the main magnetic field
reference model, which was published by the International Association of Geomag-
netism and Aeronomy (IAGA) [50]. We calculate the differences between all secular
correction data and IGRF-12 to obtain the lithospheric magnetic field data for each
year from 2010 to 2015.

4. Finally, we calculate annual changes in the lithospheric magnetic field. This step is
to obtain the annual changes in the lithospheric magnetic field by computing the
differences in lithospheric magnetic field data in the adjacent two years.

2.3. H Value and F Value Calculation

Previous studies found anomalous characteristics before earthquakes in X, Y, and Z
components [51–53]. Therefore, the analysis data in this article adopt the horizontal or
three-component changes in the lithospheric magnetic field. We divide the study area into
0.1◦ grid for analysis. We calculate the mean magnitude of resultant vector for horizontal
or three-component changes for stations, and we abbreviate them to H value or F value,
respectively. The H value is calculated as follows:

H =
|
−→
δH1 +

−→
δH2 + · · ·+

−→
δHm |

m
(1)

where m is the number of stations in a certain radius around a grid point,
−→
δHm is the

horizontal component (X and Y) change for the m’th station, and |
−→
δH1 +

−→
δH2 + · · ·+

−→
δHm |

is the magnitude of resultant vector of horizontal component change for these m stations.
In addition, we define F value as follows:

F =
|
−→
δF1 +

−→
δF2 + · · ·+

−→
δFm |

m
(2)

where m is the number of stations in a certain radius around a grid point,
−→
δFm is the three-

component (X, Y and Z) change for the m’th station, and |
−→
δF1 +

−→
δF2 + · · ·+

−→
δFm | is the

magnitude of resultant vector of three-component change for these stations. An additional
description for abbreviations and symbols is designed in Appendix A. The study area and
the mobile magnetic observation sites (in 2011 and 2012 as example) are shown below in
Figure 1. In practice, it takes time to preprocess and analyze the data after data collection in
June, so we assess the earthquake forecasting performance in the subsequent period from
August of the current year to July of the next year.
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2014–June 2015 are shown in Figures 2–6, respectively. The moderate–large earthquakes 
in the subsequent period are also plotted for analyses. The earthquakes are the M ≥ 5.0 
catalog during August 2011–July 2012, August 2012–July 2013, August 2013–July 2014, Au-
gust 2014–July 2015, and August 2015–July 2016, respectively. We calculate H and F values 
in those grid points where the number of stations (Num) ≥ 3 within a 100 km radius, so 
there are no values in some grid points for the sparsely measured area. It should be noted 
that we can only analyze earthquakes with H and F values at the grid points, so earth-
quakes without H or F values at the grid point are not listed (four earthquakes totally in 
five years). The detailed earthquake information for analyses in this paper is listed in Ta-
bles 1–5. 

Figure 1. The spatial distribution of mobile geomagnetic observations in the study area of 2011 and
2012. The black lines are the provincial boundaries. The gray lines indicate main faults. The purple
stars show locations of earthquake events with M ≥ 5.0 during August 2012–July 2013. The size of
the symbol is scaled to the magnitude.

3. Results
3.1. Spatial H Value and F Value in Each Year

The H value and F value calculation is applied to the earthquake catalog with M ≥ 5.0
in each year in the study area. The results of the spatial H values and F values during June
2010–June 2011, June 2011–June 2012, June 2012–June 2013, June 2013–June 2014, and June
2014–June 2015 are shown in Figures 2–6, respectively. The moderate–large earthquakes
in the subsequent period are also plotted for analyses. The earthquakes are the M ≥ 5.0
catalog during August 2011–July 2012, August 2012–July 2013, August 2013–July 2014,
August 2014–July 2015, and August 2015–July 2016, respectively. We calculate H and F
values in those grid points where the number of stations (Num)≥ 3 within a 100 km radius,
so there are no values in some grid points for the sparsely measured area. It should be
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noted that we can only analyze earthquakes with H and F values at the grid points, so
earthquakes without H or F values at the grid point are not listed (four earthquakes totally
in five years). The detailed earthquake information for analyses in this paper is listed in
Tables 1–5.
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Figure 2. (a) Spatial distribution of H values in June 2010–June 2011. (b) Spatial distribution of F
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2011–July 2012. The size of the symbol is scaled to the magnitude.

Table 1. List of earthquakes in Figure 2.

Time Longitude (◦N) Latitude (◦E) Magnitude

9 August 2011 98.7 25.0 5.2
1 November 2011 105.4 32.5 5.4

24 June 2012 100.7 27.7 5.7
The time of earthquake catalog is Beijing time.

Figure 2a,b show the spatial H value and F value during June 2010–June 2011. The
lowest values of H and F are located on the border of southern Sichuan and Yunnan
Province. The number of M≥ 5.0 earthquake events that can be analyzed in the subsequent
period is three. Among them, the largest M5.7 earthquake occurred in the areas with low H
and F values.
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Table 2. List of earthquakes in Figure 3.

