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Abstract: As a challenge in the construction of a “seamless forecast” system, improving the prediction
skills of subseasonal forecasts is a key issue for meteorologists. In view of the evolution characteristics
of numerical models and deep-learning models for subseasonal forecasts, as forecast times increase,
the prediction skill for high-frequency components will decrease, as the lead time is already far beyond
the predictability. Meanwhile, intraseasonal low-frequency components are essential to the change in
general circulation on subseasonal timescales. In this paper, the Global Subseasonal Forecast Model
(GSFM v1.0) first extracted the intraseasonal oscillation (ISO) components of atmospheric signals
and used an improved deep-learning model (SE-ResNet) to train and predict the ISO components of
geopotential height at 500 hPa (Z500) and temperature at 850 hPa (T850). The results show that the
10–30 day prediction performance of the SE-ResNet model is better than that of the model trained
directly with original data. Compared with other models/methods, this model has a good ability to
depict the subseasonal evolution of the ISO components of Z500 and T850. In particular, although
the prediction results from the Climate Forecast System Version 2 have better performance through
10 days, the SE-ResNet model is substantially superior to CFSv2 through 10–30 days, especially in the
middle and high latitudes. The SE-ResNet model also has a better effect in predicting planetary waves
with wavenumbers of 3–8. Thus, the application of data-driven subseasonal forecasts of atmospheric
ISO components may shed light on improving the skill of seasonal forecasts.

Keywords: neural network; machine learning; extended-range forecast; intraseasonal component

1. Introduction

In the meteorological department, forecasts within the 10–30 day timescale lie between
0 and 10 day weather forecasts and monthly scale short-term climate forecasts and are
called subseasonal or extended-range forecasts. They are crucial links in the construction of
seamless and refined forecasting and prediction systems [1]. However, it is also a difficult
point in constructing a “seamless forecast” system [2].

Subseasonal forecasts lack predictability due to the chaotic nature of the atmosphere [3,4]
and, thus, have a rather limited predictive signal over subseasonal timescales [5]. To
accelerate the research progress of subseasonal forecasting and bridge the timescale gap
between synoptic-scale forecasting and short-term climate forecasting, the World Weather
Research Programme (WWRP) and the World Climate Research Programme (WCRP) jointly
launched a 5-year research program called the Subseasonal to Seasonal (S2S) Prediction
research project to improve the ability of extended-range forecasting and the understanding
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of the sources of S2S predictability [6]. To address this academic challenge, meteorologists
made various attempts and studies on subseasonal forecasting, resulting in remarkable
progress [7]. The Madden–Julian Oscillation (MJO) is the most important source of forecast-
ing skills on the subseasonal timescale [8], and an empirical model of spring precipitation
forecasts in southern China on the subseasonal timescale was established by Li et al. [9]
using the spatiotemporal information of MJO as a predictor. In addition, Zhu et al. [10]
constructed a spatial–temporal projection model (STPM) to carry out real-time subseasonal
forecasts for tropical cyclones over the western North Pacific. Despite these, there are many
other methods proposed recently for improved subseasonal forecasting, including adaptive
bias correction [11] and explainable machine-learning methods [12].

Although the timescale of the subseasonal forecast exceeds the theoretical upper limit
of the daily weather forecast, atmospheric movement still has predictable components [13],
and the predictability of atmospheric movement is related to the spatial–temporal scale [14].
Weather systems with different spatial–temporal scales often have different predictability.
For example, for strong convective weather, such as thunderstorms, hail and tornados,
the upper limit of predictability is several hours. For synoptic systems, the predictability
can reach up to two weeks, and for systems of a planetary scale, the predictability is
much longer. Hsu et al. [15] developed a set of methods to extract low-frequency signals
from the atmosphere for 10–60 days without using bandpass filters, and the developed
STPM showed good performance in subseasonal precipitation forecasting in South China.
Wang et al. [16], by extracting the predictable component at the subseasonal timescale and
referring to the conditionally nonlinear optimal perturbation (CNOP) correlation algorithm,
developed a practical method and prediction technology for extracting the predictable
components in numerical models.

Weather and climate systems are typically nonlinear systems, and the characteristics of
high dimensionality, large quantity and complexity of meteorological data make it difficult
to make accurate forecasts. The ability of artificial intelligence technology to effectively
learn and capture features in massive data is widely applied in various fields. Machine
learning, especially deep-learning technology, has also been widely used in meteorological
research and business fields in recent years from the automatic recognition of extratropical
cyclones [17] and fronts [18,19] to the prediction techniques of nowcasting [20] and weather
forecasting [21,22]. For example, Song et al. [23] developed the SE-ResUNet model for the
prediction of precipitation near Beijing and achieved better results than traditional weather
forecasts. Sønderby et al. [24] proposed MetNet for weather forecasting and evaluated its
performance under different precipitation thresholds and found that MetNet is superior to
numerical weather forecasting to some extent.

