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Abstract: Methane (CH4) is the main pollutant in oil and gas production. The detection and account-
ing of CH4 is an important issue in the process of greenhouse gas control and emission reduction
in oil and gas industry. In this study, a portable CH4 detector based on tunable diode laser ab-
sorption spectroscopy (TDLAS) technology was deployed. The three-dimensional distribution of
CH4 in a natural gas purification plant in Sichuan was obtained through vertical unmanned aerial
vehicle (UAV) flight observations and ground mobile observations. According to the mass balance
method, the emission of CH4 on 30 m above ground level (AGL) and 60 m AGL in this site was
about 0.012 kg/s (±42% at 1σ) and 0.034 kg/s (±47% at 1σ), respectively, in one day. The vertical
distribution showed that the CH4 concentration reached the maximum (2.75 ± 0.19 ppm) with height
of 0 to 100 m AGL. The CH4 concentration from 100 to 300 m AGL showed a downward trend with
height. Atmospheric instability at high altitude and high wind speed promoted the diffusion of CH4.
The CH4 concentrations of horizontal distribution on 30 m AGL and 60 m AGL were 2.48 ± 0.11 ppm
and 2.76 ± 0.34 ppm. In the observation of mobile campaigns, the connecting equipment of natural
gas treatment facilities was prone to leakage, such as in valves and flanges. CH4 leakage was also
detected at the torch mouth, especially when there was an open flame at the torch mouth. During the
mobile movement investigation, the downwind measurement (OTM-33A) was applied to determine
the overall CH4 emission rate shortly after patrolling the site. This work plays a vital role in optimiz-
ing the operation and maintenance of natural gas production stations pipe network, ensuring human
safety and minimizing greenhouse gas emissions.

Keywords: methane; natural gas purification plant; tunable diode laser absorption spectroscopy;
unmanned aerial vehicle flight observation; spatial distribution

1. Introduction

Methane (CH4) is a potential greenhouse gas. Since the pre-industrial era, the emission
of CH4 from human activities has caused a radiation force of 0.97 W/m2, compared with
the emission of carbon dioxide (CO2) of 1.7 W/m2 [1]. The global emissions of CH4
in the world is about 5.7 × 108 t, of which 60% comes from anthropogenic emissions [2].
According to isotopic signature measurements of ice core and accumulated snow samples to
assess pre-industrial CH4 levels, the extent of the increase in anthropogenic fossil fuel CH4
emissions may be underestimated by 25–40% [3,4]. Oil and natural gas systems (ONGs)
are the leading CH4 emission source in the field of energy supply, with emissions of
1677.3 MtCO2eq in 2010 [5].Therefore, it is of great significance to improve the performance
of CH4 detection technology to avoid destructive losses and atmospheric pollutants caused
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by CH4 leakage in the petroleum and petrochemical industries. From the producer’s point
of view, natural gas leakage also means the loss of products and income.

The vehicle-mounted method has the advantages of having no need to enter the
station, large detection coverage and accurate location of CH4 leakage. MacKay et al.
measured CH4 emissions from 6650 locations in six major oil and gas producing areas in
Canada by vehicle-mounted measurement [6]. Yacovitch et al. continuously measured
and estimated the location of CH4 emission at 224 locations in Banert through a mobile
laboratory [7]. Thoma et al. used GMAP-REQ platform with a G1301-fc cavity ring-down
spectrometer to measure the emissions from well sites in Texas, Colorado and Wyoming.
The results showed that the median CH4 emission rates were 0.43 g/s, 0.21 g/s and 0.79 g/s,
respectively [8]. All the above studies are based on ground measurement to investigate
CH4 emissions. However, these mobile laboratories and ground investigation technologies
are more time-consuming or may miss high leakage sources.

In recent years, airborne-based platforms, such as manned light aircraft, have ef-
fectively capture lofted plumes [9,10]. Karion et al. used airborne measurement tech-
nology to measure the regional CH4 emissions from oil and gas operations in Banert
shale, Texas, USA [11]. Allen et al. used the component-level and vehicle-mounted tracer
method to detect the oil and gas production stations in the United States, and the average
daily natural gas production of the covered production stations ranged from 5.6 × 102 to
1.33 × 106 m3 [12]. Yuan et al. the airborne measurement method to measure CH4 emission
from two shale gas fields in the United States [13]. However, for the sake of public safety
and property losses, it is not allowed to fly at ultra-low altitude or near the source. CH4
emissions from shale gas producing areas in the United States are measured by the Picarro
measurement system on a plane This expensive instrument is not easily accessible to most
scientists, and it is too large to be carried for outdoor experiments [14]. Therefore, it is
urgent to develop a CH4 detector with high precision, low cost and real-time monitoring.