Time Longitude (◦N) Latitude (◦E) Magnitude

7 September 2012 104.0 27.5 5.7
7 September 2012 104.1 27.5 5.6

3 March 2013 99.8 25.9 5.5
17 April 2013 99.8 25.9 5.0
20 April 2013 103.0 30.3 7.0
20 April 2013 102.9 30.3 5.1
20 April 2013 102.9 30.2 5.3
21 April 2013 103.1 30.3 5.0
21 April 2013 103.0 30.3 5.4
22 July 2013 104.2 34.5 6.6
22 July 2013 104.2 34.6 5.6

The time of earthquake catalog is Beijing time.

Figure 3a,b show the spatial H value and F value during June 2011–June 2012. The
distribution of H and F values is somewhat different, especially in the eastern Yunnan
Province. The number of M≥ 5.0 earthquake events that can be analyzed in the subsequent
period is 11. These earthquakes occurred at or near the areas with low F values, including
the M7.0 Lushan earthquake.



Atmosphere 2023, 14, 1750 7 of 16Atmosphere 2023, 14, x FOR PEER REVIEW 7 of 16 
 

 

  
(a) (b) 

Figure 4. (a) Spatial distribution of H values in June 2012–June 2013. (b) Spatial distribution of F 
values in June 2012–June 2013. The purple stars show locations of events with M ≥ 5.0 during August 
2013–July 2014. 

Table 3. List of earthquakes in Figure 4. 

Time Longitude (°N) Latitude (°E) Magnitude 
28 August 2013 99.3 28.2 5.1 
31 August 2013 99.4 28.2 5.9 

5 April 2014 103.6 28.1 5.3 
The time of earthquake catalog is Beijing time. There are three M ≥ 5.0 earthquake events that are 
located on boundaries where the H and F value cannot be calculated, including M5.6 (97.8° N, 25° 
E) on 24 May 2014, M6.1 (97.8° N, 25° E), and M5.1 (97.8° N, 25° E) on 30 May 2014. 

Figure 4a,b show the spatial H value and F value during June 2012–June 2013. The 
lowest values of H and F are located on the border of Sichuan and Yunnan Province. The 
number of M ≥ 5.0 earthquake events that can be analyzed in the subsequent period is 
three. They also mainly occurred near the areas with low H and F values. 

Figure 4. (a) Spatial distribution of H values in June 2012–June 2013. (b) Spatial distribution of F
values in June 2012–June 2013. The purple stars show locations of events with M≥ 5.0 during August
2013–July 2014.

Table 3. List of earthquakes in Figure 4.

Time Longitude (◦N) Latitude (◦E) Magnitude

28 August 2013 99.3 28.2 5.1
31 August 2013 99.4 28.2 5.9

5 April 2014 103.6 28.1 5.3
The time of earthquake catalog is Beijing time. There are three M ≥ 5.0 earthquake events that are located on
boundaries where the H and F value cannot be calculated, including M5.6 (97.8◦ N, 25◦ E) on 24 May 2014, M6.1
(97.8◦ N, 25◦ E), and M5.1 (97.8◦ N, 25◦ E) on 30 May 2014.

Figure 4a,b show the spatial H value and F value during June 2012–June 2013. The
lowest values of H and F are located on the border of Sichuan and Yunnan Province. The
number of M ≥ 5.0 earthquake events that can be analyzed in the subsequent period is
three. They also mainly occurred near the areas with low H and F values.
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Figure 5. (a) Spatial distribution of H values in June 2013–June 2014. (b) Spatial distribution of F
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2014–July 2015.

Table 4. List of earthquakes in Figure 5.

Time Longitude (◦N) Latitude (◦E) Magnitude

3 August 2014 103.3 27.1 6.5
1 October 2014 102.8 28.4 5.0
7 October 2014 100.5 23.4 6.6

22 November 2014 101.7 30.3 6.3
25 November 2014 101.7 30.2 5.8
6 December 2014 100.5 23.3 5.8
6 December 2014 100.5 23.3 5.9
14 January 2015 103.2 29.3 5.0

The time of earthquake catalog is Beijing time.

Figure 5a,b show the spatial H value and F value during June 2010–June 2011, respec-
tively. The area with a low H value is more widely distributed than that with a low F
value. The M ≥ 5.0 earthquake events in the subsequent period are mainly concentrated
in south–central Sichuan and Yunnan Province. They also mainly occurred in or near the
areas with low H and F values.
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Table 5. List of earthquakes in Figure 6.