Machine learning makes considerable progress in weather-scale prediction, but further
research on subseasonal-scale prediction is still needed. Machine learning can provide a
potential approach to the development of S2S prediction systems with significantly reduced
computational costs [25]. One of the contributions comes from Rasp and Thuerey [26], who
proposed ResNet for predicting geopotential height, temperature and precipitation. ResNet
is developed from convolutional networks to solve the degradation problem that may
happen when the network is too deep. According to the study of Rasp and Thuerey [26],
the use of multiple layers of residuals can always retain the data features of the previous
layer while continuously digging deeper into the data relationship so that the network
can memorize previous information in the process of extracting information. Therefore,
residual structure has an excellent feature-extraction ability [27], and we attempt to apply
this structure to the field of subseasonal prediction. However, with the extension of forecast
lead time, the prediction results gradually smoothen [28] and tend to become low-frequency
signals of the atmosphere [25]. In fact, in the deep-learning process of subseasonal forecasts,
as the loss function mostly adopts spatial root mean square error, the prediction result will
tend to be “fuzzy” as the forecast time increases [29], showing the low-frequency character-
istics or characteristics with a low degree of freedom of the atmospheric circulation. In view
of this “low-frequency” feature, can we reduce the degree of freedom of the atmospheric



Atmosphere 2023, 14, 1682 3 of 21

elements in advance by extracting the intraseasonal oscillation signals from them to focus
on the learning object of the learning model so as to improve the learning ability of the
model and the forecast performance? In fact, weather and climate systems are complex
systems composed of multiscale interactions of small-scale, high-frequency signals and
low-frequency evolutions. The reliable representation of multiscale characteristics is one of
the most important conditions for the development of high-performance weather/climate
prediction models [30]. Spectral analysis (the extraction of different components) provides
a novel way of incorporating the multiscale properties of weather and climate systems
in machine learning [31]. For example, Wu et al. [32] developed a generative adversarial
network (GAN) partial differential solution model to describe Rayleigh–Bénard convective
activity by enhancing covariance constraints and pointed out that these constraint pairs
help in preserving and highlighting the physical characteristics of the corresponding spec-
trum. Mohan et al. [33] used wavelet transformation to predict turbulence by constructing
wavelet coefficients based on physical features.

In addition, since there are different factors on different levels entering the network,
the importance of the different factors to the final result might be different, as some meteo-
rological elements are more tightly related to each other than the rest. In fact, according
to Rasp and Thuerey (2021a), when predicting T850, the Z250 predictand plays the most
important role in making forecasts, significantly more important than other factors [26].
In the field of computer vision, Hu et al. [34] proposed a squeeze-and-excitation block as
a self-attention mechanism to excite the informative features in a class-agnostic manner
and strength the shared low-level representations. So, can a self-attention mechanism,
such as squeeze-and-excitation, be introduced to optimize the contribution of different
elements (channels) to the model and allocate more attention to the variables that are more
tightly connected to the target variable? Therefore, this study attempts to predict the ISO
components of Z500 and T850 in the next 1–30 days by using an improved deep-learning
model (SE-ResNet, which combines the self-attention mechanism and the ResNet prediction
model). The SE-ResNet model was quantitatively evaluated by comparing the prediction
results with the CFSv2 and ResNet models results against filtered ERA5 reanalysis data.

2. Materials and Methods
2.1. Data

The data used in this paper are listed as follows. (1) Model training data are pro-
vided by the WeatherBench challenge. A detailed description can be found in studies
of Rasp et al. (2020a) [28], and you can obtain the latest dataset on https://github.com/
pangeo-data/WeatherBench (accessed on 12 December 2021). The dataset mainly contains
ERA5 data from 1979 to 2018, and the horizontal resolution of the dataset used in this
paper is 5.625◦ × 5.625◦ [35]. (2) The forecast results of Z500 and T850 in the Climate
Forecast System Version 2 (CFSv2) model dataset for the next 30 days [36] are also used for
comparison in our study. This dataset is downloaded from https://www.ncei.noaa.gov
(accessed on 12 December 2021) containing data in 2000–2018.

The CFSv2 model we choose is widely used around the world for operational extended-
range prediction. Also, considering we are extracting the low-frequency component as
the predictand, the filtering method prefers input data being continuous daily time series.
Therefore, we also choose the CMA, UKMO, KMA and NCEP model forecasts in S2S
project from ECMWF, as they are the only four models that provide daily extended-range
prediction consistent with our models and CFSv2. Figure A1 shows the comparison of the
RMSE for 10–30 days of Z500 and T850 achieved with the different models, which tells us
that the CFSv2 model outperforms the other models at forecast lead times of 10–30 days for
Z500 and T850 predictions. Therefore, the comparison with the machine-learning model is
mainly based on the CFSv2 model in this paper.