Laser-based techniques, also known as laser absorption spectroscopy (LAS), achieve
selectivity for a target gas, typically CH4 [15]. The most common LAS technology is called
tunable diode laser absorption spectroscopy (TDLAS) [16]. In 2002, TDLAS techniques
and dual-frequency modulated spectroscopy were used to analyze atmospheric gases [17].
Titchener et al. reported a new type of remote sensor using single photon lidar and TDLAS,
which was used to continuously monitor the unorganized emission of industrial CH4 [18].
Zhang et al. applied an NIR-TDLAS spectrometer to locate and quantify the unorganized
emission of oil and gas fields [19]. In this study, we deployed a portable CH4 detector based
on TDLAS technology. On April 2023, we observed the three-dimensional CH4 distribution
of a natural gas purification plant in Sichuan Province, China. Combined with UAV flight
and mobile monitoring activities, the vertical and spatial distributions of CH4 in the natural
gas purification plant was comprehensively observed. The mass balance method and Other
Test Method 33A (OTM 33A) were used to calculate and evaluate CH4 emission flux. The
purpose of this study is to develop a new measuring system to investigate CH4 emissions
from natural gas purification plants and provide reliable basic data and a more scientific
basis for policies to alleviate global warming.

2. Materials and Methods
2.1. Sampling Site

The sampling site was located in an oil and gas mine in Sichuan, China (Figure 1). The
plant is mainly responsible for treating and purifying the primary natural gas extracted
from oil and gas mines, with an average daily output of 4.45 × 106 m3. The natural gas
purification plant is divided into seven main links: pre-treatment, membrane separation, ad-
sorption, desulfurization and decarbonization, dehydration and the production of liquefied
natural gas.
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Figure 1. Location of observation point of natural gas purification plant in Sichuan Province, China. 
Areas A and C are the main production equipment areas, which refer to the natural gas purification 
equipment areas, with processing capacity of 1.3 × 106 m3/d and 3.0 × 106 m3/d, respectively. Areas B 
and D are auxiliary production equipment areas, such as sulfur molding and warehouse, circulating 
water device, sewage treatment device, air compressor and so on. The bold black line surrounding 
area A and area C represents the path of horizontal measurement at high altitude and mobile obser-
vation of CH4. 

2.2. Apparatus 
According to Figure 2, we deployed a portable CH4 detector (Tengyork, Shaoxing, 

China, http://www.tengyork.com/product/id/8vuz3.html, accessed on 20 November 2023) 
based on TDLAS technology, which is a method of scanning the laser wavelength around 
the specific absorption line. In the working state, the laser signal is absorbed by methane 
gas, and the concentration value of methane gas can be accurately deduced by the change 
of laser absorption spectrum. All detector signals were collected and converted by a data-
acquisition device through a microcomputer. The detailed parameters of the portable CH4 
detector are shown in Table 1. 

Table 1. The performance parameters of CH4 detector. 

Category Detailed Parameters 
Size 13 (length) × 20 (width) × 29 cm (height) 

Overall weight 2 kg 
Operating voltage 12 V 

Sampling flow 0.4~0.6 L/min 
Range of detection 0~100 ppm 
Measurement error ±1% 

Precision 0.01 ppm 
Time of response ≤1 s 

Endurance 10 h 
Pump 19 (width) × 53.2 mm (length), 23.1 g 

Sheathing material Carbon fiber 
Cost of investment $14,000 

A six-rotor UAV was selected to carry the CH4 detector in this field campaign (Figure 
2), and the air inlet of the CH4 detector was located 0.6 m above the UAV to alleviate the 
air turbulence effect caused by the downwash of the UAV rotor [20]. The detailed 

Figure 1. Location of observation point of natural gas purification plant in Sichuan Province, China.
Areas A and C are the main production equipment areas, which refer to the natural gas purification
equipment areas, with processing capacity of 1.3 × 106 m3/d and 3.0 × 106 m3/d, respectively.
Areas B and D are auxiliary production equipment areas, such as sulfur molding and warehouse,
circulating water device, sewage treatment device, air compressor and so on. The bold black line
surrounding area A and area C represents the path of horizontal measurement at high altitude and
mobile observation of CH4.