Time Longitude (◦N) Latitude (◦E) Magnitude

30 October 2015 99.5 25.1 5.1
18 May 2016 99.5 26.1 5.0

The time of earthquake catalog is Beijing time. There is one M ≥ 5.0 earthquake event (M5.0 (103.5◦ N, 28.1◦ E) on
17 August 2014) that is located on boundaries where the H and F value cannot be calculated.

Figure 6a,b show the spatial H value and F value during June 2014–June 2015. The
lowest values of H and F are located in central Sichuan Province and the west border of
Sichuan and Yunnan Province. In the subsequent period, two M ≥ 5.0 earthquake events
occurred in the northwest Yunnan Province.

3.2. Forecasting Performance during 2010–2015

Based on the results in Section 3.1, it can be found that the spatial H and F value
changes in different time periods and moderate–large earthquakes are more likely to occur
in areas with low H and F values. In order to quantify the precursory information in terms
of the spatial H and F value, Molchan’s error diagram (MED) [30,54–56] is employed to
test the forecasting performance. MED is designed for showing relationships between
the rate of space tagged as predicting earthquake τ and the detection rate ν in a graph
to estimate the ability of earthquake forecasting. Taking the H value in Figure 2a as an
example, firstly, we choose a threshold of the H value (Hthr), and then, we alarm the grids
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with an H value < Hthr in the study area. If an earthquake in the subsequent period (i.e.,
August 2011–July 2012) occurs in the grid with an alarm set, it is counted as a predicted
event. We define N = the number of total grids with H values, N1 = the number of grids
with an alarm set, and the alarm rate can be given as τ = N1/N. We define n = the number
of total events, n1 = the number of predicted events, and the earthquake detection rate can
be given as ν = n1/n. With the Hthr increasing from the minimum to maximum value in
Figure 2a, the alarm rate changes. A diagonal line in the diagram indicates the prediction
by the random guess (a Poisson model). Any prediction above this line indicates that
the proportion of predicted earthquakes is greater than that of randomly guessed days,
implying that the prediction is better than the random guess. Figure 7a,b present the MED
results using the H and F values in Figures 2–6 to predict the earthquakes in each year
during 2011–2016. Each symbol represents one cumulative earthquake. It is evident that
the prediction rates for both H values and F values are mostly above the diagonal line,
suggesting that the forecasting performance is better than a random guess. By contrast, the
forecasting performance of F values is better than that of H values, since there are higher
detection rates for lower alarm rates in general.
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To obtain comprehensive forecasting performance results during the 5 years, we set
up a time–space alarm model [57] to assess it. In the model, the number of time–space
cells is the total grids for each year. Since the H and F values vary from year to year, firstly,
we normalize the values to 0–1 in each year. Then, we choose an alarm rate from 0 to 1,
and then we alarm the cells with a normalized value < alarm rate during the 5 years. If
an earthquake in the subsequent period occurs in the cell with an alarm set, it is counted
as a predicted event. In the same manner as in Figure 7, we can compute the earthquake
detection rate. Figure 8 shows the comprehensive forecasting performances of H and F
values during August 2011–July 2016. The number of earthquake events with M ≥ 5.0 is 27.
The prediction curves of both H value and F value are above the random prediction line in
Figure 8a,b. By contrast, the comprehensive forecasting performance of F values is better
than that of H values, since the prediction based on H values is near the random prediction,
while the prediction based on F value is clearly above the random prediction, and it exceeds
the 95% confidence threshold. There are higher detection rates for lower alarm rates based
on F values, and a detection rate of almost 1 can be achieved when the alarm rate is less
than 0.5. Therefore, it may be better to use the total intensity of the geomagnetic field
analysis, which includes the vertical component.
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4. Discussion
4.1. The Advantage of Using Mobile Geomagnetic Data When Assessing Earthquake Forecasting

The seismicity method has usually been used for inferring seismic hazards in the
past [3–5]. They are usually analyzed on medium- to long-term timescales, like 5 to 10 years.
Seismicity can be helpful, especially for earthquakes with foreshocks [58,59]. However, for
many earthquakes, there are no foreshocks. Therefore, other geophysical observations and
a comprehensive analysis must be carried out. Seismo-electromagnetic phenomena have
been intensively studied during the past several decades. Although there have been reports
about the anomalies of mobile geomagnetic data before earthquakes, whether it can be used
as an indicator for identifying potential earthquake areas has not been explored. Thus, an
assessment is absolutely essential to verify the relation between geomagnetic phenomena
and large earthquakes. This paper assesses earthquake forecasting performance by using
annual mobile geomagnetic observation data for the first time and proves that annual
mobile geomagnetic observation data can indeed provide predictive information. The
advantage of this method is that the preceding time can be shortened to one year, which is
closer to the short-term analysis. In addition, previous studies have also shown the change
in gravity before the M7.0 Lushan earthquake in the same region [60]. Therefore, in order to
improve the forecasting performance, gravity, including horizontal gravity, seismic activity,
and other physical parameters, can contribute to a comprehensive analysis. In the future,
the integration of prediction information at different time scales and for different values is
worth studying [24].