The original CFSv2 forecast data we download cover the global area with a resolution
of 1◦ × 1◦. The lead time we use ranges from 1 to 30 days. We interpolate the CFSv2 data
into the same grid points as the ERA5 data in this paper (5.625◦ × 5.625◦).

https://github.com/pangeo-data/WeatherBench
https://github.com/pangeo-data/WeatherBench
https://www.ncei.noaa.gov
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The inputs are geopotential, temperature, zonal and meridional wind at seven vertical
levels (50, 250, 500, 600, 700, 850 and 925 hPa) and 2 m temperature. Three constant fields
are also included in the inputs: orography, land sea mask and latitude for each grid. All
fields are normalized by subtracting the mean and dividing by the standard deviation. In
the training process, we extract a batch of data from the dataset and stack up different
variables into an 8 (batch size) × 32 (latitudinal grid number) × 64 (longitudinal grid
number) × 32 (4 × 7 + 4) array.

The training set includes ERA5 data in 1980–2015, the validation set in 2016 and test
set in 2017–2018.

2.2. Methods
2.2.1. Filtering Method

To allow for the model to be applicable for real-time forecasting, this paper uses
the filtering method proposed by Hsu et al. (2015) to extract atmospheric signals over
10–30 days [15]. This method can be divided into three steps. (1) Remove the slow-
varying climatologic annual circle by subtracting the climatologic 90-day low-pass filtered
components. (2) Remove the interannual and interdecadal anomalies by subtracting the
last 15-day running mean. (3) Remove the synoptic scale components by taking a 5-day
running mean.

The data subject to filtering include all the factors used in training the SE-ResNet
and evaluating final results, including the ERA5 dataset and CFSv2 forecast data. We
are performing the filtering on a grid point basis. In the CFSv2 filtering step, we first
divide the whole dataset into 30 sub-datasets according to the lead time (1–30 days). In
each sub-dataset, we place forecasts of different dates with the same lead time together
following the time sequence. Some of the data in 2016 are also used in the CFSv2 filtering
part so that we can obtain a result for every day in 2017–2018.

To have a comparable forecasting, the final results are defined as the results of the ISO
components predicted by the model plus the climatology of the elemental fields for the
corresponding date calculated using data from 1981 to 2010.

2.2.2. Forecast Model

The original ResNet [37] contains 34 convolution layers and ends with a global average
pooling layer and a 1000-way fully connected layer with softmax. There are also shortcuts
inserted between the convolution layers, which can be directly used when the input
and output are of the same dimensions. The ResNet model used in the study of Rasp and
Thuerey (2021b) is further developed based on He’s model [38], and the forecast model used
in this paper is developed based on Rasp’s model and is further improved according to the
prediction objectives. The specific model structure is shown in Figure 1. The ResNet model
in Rasp and Thuerey (2021b) contains 19 residual blocks, which consists of two convolution
blocks. The convolution block is defined as a 2D convolution layer, an activation function
layer, a batch normalization layer and a dropout layer. All convolutions are padded
periodically in the longitudinal direction but with zero in the latitudinal direction.

The SE-ResNet model for this study is a further improvement based on the model
above. Both models have a similar structure and use the same convolution block, but
in the residual block of the SE-ResNet model, a squeeze-and-excitation block is added,
which works as a self-attention mechanism. When there are multiple elements put into
the model, the squeeze-and-excitation block can choose the importance of each channel
through the squeeze and excitation operations, and the weight coefficient is put on each
channel with the scale operation to complete the recalibration of the importance of the
original channel [34]. The residual block obtains the final output by adding the output of
the squeeze-and-excitation block and the input of the residual block.
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Figure 1. Schematic diagram of the SE-ResNet model structure.

In addition, we compared the performance of direct forecast and continuous fore-
cast on the ISO component and found that the results are comparable. Particularly, the
average area-weighted root mean squared error (RMSE, as documented in Formula (1) in
Section 2.2.3) for 10–30 days of the direct model is 552.48 m2 s−2 (2.17 K), and the average
RMSE for 10–30 days of the continuous model is 558.68 m2 s−2 (2.19 K). Therefore, to learn
the underlying physical processes, the method of continuous forecast is applied in this
paper. We determined the number of residual blocks of the SE-ResNet model as 25 through
experiments (Figure 2), where the average RMSE for 10–30 days of the predicted results of
Z500 and T850 is the lowest. The other parameters in training the SE-ResNet model are set
as follows. The initial learning rate is set to 0.5 × 10−4, which will be reduced by a factor of
5 once the validation loss does not decrease for 2 epochs. Each residual block contains two
convolution blocks with 128 channels. The convolution kernel size is 3. Weight decay is
0.01 used for all layers. The activation function is LeakyReLU. Dropout is set to 0.3.
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Figure 2. Comparison of the average RMSE for 10–30 days of (a) Z500 (units: m2 s−2) and (b) T850
(units: K) achieved by training the continuous model using different numbers of residual blocks
(o and * represent the number of residual blocks used by the ResNet and SE-ResNet models in this
paper, respectively).