2.2. Apparatus

According to Figure 2, we deployed a portable CH4 detector (Tengyork, Shaoxing,
China, http://www.tengyork.com/product/id/8vuz3.html, accessed on 20 November
2023) based on TDLAS technology, which is a method of scanning the laser wavelength
around the specific absorption line. In the working state, the laser signal is absorbed by
methane gas, and the concentration value of methane gas can be accurately deduced by the
change of laser absorption spectrum. All detector signals were collected and converted by a
data-acquisition device through a microcomputer. The detailed parameters of the portable
CH4 detector are shown in Table 1.
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Table 1. The performance parameters of CH4 detector.

Category Detailed Parameters

Size 13 (length) × 20 (width) × 29 cm (height)
Overall weight 2 kg

Operating voltage 12 V
Sampling flow 0.4~0.6 L/min

Range of detection 0~100 ppm
Measurement error ±1%

Precision 0.01 ppm
Time of response ≤1 s

Endurance 10 h
Pump 19 (width) × 53.2 mm (length), 23.1 g

Sheathing material Carbon fiber
Cost of investment $14,000

A six-rotor UAV was selected to carry the CH4 detector in this field campaign (Figure 2),
and the air inlet of the CH4 detector was located 0.6 m above the UAV to alleviate the air
turbulence effect caused by the downwash of the UAV rotor [20]. The detailed parameters of
the UAV are shown in Table 2. The meteorological parameters of the natural gas purification
plant were observed by using a three-dimensional ultrasonic wind speed and direction
meter (M307200) and a portable meteorological detector (Figure 1).

Table 2. The performance parameters of UAV.

Category Detailed Parameters

Size 60 (height) × 230 cm (width)
Material Carbon fiber

Endurance 0.5 h
Maximum load weight 6 kg

Maximum flying altitude 500 m
Farthest plane flight distance 1000 m

Flight control system DJI-A3
Image and control system DJI-lightbridge2

Cost of investment $20,000

2.3. Experimental Process
2.3.1. Vertical Measurement of CH4

To study the vertical distribution of CH4 at different times, we carried out vertical
flight experiments at 9:00, 11:00, 13:00, 15:00, 17:00 and 19:00 local time (LT), respectively, in
April 2023. According to Figure 3, in each vertical flight, the UAV raised vertically to 300 m
AGL and hovered for 1 min (min), then began to descend, hovering for 1 min at the heights
of 200, 100 and 50 m AGL, respectively, and returning to the ground. According to Figure 1,
the position of vertical flight is between area A and area C, which is indicated by a green
five-pointed star.
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2.3.2. Horizontal Measurement of CH4

The experimenter controlled the UAV equipped with CH4 detector to conduct de-
tection around area A and area C at the speed of 1 m/s, respectively. The heights were
determined to be 30 m and 60 m AGL, which can cover the potential leakage area to the
greatest extent. When setting the detected height, the following factors should be consid-
ered: detected target, safe distance (stay away from natural gas equipment and pipelines)
and environmental factors (such as meteorology, wind speed, airflow, etc.). The meteoro-
logical factors during the experiment are shown in Figure 4. ABLH is the abbreviation for
atmospheric boundary layer height. According to the downward shortwave radiation flux
(DSRF) and the wind speed, the PS classification was determined [21].
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Figure 4. The experimental dates correspond to meteorological conditions and atmospheric stability
(PS classification).

2.3.3. Measurement of CH4 from the Torches and Chimneys

The pilot maneuvered the drone into the plume (about 50 m AGL) and measured CH4
online by flying. The flight time lasted about 10 min. The UAV hovered over the vent,
and the vertical distances between the UAV and the vent of the torch and chimney were
controlled at 6 m and 2 m, respectively.

