
Citation: Wang, X.; Hu, K.; Wu, Y.;

Zhou, W. A Survey of Deep

Learning-Based Lightning Prediction.

Atmosphere 2023, 14, 1698. https://

doi.org/10.3390/atmos14111698

Academic Editor: Massimo Milelli

Received: 15 September 2023

Revised: 4 November 2023

Accepted: 10 November 2023

Published: 17 November 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

atmosphere

Review

A Survey of Deep Learning-Based Lightning Prediction
Xupeng Wang , Keyong Hu * , Yongling Wu and Wei Zhou

School of Information and Control Engineering, Qingdao University of Technology, 777 Jialingjiang Road,
Huangdao District, Qingdao 266520, China; wangxupeng@qut.edu.cn (X.W.); wuyongling@qut.edu.cn (Y.W.);
zhouwei@qut.edu.cn (W.Z.)
* Correspondence: hukeyong@qut.edu.cn

Abstract: The escalation of climate change and the increasing frequency of extreme weather events
have amplified the importance of precise and timely lightning prediction. This predictive capability
is pivotal for the preservation of life, protection of property, and maintenance of crucial infrastructure
safety. Recently, the rapid advancement and successful application of data-driven deep learning
across diverse sectors, particularly in computer vision and spatio-temporal data analysis, have
opened up innovative avenues for enhancing both the accuracy and efficiency of lightning prediction.
This article presents a comprehensive review of the broad spectrum of existing lightning prediction
methodologies. Starting from traditional numerical forecasting techniques, the path to the most recent
breakthroughs in deep learning research are traversed. For these diverse methods, we shed light on
their progression and summarize their capabilities, while also predicting their future development
trajectories. This exploration is designed to enhance understanding of these methodologies to
better utilize their strengths, navigate their limitations, and potentially integrate these techniques to
create novel and powerful lightning prediction tools. Through such endeavors, the aim is to bolster
preparedness against the growing unpredictability of climate and ensure a proactive stance towards
lightning prediction.

Keywords: lightning prediction; deep learning; spatio-temporal features; convolutional neural
networks; long short-term memory networks

1. Introduction

Weather fluctuations have long been an unpredictable force, and humankind’s desire
to control such atmospheric caprice dates back to antiquity. Cinematic depictions such as
in the “Thor” franchise often portray weather manipulation, particularly lightning, as a
profound testament to power. The immense destructive force associated with lightning
encapsulates its menacing presence in collective consciousness. Presently, no effective
mechanisms exist to prevent or mitigate the intensity of lightning, rendering lightning
prediction an imperative field of study. Since the 1950s, technological advancements en-
compassing computers, radar, lasers, remote sensing, and artificial satellites have catalyzed
meteorological developments, significantly enhancing capabilities in lightning prediction.

Global satellite data indicates approximately 46 lightning strikes occurring every sec-
ond across the globe, leading to over 10,000 fatalities and economic damages exceeding one
billion USD annually. In response to these sobering statistics, a holistic meteorological mon-
itoring system has been instituted, integrating atmospheric background stations, climate
observatories, terrestrial automated meteorological stations, high-altitude meteorological
stations, next-generation weather radars, and meteorological satellites. This amalgamation
of technologies provides a comprehensive framework for lightning observations.

Traditional lightning prediction methodologies primarily pivot on the monitoring of at-
mospheric parameters and meteorological phenomena. By interpreting weather data, these
approaches identify meteorological conditions conducive to lightning. Numerical model
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prediction, underpinning most traditional lightning forecasting methods, exploits princi-
ples from atmospheric dynamics, thermodynamics, and related fields to formulate models
that simulate atmospheric processes. However, the accuracy of these models requires
enhancement due to the complex multi-scale physical processes implicated in lightning.

The advent of data-driven machine learning and the conceptualization of deep learn-
ing, proposed by Hinton et al. in 2006 [1], spurred the rapid evolution of machine learning
methods. Deep learning, a subfield of machine learning, comprises multilayer perceptions
(MLP) [2], with its primary objective being to mimic the workings of the human brain. It
strives to learn data representation techniques, encompassing inherent data correlations,
to attain a level of cognitive processing comparable to the human brain, thereby endowing
machines with human-like learning and analytical capabilities [3].

Deep learning employs artificial neural networks (ANN) [4] for data learning and
representation. Characterized by multiple layers, it represents data at varying levels of
abstraction, hence capturing intricate data patterns and structures. Neurons, the basic
computational units of deep learning, simulate certain functionalities of biological neurons.
The input layer accepts raw data, the hidden layer extracts features and processes infor-
mation, and the output layer delivers the final prediction. Forward propagation begins
with the input layer feeding data into the neural network, progressing towards the output
layer, computing layer by layer to yield prediction results. The accuracy of these results is
evaluated using a loss function, such as mean squared error or cross-entropy. A smaller
loss function indicates superior prediction performance. The loss function is minimized
via backpropagation, an optimization algorithm based on gradient descent. To boost the
model’s generalization capabilities, regularization strategies and optimization algorithms
can be integrated into the neural network training process.

With Professor Hinton’s team securing the championship in the 2012 ImageNet im-
age recognition competition with their deep neural network [5], deep learning began to
supersede traditional machine learning algorithms across many domains, emerging as
a sought-after research direction within artificial intelligence. Deep learning is widely
utilized in areas such as computer vision and time-series data prediction, extending its
reach to lightning prediction.