We also use different test sets to verify the structural differences between the SE-
ResNet and ResNet models (Table 1) for the cross-validation. The results show that the
prediction effect of SE-ResNet is stably better than that of ResNet as the test set changed.
Particularly, the average gap for Z500 is 4.03 m2 s−2, and the average gap for T850 is 0.01 K.
The table shown below not only indicates that the addition of the SE module can improve
the ResNet model to a certain extent but also shows that the superiority is steady, as for all
the test subsets, SE-ResNet outperforms ResNet.
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Table 1. Comparison of the average RMSE for 10–30 days of Z500 and T850 achieved with the
SE-ResNet and ResNet models (SE-ResNet/ResNet) using different test years.

Test Year Z500 (Units: m2 s−2) T850 (Units: K)

(2007, 2008) 561.14/565.21 2.19/2.20
(2009, 2010) 567.92/572.66 2.24/2.26
(2011, 2012) 570.70/574.64 2.18/2.20
(2013, 2014) 556.41/560.09 2.20/2.21
(2015, 2016) 567.05/571.18 2.19/2.20
(2017, 2018) 558.68/562.31 2.19/2.20

2.2.3. Forecast Effect Evaluation Methods

To evaluate the forecast results of the model, RMSE is defined as

RMSE =
1

N f orecasts

N f orecasts

∑
i

√√√√NlatNlon

Nlat

∑
j

Nlon

∑
k

L(j)
(

fi,j,k − ti,j,k

)2
(1)

where f is the prediction result of the model, and t is the filtered ERA5 data of the corre-
sponding time. The RMSE score is a positive value with no upper limit. The smaller the
RMSE value is, the better the prediction result of the model is. The anomaly correlation
coefficient (ACC) is defined as

ACC =
∑i,j,k L(j) f ′ i,j,kt′ i,j,k√

∑i,j,k L(j) f ′2i,j,k∑i,j,k L(j)t′2i,j,k

(2)

where the symbol ′ represents the difference to the climatology. L(j) is the weight factor
when latitude is j (unit; ◦), and L(j) is defined as

L(j) =
cos(lat(j))

1
Nlat

∑Nlat
j cos(lat(j))

(3)

ACC can represent the spatial similarity between two fields. The ACC value should
range from −100 to 100 (unit; %). The closer the value of ACC is to 100, the more similar
the two fields are.

3. Model Forecast Results
3.1. Prediction Case Analysis: Original Data vs. ISO Component

This paper mainly focuses on the 10–30 day forecast ability of ISO components. To
show the importance of ISO components in actual atmospheric changes and the forecast
ability of ISO components, Figure 3 compares the zonal deviation of ERA5 and predicted
Z500 and its ISO components during 7–19 November 2017. According to the variations in
the ERA5 original field (non-ISO) and ERA5 ISO component field over time (Figure 3a,b),
the ERA5 ISO components reasonably reflect the main trough–ridge system (Rossby wave)
and its characteristics of amplitude and movement of the original Z500 (non-ISO) over
time, especially in the middle and high latitudes of the Northern Hemisphere. The systems,
including troughs along the western coast of Europe, East Asia, the Gulf of Alaska and
northeastern Canada as well as ridges in the midlatitude North Atlantic, Urals and south
of the Aleutian Islands, are all well shown in the figure. However, the amplitudes of the
ISO components are slightly smaller than the weather fluctuations with a mean variance
contribution of 26.67%, indicating that the ISO components are of paramount importance to
actual atmospheric variation. In fact, the ISO components are good indicators of large-scale
persistent circulation systems and the associated extreme weather and climate events [39].
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Figure 3. Result and zonal deviation comparison of model predictions for Z500 (units: gpm) in the
Northern Hemisphere (20◦–90◦ N, 180◦ W-180◦ E). Forecast lead times from left to right are 10 days,
14 days, 18 days and 22 days, respectively. Row (a) shows the Z500 field in the ERA5 reanalysis
dataset. Row (b) shows the intraseasonal component of the Z500 field in the ERA5 reanalysis dataset.
Row (c) shows the original Z500 field predicted by SE-ResNet. Row (d) shows the intraseasonal
component of the Z500 field predicted by SE-ResNet.

Two prediction processes of the models are compared in Figure 3c,d. The former uses
the original data (non-ISO data) to train the model and filters the model output to obtain
the prediction result, while the latter uses the ISO data to train the model and takes the
model output as the prediction result. Predictions at forecast lead times of 10–22 days based
on the original data (non-ISO) and ISO components can both well reflect the variation
characteristic of the deep troughs in the East Asian region and northeast Canada. The
variation characteristics of the shallow trough in the Gulf of Alaska and the ridges on
the west coast of North America and northwest Eurasia can also be reasonably reflected,
but the prediction results are weaker in oscillation variation and smoother in streamlines
than the midlatitude atmospheric fluctuations described by the ERA5 ISO components
(Figure 3c,d). The global mean RMSE of the prediction driven by ISO components for
10–22 days is 549.27 m2 s−2 (not shown), which is notably better than the CFSv2 prediction
in the same period (RMSE: 563.32 m2 s−2). Interestingly, the model prediction results of
Z500 driven by the original data (unfiltered non-ISO data) have a similar spatial form to the
results predicted using ISO components, showing a distinct “low-frequency” (smoothened)
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feature. Furthermore, in this case, the Z500 ISO values predicted by the ISO components
are closer to the ERA5 ISO components with a mean RMSE of 577.94 m2 s−2. (We only
show analysis for 4 days here due to limited space. For the rest of the days, please refer to
Figures A2–A6 in the Appendix A). Similarly, the T850 ISO values predicted by the ISO
components are in better agreement with the ERA5 ISO components (Figure A2). The global
mean RMSE for the ISO components at 10–22 days is 2.16 K, which is significantly lower
than the prediction driven by the original data (non-ISO) (2.30 K). This may be because
the degrees of freedom and complexity of the ISO components are lower than those of the
original variables (non-ISO), which could lead to the learning ability of the model based on
ISO components being better than the model driven by the original data (non-ISO).