2.3.4. Mobile Observation of CH4

The CH4 mobile monitoring campaigns were periodically conducted on 13 April 2023,
at six periods of one day (9:00, 11:00, 13:00, 15:00, 17:00 and 19:00 LT). The speed of mobile
observation was controlled at 10 km/h to ensure that CH4 in the atmosphere reacted with
the device. The sample height was designed at 1 m AGL. The whole experimental route
was approximately 2 km, including the daily inspection route in the factory, pipeline valves
and flange joints of the natural gas purification devices.
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2.3.5. Flux Quantification of CH4

The most common flux estimation method for UAV is the mass balance method [19],
which derives the net flux by integrating the measured concentration (above background
level) across a vertical sampling plane downwind of the emitting source. The total flux (in
moles/s) of CH4 was calculated as:

Flux =
∫ Z

0

∫ B

A

(
Sij − S0

)
nijU⊥ijdxdz (1)

where Sij is the mole fraction (moles/mole) of species S for each coordinate on the vertical
plane AB (oriented perpendicular to the prevailing mean wind vector), and S0 is the
measured (or assumed) background. The nij term is the mole density of air (moles·m−3),
which is determined using an ideal gas assumption. The U⊥ij term is the wind speed (m·s−1)
perpendicular to a downwind vertical horizontal plane AB. Fluxes are then integrated over
the vertical and horizontal (AB) extent of the plane (or plume) to calculate flux through
this plane.

The measurement of CH4 emission from ground movement was usually carried out in
the downwind of the station to obtain the concentration for the whole natural gas station
or area. The Environmental Protection Agency (EPA) proposed another test method, 33A
(OTM-33A) [22], a programmed version of the downwind measurement method, making
it easy to apply for researchers or operational personnel [23]. The emission rate was
calculated as:

Q = 2π× U× σY × σZ ×Cpeak (2)

where Q is the CH4 emission rate (kg/h), U is the average wind speed (m/s), and σY and
σZ are the horizontal and vertical dispersion coefficients, respectively, determined based
on the average local atmospheric stability class and the measured downwind distance. The
CH4 background concentration was determined as the lowest 5% of all concentration data
and subtracted. A Gaussian fit of the concentration enhancement versus the wind direction
was performed with the vertex of the fit as Cpeak. The above procedures were performed
using the MATLAB program code provided by the OTM-33A manual [24].

2.4. Data Quality Assurance

Before the measurement, the CH4 detector was calibrated in the laboratory to improve
its accuracy. The known concentrations of the CH4 standard gases were passed into the
CH4 detector until stable gas concentration data were obtained, and the stabilization time
was 3 min. To verify the reliability of the CH4 detector, the standard gases produced by the
reference device at six concentrations (0, 2, 4, 6, 8 and 10 ppm) were measured by a sensor.
Then, standard curves were made to determine the calibration effect. After calibration, the
CH4 detector shows good agreement with a linear regression correlation coefficient (R2) up
to 0.99.

3. Results and Discussion
3.1. High-Altitude Emission of CH4

The vertical distribution of CH4 concentrations in the natural gas purification plant
is shown in Figure 5. The CH4 concentration gradually increased to the maximum
(2.75 ± 0.19 ppm) from 0 to 100 m AGL and then began to decrease. The concentration of
CH4 at 60 m AGL (2.76 ± 0.34 ppm) was higher than 30 m AGL (2.48 ± 0.11 ppm). The
CH4 concentration at 300 m AGL was 2.52 ± 0.11 ppm, which was lower than the ground.
The density of CH4 is lower than that of air, and it generally rises near the ground. Leakage
of equipment near the ground may also be one of the reasons. Flange connection is mostly
used between natural gas pipelines or between pipelines and equipment, which is also the
most vulnerable part for natural gas leakage. During the mobile observation at the site,
CH4 leakage was found in many flanges, joints and grease holes (Figure 6).
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Figure 5. (A) The vertical profiles of CH4 concentrations at different times. The black line represents
the concentration changes of a single vertical observation, the red line is the mean value and the
shaded areas are the standard deviations. (B) Diurnal variation of CH4 concentration at different
heights. (C) The UAV equipped with CH4 detector hovered over the natural gas purification plant
on 13 April 2023. (c1,c2) represent the first and second horizontal measurement of CH4 at 30 m
AGL respectively. (c3,c4) represent the first and second horizontal measurement of CH4 at 60 m
AGL respectively.
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Figure 6. The average concentration of CH4 in chimneys and torches. A represent chimney, and B
and C represent torch. Each test point was measured 3 times.