This article aims to provide a thorough review of lightning prediction methodologies.
It begins with a fundamental understanding of lightning prediction principles, delves
into traditional numerical prediction methods, explores lightning prediction through con-
ventional machine learning, and then delves deeply into the crux of the article—deep
learning-based lightning prediction, which currently dominates lightning prediction re-
search. This includes the exploration of recurrent neural networks, convolutional neural
networks, and hybrid neural network methodologies. The final section encapsulates
the salient features of the discussed methodologies and envisages future trends in deep
learning-based lightning prediction.

2. Numerical Prediction Methods

Numerical prediction methodologies for forecasting lightning occurrences are grounded
in the mechanisms governing lightning generation. Typically, these methodologies utilize
parameterization schemes within the Weather Research and Forecasting (WRF) model.
Serving as a versatile meteorological prediction tool, the WRF model encompasses numer-
ous applications, ranging from real-time numerical weather prediction (NWP) and weather
event research to the development of simulation models and parameterized physics. Ad-
ditionally, it contributes to studies of regional climate simulations, air quality modeling,
atmosphere–ocean coupling, and idealized atmospheric research [6]. The WRF model
houses four critical lightning parameters, employed for estimating the Lightning Potential
Index (LPI) and the frequency of lightning events. These parameters serve as key indicators
in predicting the possibility and the frequency of lightning occurrence, thereby contributing
significantly to the field of meteorological prediction and research.
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LPI: LPI [7] is defined as the volume integral of the total mass flux of liquid water and
ice in the “charging zone” (0 ◦C to −20 ◦C) within a thundercloud. It typically represents
the likelihood of a thundercloud separating electric charges through the latent ice pellet
mechanism. LPI varies over time, as it is estimated from the kinematic and microphysical
model fields at each grid point and time step. In short, LPI measures the likelihood of charge
generation and separation during lightning initiation. The basic formula is as follows:

LPI =
1
V

∫∫∫
εw2dxdydz (1)

where V represents the cloud volume in the “charging zone”, w denotes the vertical wind
component (ms−1), and ε is a dimensionless number that depends on the mixing ratio of
hydrometeor components, ranging from 0 to 1. The main data considered are the mixing
ratios of cloud ice, snow, and graupel.

Lightning frequency: Price and Rind (1992, PR92) [8] developed a simple parameteri-
zation to simulate the global distribution of lightning. As lightning activity in convective
clouds is positively correlated with the intensity of updrafts, and the intensity of updrafts is
related to cloud top height, different lightning parameters were established for continental
and oceanic storms due to the differences in their cloud characteristics. In both cases, con-
vective cloud top height is considered as a variable. The parameterization for continental
storms is defined as follows:

Fc = 3.44× 10−5H4.9 (2)

wc = 1.49H1.09 (3)

In this case, Fc represents the continental lightning frequency (in lightning strikes
per minute), H is the height of the convective cloud top, and wc is the maximum updraft
strength. The lightning parameterization for oceanic convective clouds follows a similar
form, which is:

Fm = 6.4× 10−4H1.73 (4)

wm = 2.86H0.38 (5)

Price and Rind (1993, PR93) [9] used radiosonde data collected from 17 observation
stations in the western United States to perform lightning predictions. PR93 primarily
focused on two parameters in lightning: the freezing level height (H0) and the cold cloud
thickness dH (the thickness from 0 ◦C to the cloud top, which is dH = Htop − H0). The pro-
portion Z is derived from the parameterization of the total flash (IC + CG) frequency and
the observed cloud-to-ground flash frequency.

Z = 0.021(dH)4 − 0.648(dH)3 + 7.49(dH)2 − 36.54dH + 63.09 (6)

Price and Rind (1994, PR94) [10] introduced the calibration factor parameter, specifi-
cally on latitude, longitude, and season. They used the global convective cloud data from
1983 to 1990 at 3 h intervals provided by the International Satellite Cloud Climatology
Project. By studying different grid sizes, they reached the following conclusions (lightning
at a 5 km2 resolution divided by lightning at a lower resolution):

c = 0.97241exp(0.048203R) (7)

where c represents the calibration factor and R is the grid area in squared degrees.
Lynn et al. modified the original LPI to predict the hourly lightning flash density [11].

They have made the LPI adaptable for grid scales from 1 to 4 km. Case studies confirm
its applicability on both ultra-high resolution (1.33 km) and high-resolution (4 km) grids.
Gharaylou et al. examined the performance of potential difference (POT) and LPI in
predicting lightning activity [12]. Derived from the WRF model, LPI showed superior
predictive accuracy compared to POT, which uses the ELEC model package. Analyzing
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a decade of Tehran data, both indices matched actual lightning locations, with LPI being
more precise. However, the simulated lightning flash count did not correlate significantly
with WWLLN (The World Wide Lightning Location Network) data, possibly due to the
absence of WWLLN observatories in the area.