3.2. Overall Evaluation of the Model

To reflect the long-term overall prediction result of the model, Figure 4 presents
the RMSE of the model’s prediction results for the global average Z500 and T850 ISO
components at forecast lead times of 10–30 days in 2017–2018 (a total of 2920 samples). For
the ISO component forecast, the RMSE values of the CFSv2, ResNet and SE-ResNet results
of global Z500 all increase with the forecast lead times. The increase rate is larger in the lead
time range of 10–20 days and flattens after that with a smaller decrease rate. ResNet and SE-
ResNet perform better than the ERA5 climatological forecast (mean RMSE: 577.62 m2 s−2),
persistence forecast (calculated from filtered ERA5 data, the worst prediction, mean RMSE:
859.35 m2 s−2) and CFSv2 climatological forecast (mean RMSE: 598.88 m2 s−2) over the
10–30 day forecast lead times. It is noteworthy that the average RMSE of the CFSv2 model
is larger than that of the ResNet model and the SE-ResNet model when the forecast lead
times are more than 13 days, indicating that, although the prediction of global atmospheric
circulation and its ISO components based on the dynamic seasonal climate prediction
system still has a great advantage in the lead time range of 10–13 days, its prediction ability
beyond 13 days is weaker than the data-driven ResNet model and the SE-ResNet model.
Compared with the ERA5 climatological forecast, the CFSv2 model has lower prediction
skills beyond 16 days. Moreover, the average RMSE of the SE-ResNet model is 0.65% lower
than that of the ResNet model through lead times of 10–30 days. This is an improvement
upon the ResNet model because of the squeeze-and-excitation block, which optimizes the
output based on the importance and weight of each factor when using multiple inputs.

As observed from the RMSE boxplot of the ISO components of Z500 every 5 days
(Figure 4c), the RMSE of 75% of the samples predicted by the deep-learning model is
below the ERA5 climatological forecast in 10–15 days, and the RMSE of more than 50%
of the samples predicted remains below the ERA5 climatological forecast after that. The
CFSv2 model predictions have more than 50% of the samples with a higher RMSE than
the ERA5 climatological forecast in forecast lead times of 16–20 days and beyond. The
persistence forecast is the worst with the RMSE of all the predicted samples being higher
than the ERA5 climatological forecast, and the RMSE of more than 75% of the samples
is above 1000 m2 s−2. Not surprisingly, the SE-ResNet model has the “best” inaccurate
forecast case (RMSE: 672.01 m2 s−2), followed by the ResNet model, CFSv2 model and
persistence forecast. For the “best” accurate forecast case, SE-ResNet and ResNet are close,
outperforming the CFSv2 model and persistence forecast beyond 16 days. On the other
hand, the “best” accurate forecast case of each model is obtained from the lead time range
of 10–15 days, where the CFSv2 model has a best case with an RMSE of 346.38 m2 s−2.

For the global average ISO components of T850, the prediction result of each model
is similar to the prediction results of Z500. As shown in Figure 4b, the SE-ResNet model
is still the model with the highest forecasting skills with an average RMSE 0.45% lower
than the ResNet model through forecast lead times of 10–30 days. Both the SE-ResNet
model and ResNet model are superior to ERA5 climatological forecasts, and their RMSE
beyond 12 days is significantly lower than that of the CFSv2 model, which is inferior to
ERA5 climatological forecasts beyond 14 days. In the RMSE boxplot of the ISO components
of T850 every 5 days (Figure 4d), the overall prediction performance of SE-ResNet and
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ResNet outperform the CFSv2 model and persistence forecast. The SE-ResNet model has
the “best” inaccurate prediction case (RMSE: 2.60 K), followed by the ResNet model, CFSv2
model and persistence forecast. For the “best” accurate prediction case, the SE-ResNet,
ResNet and CFSv2 models are close, but the RMSE value of the CFSv2 model increases
slightly beyond 21 days.
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Figure 4. Mean RMSE of ISO components of model prediction varies with the forecast lead times for
(a) Z500 (units: m2 s−2), (b) T850 (units: K) and the boxplot of RMSE every 5 days for (c) Z500 (units:
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that the corresponding forecast time passes the significance test (α = 0.05)). The salmon and blue
lines inside the box indicate the median and mean value, respectively.