The daily variation of CH4 at different heights is shown in Figure 5B. At 11:00 LT, the
CH4 concentration began to decrease, and the relative increase of atmospheric boundary
layer height and wind speed after sunrise acted as the diffusion agent for atmospheric CH4
molar fraction [25]. The CH4 concentration decreased to the minimum at 13:00 LT, which
was similar to the daily cycle observed in Shanghai, China [26]. As shown in Figure 4,
the DSRF reached the maximum value of 604 W/m−2 at 13:00 LT. Active photochemical
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reactions can reduce the concentration of CH4. The dominant loss of CH4 was through
oxidation in the atmosphere via the hydroxyl radical (OH). Active photochemical reactions
can consume a certain concentration of oxygen. CH4 is a reductive gas, and it is easily
oxidized in the atmosphere [27]. The CH4 concentration began to rise at 17:00 LT, but its
growth rate was lower than 19:00 LT. At 19:00 LT, the atmosphere was relatively stable
(PS = D), which hindered the vertical diffusion of CH4 and increased it [28]. In addition,
the low wind speed and ABLH were also reasons for the high CH4 concentration at
night [29,30].

The CH4 concentration of chimneys and flares in the natural gas purification plant
is shown in Figure 5. The CH4 concentrations at the discharge ports of the chimney (A)
and torches (B and C) were 2.24 ± 0.03, 2.60 ± 0.35 and 2.59 ± 0.03 ppm respectively.
The CH4 concentration of the two torches was higher than that of the chimney. In the
third observation of torch B, it was found that the CH4 concentration increased obviously,
reaching a maximum of 5.97 ppm, indicating that there was a leak. Compared with torch B,
the change of CH4 concentration in torch C was relatively stable.

3.2. Spatial Distribution of CH4

The measurement of CH4 from ground movement was usually carried out in the
downwind of the station to obtain the CH4 concentration for the whole natural gas station
or area.

The observation results of CH4 movement in the natural gas purification plant are shown
in Figure 7. The average CH4 concentrations at 9:00 LT and 11:00 LT were 2.39 ± 0.38 ppm
and 2.17 ± 0.05 ppm, respectively, both of which were lower than those at 19:00 LT
(2.64 ± 0.27 ppm). At 13:00 LT, the CH4 concentration exceeded 3.0 ppm in 33 places
outside area A and inside area C. Interestingly, the CH4 concentration at 13:00 LT was the
lowest (2.47 ± 0.06 ppm) in a single day according to the Figure 5, which showed that
the mobile observation supplemented the high-altitude monitoring data to some extent.
According to Figure 8, the CH4 concentration in the station increased obviously at 15:00 LT
and 17:00 LT, with 47.2% and 43.5% of CH4 exceeding 3 ppm, respectively. The CH4 con-
centration of gas pipeline valves were relatively high in the natural gas purification unit
area (Area A). The valve is affected by the temperature, pressure, erosion and vibration
corrosion of natural gas, and the defects in the production and manufacture of the valve
will inevitably lead to CH4 leakage in the process of use [31]. In the natural gas purification
unit area (area C), the maximum concentration of CH4 was 394.48 ppm, and the leakage
point was located at the product gas delivery flange. Flange connection is the main form
of natural gas pipeline and equipment connection, and its leakage is also one of the most
important forms of natural gas station leakage. The sealing of the flange mainly depends
on the pre-tightening force generated by the bolt connected with it, and the gasket can
achieve enough working sealing specific pressure to prevent natural gas leakage [32]. For
the natural gas pipeline, the transmission medium has the characteristics of corrosion, high
pressure and vibration during transportation, which will lead to the failure of the flange
seal o for the natural gas pipeline and leakage [32].

The mobile movement observation of CH4 can achieve a large coverage in the detection
range. However, due to the randomness of CH4 emission, short-term “snapshot” on-site
mobile detection may not capture this CH4 emission signal. It is necessary to take longer-
term (2 weeks or more) CH4 emission detection measures in the future [33].
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Figure 7. CH4 concentration trajectories detected by the portable CH4 detector during the mobile
monitoring campaign in the natural gas purification plant.
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3.3. Flux Quantification of CH4