3. Traditional Machine Learning Methods

Machine learning harnesses computational learning methodologies to augment system
performance through experiential learning. This technology equips machines with the
capability to discern patterns within complex datasets and to predict prospective behaviors,
outcomes, and trends [13]. Traditional machine learning algorithms encompass decision
trees (DT) [14], support vector machines (SVM) [15], random forests (RF) [16], naive
Bayes [17], and simple ANNs. These methods are heavily reliant on manual feature
extraction, with the manual construction of features being an essential component when
employing these traditional machine learning algorithms in lightning prediction.

Azad et al. put forth a hybrid model aiming to predict the monthly frequency of
lightning occurrences [18]. This model commences with a random forest to sieve out
11 impactful predictive features from a pool of 21 feature parameters obtained from
28 observation stations of the Bangladesh Meteorological Department ranging from 1981
to 2016, including the convective rain rate, Earth skin temperature, monthly averaged
precipitation, and so on. Subsequently, the ensemble empirical mode decomposition
(EEMD) [19] is deployed to deconstruct the original time-series data into a finite set of
intrinsic mode functions (IMF) [20] and residuals. Irrelevant or redundant IMFs and resid-
uals are discarded, with the selection of IMFs primarily being those that have a higher
frequency band and display a significant correlation with the original sequence. These
chosen IMFs, combined with other input parameters, serve as inputs to the ANN or SVM
models. These models are then used to construct a predictive model for the frequency of
lightning occurrences. This approach integrates the strengths of multiple techniques to
increase the accuracy and robustness of lightning frequency prediction. The ANN adopts a
backpropagation (BP) neural network, and its model mechanism is as follows:

y(x) =
n

∑
j=1

wj(p)xj(p) + c (8)

The mechanism of the SVM model is as follows:

L
(
m, mj

)
= exp(−

(||m−m2
j ||)

2ϕ2 ) (9)

In order to evaluate model performance, the authors introduced a coefficient R2 of
determination, which is defined as follows:

R2 = 1− ∑N
i=1 (δt − δ̂t)

2

∑N
i=1 (δt − δ̄t)

2 (10)

where δt represents the reference values, δ̂t represents the predicted values at time t, and δ̄t
denotes the mean of the reference values, simultaneously using the root-mean-square error
(RMSE), mean absolute error (MAE), mean absolute percentage error (MAPE), index of
agreement (IA), and sensitivity analysis to validate the input parameters and consistency
of results. In particular their model showed 8.02–22.48% higher performance precision in
terms of RMSE compared to other models.

Schön et al. proposed an innovative approach to lightning prediction that utilizes
prediction errors derived from lightning forecasting models [21]. Traditional forecasting
models for lightning generally rely on predictions of specific physical parameters, such
as temperature and humidity. However, these models often face difficulties in accurately
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predicting the timing and location of lightning events. To address this issue, the authors
have introduced a new methodology that employs prediction errors of lightning forecasting
models as features. The input consists of two data sources: binary meteosat satellites images
for different channels and lighning-detected data. Machine learning algorithms are then
utilized to predict lightning occurrences. The authors argue that these prediction errors
encompass substantial information regarding atmospheric conditions and other influential
factors, which could be pivotal in predicting the timing and location of lightning events.
In their experiments, a machine learning model was developed based on the gradient
boosting algorithm. This model used prediction errors and other relevant meteorological
data to enhance the accuracy of lightning prediction up to 96% for predictions over the
next 15 min and above 83% for the next five hours.

Pakdaman et al. employed a simple ANN and a decision tree as two binary classifica-
tion algorithms to predict lightning occurrences [22]. They used parameters collected from
historical data (1992–2018) of three synoptic weather stations, including cloud cover, wind
direction, wind speed, dry temperature, dew point, and so on. Due to the imbalance in the
acquired source data, undersampling techniques were initially applied to rectify this issue,
resulting in several balanced data subsets. These subsets were then input into a shallow
neural network (with one hidden layer) and a decision tree, respectively, for classification
predictions. The prediction results were evaluated based on metrics such as precision,
recall, accuracy, and F-measure, with the model based on a simple ANN achieving results
above 0.5 and the model based on DT achieving results above 0.85. Johari et al. proposed
a simple ANN to predict the occurrence of lightning and also used meteorological pa-
rameters, such as wind, dew point, humidity, pressure, temperature, cloud height, and
moisture difference, as input features [23]. A two layer back-propagation neural network
was developed to predict the occurrence of lightning at least four hours prior to its arrival.
Through continuous training and adjusting the activation functions and network structure,
a network with high accuracy and convergence capability was achieved. RMSE was used
to evaluate the accuracy of developed network, with a value of 0.41% being achieved,
and a regression coefficient up to 0.99997. Moon S. H. and colleagues employed machine
learning techniques, specifically SVM and RF, to predict the likelihood of lightning occur-
rences within specific locations and time intervals [24]. Their data were sourced from the
European Centre for Medium-range Weather Forecasts, including 112 weather variables,
such as temperature, wind speed, relative humidity, and convective available potential
energy, focusing on the Korean Peninsula region. To enhance prediction accuracy, they
undersampled the data points that were not linked with lightning events and computed
the probability of detection (POD), the false-alarm ratio (FAR), and the equitable threat
score (ETS) as performance criteria, with threat scores of 0.0885 and 0.0828 for SVM and RF.
The ETS of results from SVMs could be increased to 0.1241 if the temporal resolution was
reduced by a factor of 2 and 0.1499 if the spatial resolution was reduced by a factor of 3.