4.2. The Mechanism of H Value and F Value

This paper attempts to explain the reasonability of H value and F value by using the
“dilatancy magnetic effect” proposed by scholars [61]. The “dilatancy magnetic effect” is
inspired by the “micro-crack expansion” theory of seismic wave velocity changes in focal
mechanisms. The researchers found that the local geomagnetic anomalies of earthquakes
had the same duration as the wave velocity anomalies before the earthquake. There were
obvious differences in the magnetic anomalies for different stations and for components’
changes in the same station, reflecting the spatial changes in the magnetic anomalies.
Combined with the study of rock fracture experiments and field electromagnetic sounding
results, the researchers put forward the “dilatational magnetic effect” theory [61], which
can produce the observed geomagnetic anomalies in the north–south seismic belt of China.
The theoretical calculation of the magnetic field spatial distribution generated by the model
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shows the spatial distribution characteristics as an anomalous anisotropy and symmetry
of tectonic stress. As shown in Figure 9, we can see that magnetic anomalies around the
earthquake are distributed in four quadrants as anomalous anisotropy and symmetry,
including horizontal and vertical components. Therefore, it is reasonable that earthquakes
tend to occur at low H and F values, because these two values reflect the magnetic changes
in a certain range around the earthquake. If the geomagnetic stations are located In the
symmetric quadrants around the earthquake center, as shown in Figure 9, the H value and
F value is 0. The theories might explain the physical mechanism and reasonability of these
two parameters.
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4.3. The Influences of Radius and Station Numbers in Parameter Selection

In Section 3, we show the H and F value results calculated for three or more stations
within 100 km for each grid point. Below, we further discuss the difference in results when
using different numbers of stations (Num) and distances from the center. Using the same
radius of 100 km, as the Num increases, the number of grids with H and F values decreases
significantly, so three is selected as the parameter of station number in this paper to avoid
having too few grids. If we use other distances such as a radius of 80 km with Num ≥ 3,
too few grid points of 80 km will also lead to insufficient data for analysis. For a radius
of 150 km with Num ≥ 3, the grid values are sufficient, but due to the larger radius, the
accuracy may not be high enough for the grids. We further discuss the MED results for
Num≥3 stations within 150 km, as shown in Figure 10. The prediction of both H values and
F values are mostly above the diagonal line, suggesting that the forecasting performance is
better than a random guess. However, compared with Figure 7, the prediction marker is
much closer to the diagonal line, especially for F values. Figure 11 shows the forecasting
performances during August 2011–July 2016. The number of earthquake events with
M ≥ 5.0 is 31. The prediction curves of both H value and F value are above the random
prediction in Figure 11a,b. It is proven that H and F values contain predictive information
even if different radii are used. However, compared with Figure 7, a detection rate of
almost 1 can be achieved only when the alarm rate is about 0.8, reflecting that the prediction
efficiency is reduced. Therefore, the parameter selection for radius and station numbers in
Section 3 exhibits a better balance between resolution and grid number in the study area.
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5. Conclusions

In this study, we propose two new parameters for identifying potential earthquake
regions by using mobile geomagnetic observation data. The spatial H and F values are
calculated in each year and then used to forecast moderate–large earthquakes (M ≥ 5.0) in
the subsequent period. It is found that moderate–large earthquakes in southwest China
are more likely to occur in low-H or -F regions. We assess their forecasting performance
by using Molchan’s error diagram, and the results indicate that there is considerable
precursory information in the spatial H and F values. It is concluded that geomagnetic
observation might be useful in middle-term earthquake forecasts in the study area. We
explain the physical mechanisms that H and F values may reflect and discuss the influences
of parameter selection in calculation. The methodology proposed in this study could
help find the optimal solution for mobile geomagnetic measurements for middle-term
earthquake forecasting.
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Appendix A

We design an additional description of abbreviations and/or symbols as follows:
mean magnitude of resultant vector for horizontal component changes (H value); mean
magnitude of resultant vector for three-component changes (F value); ultra-low frequency
(ULF); very low frequency (VLF); total electron content (TEC); east component (Y); north
component (X); vertical component (Z); International Association of Geomagnetism and
Aeronomy (IAGA); number of stations (Num); Molchan’s error diagram (MED); threshold
of H value (Hthr); number of total grids (N); number of grids with alarm set (N1); alarm
rate (τ); number of total events (n); number of predicted events (n1); detection rate (ν);
main pressure stress axis (P axis); main tensile stress axis (T axis).
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