The spatially-interpolated CH4 enhancement projected onto the flux planes is shown
in Figure 9. Having obtained the spatially interpolated flux planes downwind (with
the mean background subtracted to represent net downwind enhancement) in Figure 9,
Equation (1) was used to calculate CH4 flux by integrating across the horizontal and vertical
extents of the 2D sampling plane perpendicular to the prevailing wind. In the observation
of mobile measurement, the background concentration of CH4 was determined to be
2.03 ppm (the lowest 5% of all concentration data). The concentration of CH4 at 60 m
AGL (2.76 ± 0.34 ppm) in the natural gas purification plant was higher than 30 m AGL
(2.48 ± 0.11 ppm). In the Lagrange mass balance method, the amount of air entering and
leaving an air volume is measured with the difference of measured values, thus giving
the net surface flux in the volume. According to Table 3, for the flight on 30 m AGL, the
flux was derived to be 0.012 kg/s (±42% at 1σ) with an uncertainty dominating in both
the background variability (accounting for 63% of the total flux uncertainty) and the wind
measurement variability (accounting for 19% of the total flux uncertainty). For the flight
on 60 m AGL, the flux was derived to be 0.034 kg/s (±47% at 1σ) with an uncertainty
dominating in the background variability (accounting for 82% of the total flux uncertainty).
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Table 3. Mean CH4 flux and one standard deviation uncertainties.

Units in kg/s
Height of Flight

30 m AGL 60 m AGL

Mean flux 0.012 0.034
total uncertainty 0.00504 0.01598
Wind uncertainty 0.0009576 0.0003995

Background uncertainty 0.0031752 0.0131036
Measurement uncertainty 0.0001008 0.0003196

Downwind uncertainty 0.0008064 0.00204544

3.4. Treatment and Preventive Measures for Equipment Leakage

In view of the natural gas leakage in the flange, the bolts can be tightened by de-
pressurizing and venting. If it is necessary to stop gas transmission, the valves on both
sides of the leaking part must be closed, the old gasket should be replaced after venting,
and then the bolts should be tightened again. In the case that gas transmission can not
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be stopped, flange plugging treatment technology is needed to deal with it. According
to the actual leakage situation, in order to avoid more leakage, it is best to use a wound
metal flange gasket or metal ring gasket. In view of the valve leakage, it can be dealt
with by fastening bolts. There is too much purge gas in the emergency torch, so it is
necessary to install a more reliable automatic ignition system and adjust the purge gas
to the minimum required level. Preventive measures can be taken against the leakage of
natural gas pipelines. For example, the cleaning of natural gas pipeline in the future can
avoid the existence of iron sulfide powder in the pipeline. When the peak gas consumption
comes in winter, it is necessary to prepare for standby gas to protect the gas pipeline from
flying dust due to the excessive gas flow rate, resulting in excessive wear and tear of
the pipeline.

4. Conclusions

In this study, a lightweight (<3 kg), low-cost ($14,000), and portable CH4 detector based
on TDLAS technology was developed. We made many aerial and ground investigations
on a natural gas station in Sichuan, China by using a self-developed CH4 detector. The
results show that, in vertical detection, the CH4 concentration increased with height at 0 to
100 m AGL and decreased at 100 to 300 m AGL. In the horizontal measurement, the CH4
emission flux at 30 m AGL and 60 m AGL were approximately 0.012 kg/s (±42% at 1σ)
and 0.034 kg/s (±47% at 1σ), respectively, in a day. However, this calculation method is
not necessarily accurate. Uncertainty contributing to the flux was dominated by ambient
variability in the background (inflow) concentration (>60%) and wind speed (>20%), with
instrumental error contributing about 1–2%. CH4 leakage was detected at the torch mouth,
especially when there was an open flame at the torch mouth. During the mobile observation,
we found leakage at the flange and valve some of the time.

The UAV equipped with CH4 detector can go deep into some areas that are difficult for
personnel to reach in order to carry out monitoring activities, thus improving the working
efficiency. With the aid of mobile observation, CH4 emission from natural gas stations can
be better detected. Another advantage is that the time resolution of the instrument is 1 s,
which captures the fine and dynamic spatial changes of CH4. This study is helpful for oil
field production enterprises in carrying out effective and reliable CH4 emission reduction.

In addition, this study was conducted at a certain time in the day, which may affect the
applicability of this measurement method in other places. Ground-based meteorological
sensors may not provide the necessary spatial and vertical resolution, and winds should
ideally be measured onboard the UAV in the future. Besides, it is necessary to expand the
temporal and spatial coverage of this study to answer the complete distribution of CH4
and the emission factors of components in normal and abnormal activities.
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