POD =
TP

TP + FN
(11)

FAR =
FP

TP + FP
(12)

ETS =
TP− α

TP + FP + FN − α
(13)

where α denotes teh proportion of correct forecasts expected by chance alone:

α =
(TP + FP)(TP + FN)

TP + FP + FN + TN
(14)

Overall, traditional machine learning methods have been shown to offer significantly
greater accuracy and efficiency than conventional lightning prediction methodologies.



Atmosphere 2023, 14, 1698 6 of 17

These methods primarily revolve around constructing features from lightning observation
data, which often necessitates specialized knowledge. In this respect, deep learning holds
a significant advantage due to its capacity to learn and extract meaningful features from
complex datasets autonomously.

4. Deep Learning Methods
4.1. Convolutional Neural Network Methods

Convolutional neural networks (CNNs) represent a specialized category of feed-
forward neural networks characterized by their convolutional computations and deep
structures. CNNs possess the ability to extract features directly from raw data, obviating
the need for complex preprocessing, thereby finding extensive application in the field of
computer vision. The distinctiveness of CNNs lies in two facets: first, the lack of full con-
nectivity between neurons; second, the sharing of weights across neurons within the same
layer. This configuration of partial connectivity and weight-sharing brings CNNs closer to
the functioning of biological neural networks, effectively reducing both the complexity of
the network model and the number of weights [25].

In modern meteorological systems, geostationary satellites hold a pivotal role, with satel-
lite images often serving as a common medium for lightning prediction. A noteworthy
example of this can be seen in the work of Sebastian Brodehl et al., who proposed an
end-to-end CNN-based lightning prediction method that employs geostationary satellite
images [26]. This approach allows for the direct prediction of lightning events from satellite
images. The network architecture is underpinned by U-Net [27] and complemented by
ResNet-v2 [28] residual blocks, adapted to handle three-dimensional input encompassing
the height and width of an image, along with time frames. In this model, stacked con-
volution layers and the pooling layer at each down/up-sampling step are replaced with
residual blocks. While convolutions are used for down-sampling, deterministic trilinear
up-sampling operations are implemented. Batch normalization layers are supplanted with
instance normalization, and instead of cropping the feature map of the contracting path,
the feature map post the down-sampling operation is used. The model, demonstrated in
Figure 1, maintains a fixed height and width of 256 × 256 px and is capable of handling
imbalanced data without any requirement for pre-processing. Most information is drawn
from structures in the visible spectrum, with infrared imaging providing some degree of
classification performance during night-time. Furthermore, an attention mechanism-based
enhanced model is proposed, which more effectively captures the spatio-temporal features
of lightning events, thereby improving prediction accuracy and interpretability. The au-
thors evaluated the performance by calculating the critical success index (CSI) at decreased
lead times, with more values greater than 99% for 0 min, 87% for 30 min, and 24% for
180 min.

CSI(Ω) =
∑s∈Ω TP(s)

∑s∈Ω TP(s) + ∑s∈Ω FN(s) + ∑s∈Ω FP(s)′
(15)

To accommodate time-series data as input for CNNs, Bao et al. conducted feature
reconstruction on time-series atmospheric electric field observation data [29]. The time-
series observation data were treated as the horizontal coordinate and the observation
sites as the vertical coordinate, forming a two-dimensional image as depicted in Figure 2.
A straightforward three-layer network was utilized to convert the time-series data into
image data, with the sigmoid activation function transforming the original data into a
range of 0–1. The KL divergence [30] was integrated as a penalty mechanism in this process.
The visualized data thus produced was used as input for the CNN, which was based on an
enhanced ResNet50 architecture. The main branch employed 3 × 3 convolutional kernels
for down-sampling, while the shortcut branch incorporated a 2 × 2 max-pooling layer.
This network could discern between lightning and non-lightning weather. In instances of a
lightning event, the location of the lightning could be determined using an MLP, which
comprises an input layer, multiple hidden layers, and an output layer. The MLP, primarily
used for the classification and prediction of nonlinear relationships, took the spatial position
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of the lightning as its input and produced the impending lightning location as its output.
The mean square error (MSE) was used as the evaluation index for model training, while
the negative log likelihood (NLL) loss was used for classification. The performance of the
method yields satisfactory results, with 88.2% accuracy, 92.2% precision rate, 81.5% recall
rate, and 86.4% F1-score.

Figure 1. End-to-end CNN-based lightning prediction network architecture [26].

Figure 2. Time-series observation data visualization: feature values converted into numbers from 0
to 255 corresponding to a binary image [29].