To verify the composite difference between the three models, we conducted the stu-
dent’s t-test on the prediction effects between the SE-ResNet model and the other two
models. The results showed that the SE-ResNet model and ResNet model passed the
significance test (α = 0.05) within 10–16 days. Moreover, the SE-ResNet model and CFSv2
model passed the significance test within 10–30 days.

Table 2 summarizes the average RMSE of Z500 and T850 achieved with the different
models to show the average prediction effect of the model over specific lead time periods.
It can be found that the SE-ResNet model is superior to the other models in all three lead
time periods. The difference between the SE-ResNet and ResNet models is relatively large
in 10–20 days and passes the mean test in general. However, with the extension of the
forecast time, the prediction effects of the two models are close to the ERA5 climatology
prediction, and the difference gradually reduces, which leads to a smaller average increase
in the SE-ResNet model within 10–30 days. The CFSv2 model performs the worst, passing
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the significance test for all three time periods, which indicates a significant improvement in
the predictive performance of the SE-ResNet model over the CFSv2 model.

Table 2. Comparison of the average RMSE (10–20/21–30/10–30 days) of Z500 and T850 achieved
with the different models.

Model
Z500 (Units: m2 s−2) T850 (Units: K)

10–20 21–30 10–30 10–20 21–30 10–30

CFSv2 556.44 * 600.98 * 577.65 * 2.22 * 2.37 * 2.29 *
ResNet 551.15 * 574.59 562.31 * 2.17 * 2.24 2.20 *

SE-ResNet 544.89 573.84 558.68 2.14 2.24 2.19
* represents the RMSE of the corresponding model and SE-ResNet model prediction results passing the average
test (α = 0.05).

To quantitatively show the spatial similarity between the ISO components predicted
by the different models and the ERA5 ISO components, the sequence of the global average
ACC of the predicted ISO components for Z500 and T850 with different forecast lead times
is given in Figure 5. The results are similar to the RMSE results analysis, and the ACC
scores of the deep-learning models are significantly superior to the other models beyond
13 days. Among them, the spatial similarity between the predicted ISO components of
the SE-ResNet model and the ERA5 ISO components is the highest, and the ACC of Z500
and T850 for 10–30 days is 72.58% and 82.75%, respectively. Unsurprisingly, its prediction
result for 10–30 days is higher than that of the ERA5 climatological forecast. The ResNet
model has the second highest ACC skills with an average ACC of 72.25% for Z500 and
82.51% for T850 over 10–30 days. The ACC scores for the Z500 and T850 ISO components
predicted by CFSv2 are lower than the ACC score of the ERA5 climatological forecast in
approximately 17 and 15 days, respectively, and lower than the ACC scores of the two
deep-learning models beyond forecast lead times of 13 days. The CFSv2 ACC score of
Z500 and T850 in 10–30 days is 70.11% and 80.8%, respectively. The ACC scores of the
persistence forecast are the worst with an average ACC of 47.48% and 65.28% for Z500 and
T850 during 10–30 days, respectively.
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From the perspective of the global average, the above section shows that the prediction
performance of the SE-ResNet model is better than that of CFSv2 for the Z500 and T850
ISO components during 14–30 days. To further show the difference in the prediction
effects between the CFSv2 forecast and SE-ResNet forecast at different latitudes, Figure 6
demonstrates the difference between the zonal average RMSE of the prediction results of
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the two models under different forecast lead times. The large RMSE difference between the
two models mainly occurs in the extratropical region of the two hemispheres, while the
difference is relatively small in the tropical region. In general, CFSv2 has a large advantage
in the prediction of the Z500 and T850 ISO components when the forecast lead time is less
than 10 days. However, when the forecast lead time is beyond 10 days, the prediction
results of the SE-ResNet model are stably better than those of CFSv2, which is consistent
with the analysis results of the global average (Figure 4). Specifically, the RMSE predicted
by the SE-ResNet model for Z500 (T850) is, on average, 26.18 m2 s−2 (0.14 K) lower than
that of CFSv2 in the 20–80◦ region when the forecast lead time is beyond 10 days.
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Since planetary waves are the main drivers of atmospheric circulation at middle and
high latitudes and regional weather/climate anomalies, the enhancement of planetary
wave activity is closely related to long-term extreme climate events [39,40]; therefore, the
difference between CFSv2 and SE-ResNet in the extratropical region may be due to the
difference in the prediction skills of planetary waves. Figure 7a,b further show the RMSE
and ACC of the CFSv2 and SE-ResNet models for planetary waves with wavenumbers of
3–8 at 30–70◦ N in the Northern Hemisphere compared with filtered ERA5 data. It can be
clearly observed that the SE-ResNet model has a good skill in the prediction of planetary
waves with wavenumbers of 3–8 beyond 12 days. The average RMSE of the SE-ResNet
model is 529.05 m2 s−2 during the forecast lead times of 12–25 days, which is significantly
lower than that of the ERA5 climatology (551.39 m2 s−2) and CFSv2 model (559.95 m2 s−2).
Compared with the CFSv2 model, the SE-ResNet model is 30.90 m2 s−2 lower on average
at 12–25 days, which is equivalent to the average zonal deviation of the two models shown
in Figure 6a, indicating that the difference in the prediction effect for extratropical Z500 is
mainly due to the difference in prediction performance for planetary waves. At the same
time, the ACC results also show that the performance of the SE-ResNet model is better than
that of the ERA5 climatology (82.29%) during 12–25 days, while the CFSv2 model has low
prediction skills beyond 16 days.