In their study, Sashiomarda et al. leveraged electromagnetic and acoustic signals from
lightning in tandem with a CNN to predict the precise location of lightning events [31].
They converted a medley of random noise, lightning sounds, and background noise into
spectrograms and subsequently sectioned these into a multitude of millisecond-scale
audio signals. Each of these slices underwent a discrete Fourier transform, a process
that was also applied to the electromagnetic signals emanating from the lightning. These
transformed spectrograms served as inputs for the CNN, which utilized max-pooling and
ReLU activation functions. The culmination of this process yielded three distinct categories:
“quiet”, “unknown”, and “lightning”. By pinpointing the origin of the detected sounds,
the researchers were able to determine not only the occurrence of a lightning event but also
its exact location. Their method of lightning prediction achieved high scores of up to 99%.
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Lu et al. used 3D weather radar data to predict the location of lightning strikes [32].
They used a M × N sliding window to obtain radar data samples, one of which contains
nine layers. If the lightning data point were located in the center grid of the sliding
window, it was considered that the lightning occurred in that area; otherwise, it did not.
In this way, predicting the location of lightning became a binary classification problem.
They used methods such as CNN, logistic regression [33], random forest, and k-nearest
neighbors [34] for prediction. Among them, the CNN performed the best. The structure of
the CNN is shown in Figure 3. The CNN consists of seven layers, with two convolutional
layers and two pooling layers appearing alternately. There were three fully connected
(FC) layers connected to the last feature map. The results showed that the CNN has best
performance in predicting the lightning strike locations with a precision of 0.842, an FPR
(false-positive rate) of 0.158, a recall of 0.604, accuracy of 0.967, ROC AUC([35]) of 0.798,
and P–R(precision–recall) of 0.534.

Figure 3. CNN architecture [32].

4.2. Recurrent Neural Network Methods

Recurrent neural networks (RNNs) are a type of recursive neural network specifically
designed to process sequence data. They accomplish this by iteratively processing the
sequence in a sequential direction, with all nodes (or recurrent units) connected in a chain-
like pattern. The unique trait of RNNs is that their input comprises not only the current
data but also information from previous steps. When it comes to lightning prediction,
RNNs often employ long short-term memory (LSTM) networks. LSTMs were created to
tackle the challenge of long-term dependencies often encountered in standard RNNs [36],
shown in Figure 4. By feeding the spatio-temporal features of lightning data into the LSTM,
reliable lightning predictions can be made. Presently, LSTM is the most frequently used
deep learning network model for lightning prediction.

Figure 4. Typical LSTM block [36]. Graves, A. Long short-term memory. Supervised Seq. Label.
Recurr. Neural Netw. 2012, 37–45, Springer Link, reproceduced with permission from SNCSC.
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Bao et al. employed a spatio-temporal localization method leveraging LSTM neu-
ral networks and interpolation techniques to predict and monitor lightning activity [37].
The team utilized time-series data captured from 30 atmospheric electric field instruments
as LSTM input, with a softmax function categorizing the results into five classes to predict
lightning timing. In order to predict the location of the lightning, they enhanced the predic-
tion accuracy by incorporating data from multiple networked atmospheric electric field
instruments. They also employed the ordinary kriging (OK) interpolation method [38]—one
of the most commonly used kriging methods—to derive the electric potential distribution
and infer the likely area of impending lightning. By integrating these two methodologies,
they achieved satisfactory prediction outcomes, with a POD of 89.08%, FAR of 15.85%, and
CSI of 76.82%.

Fukawa et al. proposed a novel method for lightning prediction using direct electric
field data [39]. They collected data in both fair weather and lightning weather as the input
of their many-to-one network. This network model was based on LSTM, and the specific
network structure is shown in Figure 5. MAPE was applied to measure accuracy, and the
anomaly score α was used to control the output. If, in fair weather, α was 0, it should be
exposed to sudden changes in the case of lightning. The electric field sum β was intended
to accurately predict the electric field value in fair weather. It was confirmed that 88.9% of
lightning occurred while alarming.

MAPE =
100
n

n

∑
n=1

∣∣∣∣ v̂i − vi
vi

∣∣∣∣ (16)

α = log2 (
i+300

∑
i
|v̂− v|) (17)

β = log2 (
i+300

∑
i
|v|) (18)

Figure 5. Network architecture [39]. Fukawa, M.; Deng, X.; Imai, S.; Horiguchi, T.; Ono, R.; Rachi, I.;
A, S.; Shinomura, K.; Niwa, S.; Kudo, T.; et al. A Novel Method for Lightning Prediction by Direct
Electric Field Measurements at the Ground Using Recurrent Neural Network. Ieice Trans. Inf. Syst.
2022, 105, 1624–1628, 8 June 2022, Copyright (c) 2022 IEICE.
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Extending upon the popular fully connected LSTM architecture, Shi et al. introduced
a convolutional LSTM (ConvLSTM) model, primarily to cater to spatio-temporal data
features [40]. The ConvLSTM model morphs the 2D input in LSTM into a 3D tensor,
with the last two dimensions symbolizing spatial dimensions (rows and columns). For data
at each time instance ‘t’, ConvLSTM replaces certain connection operations in LSTM with
convolution operations. This implies that ConvLSTM predictions are based on the current
input and the past states of its local neighbors. In ConvLSTM, X1 . . . Xt represent inputs,
C1 . . . Ct represent cell outputs, and H1 . . . Ht represent hidden outputs. gt, it, and ft
represent the three gates and are three-dimensional tensors, with the last two dimensions
being spatial components. The calculation formulas for the outputs of each layer and the
related gates are as follows:

gt = tanh(Wxg ∗ Xt + Whg ∗ Ht−1 + bi) (19)

it = σ(Wxi ∗ Xt + Whi ∗ Ht−1 + Wci ◦ Ct−1 + bi) (20)

ft = σ(Wx f ∗ Xt + Wh f ∗ Ht−1 + Wc f ◦ Ct−1 + b f ) (21)

Ct = ft ◦ Ct−1 + it ◦ gt (22)

ot = σ(Wxo ∗ Xt + Who ∗ Ht−1 + Wco ◦ Ct + bc) (23)

Ht = ot ◦ tanh(Ct) (24)

where σ represents the sigmoid activation function, ∗ denotes the convolution operation,
and ◦ signifies the Hadamard product. The input gate it, forget gate ft, output gate ot,
and input modulation gate gt control the flow of information in the memory cell Ct. They
obtained good performance, with a Rainfall-MSE of 1.420, CSI of 0.577, FAR of 0.195, POD
of 0.660, and correlation of 0.908.

Building upon the ConvLSTM model, Geng et al. proposed a composite architecture
called LightNet, which integrates the WRF model [41]. The LightNet structure is divided
into four components: the WRF encoder, the observation encoder, the fusion module,
and the prediction decoder, shown in Table 1. The WRF encoder was primarily responsible
for processing the simulation data produced by the WRF model. This data included
various parameters, such as the cloud ice mixing ratio, snow mixing ratio, graupel mixing
ratio, radar reflectivity, and the maximum vertical wind component. On the other hand,
the observation encoder was designed to handle the processing of observational data. Both
encoders adopted the same approach, going through a convolutional layer and inputting
the convolution results into the ConvLSTM network to obtain two tensors, Cwr f , Hwr f

and Cobs, Hobs. The fusion module applied a convolution operation to the WRF data and
observation data, respectively, resulting in the final initialized input tensors C f use and H f use.
The prediction decoder acquired the fused features and made predictions. All variables
were initialized as C f use and H f use, as well as the input Conv5(L−1). The input and output
at time t > 0 are:

Xt = Conv5(L̂t−1) (25)

L̂t = so f tmax(Conv6(DeConv(Yt))) (26)

where L̂t is the final result. The perfomance of LightNet and its variants on different
datasets, especially for six-hour prediction, is better than other methods. If combined with
neighboring nodes, POD can reach up to 0.680, with values of FAR of 0.413 and ETS of 0.449.
On the contrary, values of POD of 0.465, FAR of 0.733, and ETS of 0.194 were attained.
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Table 1. LightNet architecture [41]. Used with permission of ResearchGate from Geng, Y.A.; Li, Q.;
Lin, T.; Jiang, L.; Xu, L.; Zheng, D.; Yao,W.; Lyu,W.; Zhang, Y. Lightnet: A dual spatiotemporal encoder
network model for lightning prediction. In Proceedings of the 25th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, Anchorage, AK, USA, 4–8 August 2019;
pp. 2439–2447, 2019, permission conveyed through Copyright Clearance Center, Inc.

Module Notation Size Stride

WRF Encoder Conv1 [7 × 7, 64] 2
ConvLSTM [5 × 5, 128] 1

Obs. Encoder Conv2 [7 × 7, 4] 2
ConvLSTM [5 × 5, 8] 1

Fusion Module Conv3 [1 × 1, 64] 1
Conv4 [1 × 1, 64] 1

Pred. Decoder

Conv5 [7 × 7, 4] 2
ConvLSTM [5 × 5, 64] 1

DeConv [7 × 7, 64] 2
Conv6 [1 × 1, 1] 1

Geng et al. introduced a heterogeneous spatio-temporal network (HSTN) for lightning
prediction, aimed at extracting knowledge from multiple heterogeneous spatio-temporal
data sources [42]. The HSTN consists of three modules: the Gaussian diffusion module,
the spatio-temporal encoder, and the spatio-temporal decoder. The Gaussian diffusion
module converted the sparse tensor S̄ into a dense form S (the weather station observation
data, real four-dimensional data). The Gaussian diffusion module, founded upon the prin-
ciples of Gaussian distribution, underwent a series of mathematical transformations and
derivations to yield the resultant dense tensor. Three spatio-temporal encoders extracted
information from W (the WRF simulation data, real four-dimensional data), L (the lightning
observation data, binary three-dimensional data) and S. The spatio-temporal encoder was
built based on ConvLSTM through initializing all states of ConvLSTM as zero. The spatio-
temporal decoder merged all information and produced lightning prediction. Meanwhile,
multi-scale pooling loss was employed to address the shortsightedness issue caused by
grid-wise losses. Multi-scale pooling involves applying maximum pooling separately to
both the predicted results and the actual outcomes and employing weighted cross-entropy
to balance the disparities between lightning and non-lightning grids. The architecture of
HSTN is shown in Figure 6. The data source was a real lightning dataset’s observation
parameters, collected from 237 weather stations in North China. The performance of a
six-hour dataset combined with neighboring nodes was best, achieving values of POD up
to 0.692, FAR of 0.404, and ETS of 0.459.