3.3. Prediction and Evaluation of the 500 hPa Circulation Situation in the Eurasian Region

Focusing on the reliability of the 10–30 day forecast of regional upper-level circulation
with the different methods, the following section uses the Eurasian region as an example to
give an individual case and their overall prediction performance. Figure 8 first shows the
Z500 ISO components of a cold wave weather process in Eurasia from 2 to 8 December 2018
and the difference in the ERA5 ground 2 m temperature between the schematic time and
06 UTC on 1 December 2018. This event was a continuous large-scale cold wave affecting
East Asia with the cooling area mainly concentrated in eastern China, the Korean Peninsula
and Japan, and the local temperature dropped up to 10.12 K (23.60 K) within 24 (72) hours.
During this process, the characteristics of planetary wave activity are obvious and are
mainly caused by the continuous maintenance and strengthening of the blocking high near
the Ural Mountains, leading to the deepening and development of the downstream East
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Asian trough. Meanwhile, along with the continuous eastward movement of the low trough
in Central and Western Europe, a large amount of cold air from the northwest entered
East Asia, resulting in widespread and persistent cooling. According to the prediction
results, the three models reflect the phase and propagation characteristics of the planetary
wave well and clearly represent the maintenance and development of the blocking high
near the Ural Mountains and the deepening of the East Asian trough. However, because
the model only focuses on the ISO components, the amplitude of the wave oscillation is
relatively smaller than that of the ERA5 ground truth. From the perspective of RMSE and
ACC scores, the prediction results of the SE-ResNet model over 10 days are superior to
those of the CFSv2 model. In particular, after 6 December, the contour lines of the CFSv2
model’s prediction results near the Ural Mountains gradually become flat, and the position
of the high-pressure ridge appears at approximately 90◦ E, which is to the east of the real
position. Compared with the ResNet model, the SE-ResNet model is only slightly worse
at 06 UTC on 8 December and is better than the ResNet model at other times with lower
RMSE and larger ACC values.
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To evaluate the overall prediction effect of the different models in the Eurasian region,
the average RMSE and ACC of the Z500 ISO components with the forecast lead times
are shown in Figure 9. It can be inferred that the SE-ResNet model performs best in the
overall prediction of upper-level circulation over the Eurasian region. The average RMSE
and ACC of 10–30 days are 580.34 m2 s−2 and 83.78%, respectively. The ResNet model is
slightly worse than the SE-ResNet model with a mean RMSE and ACC of 585.03 m2 s−2

and 83.51% for 10–30 days, respectively. The forecast skill of the CFSv2 model is worse
than that of the deep-learning model beyond 13 days, and the average RMSE and ACC
at 10–30 days are 603.85 m2 s−2 and 82.31%, respectively. Similar to the global prediction
results, the RMSE and ACC predicted by CFSv2 show a large variation rate over 20 days,
while it tends to be flat beyond that with a smaller decrease rate over time. We also notice
that all the predictions over Eurasia are worse than the climatological forecast beyond
20 days. We think that it could be due to the atmospheric instability over the middle and
high latitudes, as the Eurasia continent is a large piece of land with inconsistency in the
characteristics of the underlying surface and atmospheric fluctuation is frequent over this
region. Compared to the global prediction, where vast sea surface covers more than 70%
of the underlying surface, having a relatively consistent characteristic, there will be more
significant atmospheric variations over Eurasia.
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Figure 8. Comparison of the different models’ 500 hPa situation (units: gpm) of a cold wave weather
process in Eurasia (2–8 December 2018) and the difference (units: K) of the ERA5 ground 2 m
temperature between the schematic time and 06 UTC on 1 December 2018. Forecast lead time is
10 days, 12 days, 14 days and 16 days from left to right, respectively (Z500 is in contours, and T2m is
in shading). The first row shows the Z500 and T2m of the ERA5 reanalysis data. The second row
shows the CFSv2 prediction. The third row shows the ResNet prediction. The last row shows the
SE-ResNet prediction.
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4. Discussion and Conclusions

In this paper, we use ISO components of atmospheric signals to train the SE-ResNet
machine-learning model to forecast the global Z500 and T850 situation in the next 1–30 days
and compare the prediction results with the ResNet and CFSv2 models. In this study, we
choose RMSE and ACC as our evaluation metrics, and our model shows superiority
compared to the other models, including CFSv2 and the original ResNet model. Compared
with the previous deep-learning model, the forecast model used in this study makes the
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following important improvements. (1) As the prediction object gradually tends to become
the low-frequency component with the increase in the forecast time within the subseasonal
timescale, the ISO components are directly used to train the forecast model. (2) Adding a
self-attention mechanism optimizes the importance of different factor channels in the model.
We also noticed that recent AI weather forecast models, like Pangu [21] and Fengwu [22],
mainly focus on the weather forecast with lead times of 1–7 days; therefore, we hope our
technique of self-attention and ISO extraction may provide inspiration for them to tackle
forecasts with longer lead times.