Figure 6. HSTN architecture [42]. 2020 IEEE. Reprinted, with permission from Geng, Y.A.; Li, Q.; Lin,
T.; Zhang, J.; Xu, L.; Yao, W.; Zheng, D.; Lyu, W.; Huang, H. A heterogeneous spatiotemporal network
for lightning prediction. In Proceedings of the 2020 IEEE International Conference on Data Mining
(ICDM), Sorrento, Italy, 17–20 November 2020; pp. 1034–1039.
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Essa et al. conducted a study on the predictive capability of an LSTM model in
predicting short-term lightning flash density within South Africa [43]. The research focused
on predicting lightning flash densities over intervals of one hour, three hours, and twenty-
four hours. The architecture of their LSTM model comprised an initial layer with 50 units,
followed by two layers, each containing 25 units, and a final dense layer employing a
Leaky ReLU activation function. The model optimization was performed using the Adam
optimizer, targeting the minimization of the MSE. MAE increased with longer forecast
periods. The perfomance of different datasets corresponded to a POD and FAR ratio of 32%
and 51% and a POD and FAR ratio of 27% and 79%.

5. Hybrid Neural Network Methods

Hybrid neural networks combine different types of neural networks, leveraging
the strengths of each to better accommodate varying data types and task requirements,
thereby enhancing the model’s performance. Given the complexity and variety of lightning
observation data, employing hybrid neural network models for lightning prediction is
a prevalent approach. The most common amalgamation involves coupling CNNs with
RNNs or LSTM networks.

Guastavino et al. put forth a long-term recurrent convolutional network (LRCN) which
fused CNN and LSTM networks to devise spatio-temporal deep learning models using
radar data to predict lightning occurrences [44]. The CNN was employed to extract spatial
features from the dataset. These features were subsequently broken down into sequential
components and supplied to the LSTM network for analysis. Finally, the output from
the LSTM layer was passed into the fully connected layer, where the sigmoid activation
function was used to generate the probability distribution of the positive class. Results on
the test set obtained by using the TSS (true skill statistic) ensemble and wTSS (weighted
true skill statistic) ensemble strategies are shown in Table 2.

Table 2. Results of [44].

Strategy TSS CSI wFP wFN wTSS wCSI

wTSS 0.78 (±0.04) 0.17 (±0.02) 243.88 (±41.34) 6.79 (±1.64) 0.68 (±0.04) 0.10 (±0.02)

TSS 0.77 (±0.05) 0.17 (±0.03) 240.99 (±60.57) 7.24 (±2.60) 0.67 (±0.06) 0.10 (±0.02)

Zhou et al. extended upon LightNet, proposing LightNet+ [45]. This network represents
a sophisticated hybrid neural network. It is composed of three modules: the SpatioTemporal
(ST) encoder module for lightning observations, the bi-directional spatioTemporal (BDST)
propagator module for WRF simulations, and the non-local spatio-temporal(NLST) module
for lightning forecasts. The ST module initially employs a convolution layer to subsample the
raw data, followed by a ConvLSTM model that extracts trend information from the compact
lightning observation features. The BDST module is bifurcated into two components: a
subsampling module and a dual ConvLSTM (DCLSTM). This module also uses a convolution
layer for subsampling the WRF simulation data, followed by the DCLSTM to fully harness
information both preceding and succeeding the t-th hour. The structure of the DCLSTM is
illustrated in Figure 7. For the NLST module, a non-local fusion unit (NLFU) is introduced.
The NLFU initially uses a convolution operation with a kernel size of 1 × 1 to extract fea-
tures after amalgamating the historical lightning state trend, the past WRF trend information,
and the future trend data into a comprehensive trend profile. This is followed by a two-stage
attention mechanism to uncover informative long-range correlations. Finally, the data passes
through the ConvLSTM module and a Deformable CNN, and it is subsampled using de-
convolution (deConv) to produce the final output. Compared with several state-of-the-art
data-driven lightning forecasting methods, LightNet+ yields the overall best performance with
twelve-hour cumulative scores for TS of 0.211 and ETS of 0.193 and last-six-hour cumulative
scores for TS of 0.125 and ETS of 0.116.
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Figure 7. DCLSTM architecture: PE represents the result after subsampling [45]. Zhou, X.; Geng, Y.A.;
Yu, H.; Li, Q.; Xu, L.; Yao,W.; Zheng, D.; Zhang, Y. LightNet+: A dual-source lightning forecasting
network with bi-direction spatiotemporal transformation. Appl. Intell. 2022, 52, 11147–11159,
reproduced with permissions from SNCSC.

6. Discussion

Deep learning-based lightning prediction primarily focuses on directly analyzing ob-
served parameters, often without the selection or filtering of these parameters. The accuracy
of such models remains an area that warrants enhancement. This straightforward method-
ology could overlook intricate interrelationships among the observational parameters or
the underlying physics driving lightning occurrences.

1. Parameter selection based on lightning mechanisms: Rather than indiscriminately
using all observed parameters, a more discerning approach could involve parameter
selection based on the underlying mechanisms of lightning formation. This would involve
a deeper understanding of meteorology and the physics of atmospheric electricity, thereby
ensuring that the most relevant and influential parameters are input into the model. Such a
focused approach might eliminate noise and irrelevant information, potentially enhancing
prediction accuracy.

2. Multimodal data fusion: Another promising avenue is the fusion of multimodal
data. Instead of analyzing disparate data forms independently, combining various forms of
data organically can provide a holistic view. By coalescing data from different sensors or
observational platforms, deep learning networks can be exposed to a richer set of inputs,
potentially enhancing their capacity to discern patterns and make accurate predictions.