We studied two indicators, RMSE and ACC, to evaluate the predictive performance
of the model, and the results show that the SE-ResNet model is significantly better than
the CFSv2 model in forecast lead times of 10–30 days. It is worth noting that the deep-
learning model is not endowed with meteorological constraints internally, but we still try
to analyze the interpretability of its prediction results. The difference between the CFSv2
model and SE-ResNet model mainly occurs in the extratropical region and is small in the
tropical region. Moreover, the SE-ResNet model has good performance in the prediction
of planetary waves with wavenumbers of 3–8 beyond 12 days, which also leads to the
difference in the prediction performance of the models in the extratropical regions. As
an issue to focus on, the variation characteristics of planetary waves are closely related
to the occurrence and development process of weather. Not surprisingly, the data-driven
model we developed in this study has a reliable reflection on the phase and propagation
characteristics of planetary waves at forecast lead times of 11–30 day.

It should be noted that when latitude-weighted RMSE is used as the loss function
training model in this paper, the predicted circulation oscillation features tend to become
smooth over the forecast duration. As an optimization of the model loss function, for
example, the weight of the loss function can be set to increase with the forecast time or use
a multi-time step-loss function [41] to help improve the stability and accuracy of long-term
prediction. On the other hand, meteorological elements are closely correlated with each
other. Although deep learning provides a new method for the prediction of weather and
climate evolution, the prediction objects in this study are limited to Z500 and T850 and are
not necessarily constrained by the physical relationship between multiple elements [31];
therefore, using a machine-learning framework based on physical models [42,43] or com-
bining dynamic models with deep-learning models [44] may help improve the reliability
and authenticity of subseasonal forecast models. Furthermore, recent studies have shown
that probabilistic weather prediction makes it possible to calculate the uncertainty and
skill index of neural network prediction [45], which also provides a reference basis for
probabilistic prediction within the subseasonal timescale.
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Figure A2. Result and zonal deviation comparison of the model predictions for T850 (unit: K) in the
Northern Hemisphere (20◦–90◦ N, 180◦ W–180◦ E). Forecast lead times from left to right are 10 days,
14 days, 18 days and 22 days, respectively. Row (a) shows the Z500 field in the ERA5 reanalysis
dataset. Row (b) shows the intraseasonal component of the Z500 field in the ERA5 reanalysis dataset.
Row (c) shows the original Z500 field predicted by SE-ResNet. Row (d) shows the intraseasonal
component of the Z500 field predicted by SE-ResNet.
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Figure A3. Result and zonal deviation comparison of model predictions for Z500 (units: gpm) in
the Northern Hemisphere (20◦–90◦ N, 180◦ W–180◦ E). Forecast lead times from left to right are
10 days, 11 days, 12 days and 13 days, respectively. Row (a) shows the Z500 field in ERA5 reanalysis
dataset. Row (b) shows the intraseasonal component of the Z500 field in ERA5 reanalysis dataset.
Row (c) shows the original Z500 field predicted by SE-ResNet. Row (d) shows the intraseasonal
component of the Z500 field predicted by SE-ResNet.
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Figure A4. Result and zonal deviation comparison of the model predictions for Z500 (units: gpm)
in the Northern Hemisphere (20◦–90◦ N, 180◦ W–180◦ E). Forecast lead times from left to right are
14 days, 15 days, 16 days and 17 days, respectively. Row (a) shows the Z500 field in the ERA5
reanalysis dataset. Row (b) shows the intraseasonal component of the Z500 field in the ERA5
reanalysis dataset. Row (c) shows the original Z500 field predicted by SE-ResNet. Row (d) shows the
intraseasonal component of the Z500 field predicted by SE-ResNet.
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Figure A5. Result and zonal deviation comparison of the model predictions for Z500 (units: gpm)
in the Northern Hemisphere (20◦–90◦ N, 180◦ W–180◦ E). Forecast lead times from left to right are
18 days, 19 days, 20 days and 21 days, respectively. Row (a) shows the Z500 field in the ERA5
reanalysis dataset. Row (b) shows the intraseasonal component of the Z500 field in the ERA5
reanalysis dataset. Row (c) shows the original Z500 field predicted by SE-ResNet. Row (d) shows the
intraseasonal component of the Z500 field predicted by SE-ResNet.
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