3. Leveraging adjacent observational nodes: Incorporating data from neighboring ob-
servational nodes can enrich the contextual understanding of local atmospheric conditions.
This spatial embedding ensures that the localized conditions leading to lightning formation
are not viewed in isolation but are seen in the context of broader atmospheric dynamics.
Integrating neighboring node data with the current node can offer a more comprehensive
input for the network, potentially boosting predictive accuracy.

4. Expert-guided deep learning prediction: Lastly, instead of relying solely on algo-
rithmic predictions, integrating expert knowledge from traditional lightning prediction
methods can guide and refine deep learning-based forecasts. Such an interdisciplinary
approach can combine the strengths of empirical knowledge and computational prowess.
Furthermore, predictions can be provided with expert interpretations, lending more credi-
bility and context to the forecasts.

In conclusion, while deep learning offers a promising toolset for lightning prediction,
its integration with domain expertise, data fusion techniques, and a keen understanding of
the intricacies of observational parameters can push the boundaries of prediction accuracy.
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Leveraging these strategies can pave the way for more reliable, insightful, and actionable
lightning forecasts in the future.

7. Conclusions

From the above description, data-driven deep learning plays an important part in
the field of lightning prediction. Evidently, deep learning methods, especially CNNs and
RNNs, have demonstrated exceptional performance when dealing with complex multi-
dimensional spatial and temporal data.

Traditional lightning prediction methods might rely on heuristic rules or simplified
physical models, which might be inadequate to capture the full complexity of lightning
formation. In contrast, CNNs and RNNs are capable of learning and extracting meaning-
ful features from vast historical and real-time data, leading to more accurate predictions
of lightning occurrences. This capability significantly surpasses the accuracy of conven-
tional methods.

Furthermore, as more meteorological data become available and the resolution and
quality of the data continually improve, deep learning methods will continue to be opti-
mized and adapt to these new data sources. This implies that in the future, these advanced
algorithms will provide earlier and more precise lightning alerts, thereby safeguarding
lives and property.

In conclusion, data-driven deep learning, especially CNNs and RNNs, has not only
made significant contributions to lightning prediction but also holds tremendous poten-
tial and prospects for future applications. Table 3 provides a summary of the lightning
prediction methods outlined in this article.

Table 3. Summary of lightning prediction methods.

Methods Generalize Specific Methods in Articles Data Source

Numerical Prediction
Methods

In accordance with the principles of
lightning genesis, relevant observation
parameters are used to calculate the
lightning potential index (LPI) and
positive ratio (PR), determining the
probability of lightning occurrence.

LPI [7] Total mass flux of liquid water
and ice

PR92 [8] The intensity of updrafts and the
intensity of updrafts

PR93 [9] Radiosonde data

PR94 [10] Global convective cloud data

Grid LPI [11] Total mass flux of liquid water and
ice from 1 to 4 km

POT + LPI [12] Total mass flux of liquid water
and ice

Traditional Machine
Learning Methods

Employing manual calculations, key
lightning data features are
hand-extracted, and then traditional
machine learning methods such as
support vector machines (SVM) and
simple artificial neural networks (simple
ANN) are utilized based on the extracted
features for classification.

EEMD + SVM/ANN [18] Observation meteorological pa-
rameters

Gradient boosting machine learn-
ing [21]

Binary meteosat satellite images
and lightning detected data

Undersampling + shallow neural
network/DT [22]

Observation meteorological pa-
rameters

Back-propagation neural net-
work [23]

Observation meteorological pa-
rameters

Undersampling + SVM/RF [24] Observation meteorological pa-
rameters

Convolutional Neural
Network Methods

Integrating image data such as satellite
images, electromagnetic and acoustic
signals, or converting lightning data into
image form allows the utilization of
convolution to extract features and
conduct predictions.

U-Net + ResNet-v2 [26] Geostationary satellite images

KL + CNN + MLP [29] Time-series observation meteoro-
logical parameters

Spectrograms + CNN [31] Random noise, lightning sounds,
and background noise

Sliding window + CNN [32] 3D weather radar data
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Table 3. Cont.

Methods Generalize Specific Methods in Articles Data Source

Recurrent Neural
Network Methods

The most commonly used deep learning
method for lightning prediction
primarily processes sequential data,
often combining with existing
methodologies in a variant form to
achieve more accurate predictions.

OK + LSTM [37] Time-series electric field data

Convolution + LSTM [39] Time-series electric field data

ConvLSTM [40] Spatio-temporal data

LightNet (WRF + ConvLSTM) [41] Spatio-temporal WRF simulation
data

HSTN (Gaussian diffusion + WRF
+ CNN + ConvLSTM) [42]

The weather station observation
data, real four-dimensional data,
the WRF simulation data and bi-
nary three-dimensional data

LSTM [43] Lightning flash density

Hybrid Neural Network
Methods

Combining multiple neural network
models often involves the use of one
network model for feature extraction
and another for prediction. With more
information contained in the features,
this approach aids in improving the
accuracy of predictions.

LRCN (CNN + LSTM) [44] Radar data

CNN + ConvLSTM + Dual Con-
vLSTM (DCLSTM) + Deformable
CNN + deConv [45]

WRF simulation data
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